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Abstract 

Uncertainties of soil moisture in historical simulations (1920 – 2005) and future 

projections (2006 – 2080) were investigated using the outputs from the CMIP5 (Coupled 

Model Intercomparison Project Phase 5) and CESM (Community Earth System Model). The 

results showed that soil moisture climatology varies greatly among models despite the good 

agreement between the ensemble mean of simulated soil moisture and the GLDAS (Global 

Land Data Assimilation System) data. The uncertainties of initial conditions and model 

structure showed similar spatial patterns and magnitudes, with high uncertainties in dry 

regions and low uncertainties in wet regions. In addition, the long-term variability of model 

structure uncertainty rapidly decreased before 1980 and increased thereafter, but the 

uncertainty in initial conditions showed an upward trend over the entire time span. The model 

structure and initial conditions can cause uncertainties at all time scales. Despite these large 

uncertainties, almost all of the simulations showed significant decreasing linear trends in soil 

moisture for the 21st century, especially in the Mediterranean region, northeast and southwest 

South America, southern Africa, and southwestern USA. 
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1. Introduction 

Soil moisture is widely recognized as a key parameter in environmental processes 

because of its important role in controlling the water and energy balance between the land 

surface and atmosphere [Seneviratne et al., 2010]. Soil moisture generally refers to the 

amount of water stored in unsaturated soil zone, although it has different definitions in 

diverse fields, e.g., hydrology, meteorology, ecology. Soil moisture has a significant impact 

on evapotranspiration rate, soil thermal parameters, surface albedo, and Bowen ratio, and 

therefore affects the planetary boundary layer regime, clouds, and precipitation [Cook et al., 

2006; Findell and Eltahir, 2003a; b; Guan et al., 2009]. Meanwhile, as the immediate water 

source for vegetation, soil moisture impacts the productivity and survival of plants [Ciais et 

al., 2005; Reichstein et al., 2007]. Therefore, it is important to study soil moisture and its 

variability to understand climate change and land–atmosphere interactions. 

Traditionally, changes in soil moisture and its relationship with the climate system were 

studied via ground-based measurements [Huang et al., 2008; Wang et al., 2010]. Accurate 

soil moisture observation is essential for hydrological monitoring and forecasting, water 

resource management, and improvement of land surface models. However, in situ soil 

moisture measurements are unavailable for many large regions of the world, which limits the 

use of soil moisture observations. Remote sensing of soil moisture from satellites is becoming 

more prevalent to compensate for the lack of in situ observations [Dorigo et al., 2012; 

Wagner et al., 2003], but a great deal of work is still needed to address the uncertainty caused 

by inversion algorithms used in processing satellite signals. In addition, satellite-based soil 

moisture data are limited to the top soil, which is unsatisfactory for many climate applications. 



 

© 2017 American Geophysical Union. All rights reserved. 

Therefore, analyses of soil moisture changes and related hydrological variations in large 

spatial domains, and on interannual to decadal time scales, are mainly dependent on the 

outputs of model simulations [Sheffield and Wood, 2008; Yang et al., 2007; Yang et al., 2011], 

because modeled soil moisture can yield gridded values and includes deep soil layers. 

However, the quality of model output is affected by uncertainties in meteorological 

forcing and parameter inputs, as well as by inadequacies in model physics [Li et al., 2012]. In 

particular, soil moisture is a complex variable, with a dynamic range defined by specific 

precipitation, evaporation, and runoff formulations utilized in a given model [Koster and 

Milly, 1997]. Marked differences are seen in the soil moisture products generated by different 

models, even when the models are driven by precisely the same meteorological forcing 

[Dirmeyer et al., 2006]. Given these differences, it is necessary to validate simulated soil 

moisture against observed datasets, and compare soil moisture from different models. 

Understanding uncertainties in climate models during analysis of climate change and its 

impacts is a topic of fundamental importance, and has therefore attracted a great deal of 

attention. 

Model uncertainties arise from inaccuracies in model structure, initial conditions (or 

ensemble runs), and greenhouse gas emission scenarios used [Woldemeskel et al., 2012]. To 

evaluate the uncertainty of a model’s structure, outputs of dozens of Earth System Models 

(ESMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5), coordinated by 

the World Climate Research Programme (WCRP) in support of the Intergovernmental Panel 

on Climate Change’s Fifth Assessment Report (IPCC AR5), were used in this study. CMIP5 

promotes a set of model simulations to understand the differences and uncertainties in model 
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simulations and projections [Taylor et al., 2012]. Over the past few years, there has been a 

great deal of progress in the performance of CMIP5 simulations and projections [Ahlström et 

al., 2012; Bracegirdle et al., 2014; Orlowsky and Seneviratne, 2013], mainly focusing on 

temperature and precipitation [Aloysius et al., 2016; Knutti and Sedláček, 2013; Kusunoki 

and Arakawa, 2015; Woldemeskel et al., 2016]. In addition, almost all research regarding the 

uncertainties of temperature and precipitation is focused on future projections, because 

observations for temperature and precipitation are sufficient. The accuracy of historical 

temperature and precipitation simulations can be verified by sufficient observation data. 

However, for soil moisture, a key and more complex variable in environmental processes, its 

in situ observations are lacking, and there have been relatively few studies. It is necessary to 

study uncertainties in simulated soil moisture, not only in future projections, but also in 

historical simulations. However, most ESMs of CMIP5 have only a few (or even one) 

ensemble runs, which is not sufficient to study the uncertainty of initial conditions. To 

compensate for this shortage, 30 ensemble members of perturbation simulations using the 

Community Earth System Model (CESM) [Hurrell et al., 2013] were used in this study. Note 

that these are CESM runs we carried out, not the ones officially archived by the CMIP5. 

In this study, we examined the performance of the CMIP5 and CESM in simulating soil 

moisture, and investigated the uncertainties in model structure and initial conditions. We 

examined the accuracy of soil moisture simulated by multiple models for historical 

simulations (1920 – 2005) against the Global Land Data Assimilation System (GLDAS) data, 

focusing on climatological means and trends in soil moisture. We also studied the 

uncertainties among multiple models for historical simulations and future projections over the 
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21st century (2006 – 2080) forced by the Representative Concentration Pathways 4.5 

(RCP4.5) and 8.5 (RCP8.5) simulation scenarios. The paper is organized as follows. The 

analyzed datasets and methods are described in Section 2. The results are shown in Section 3. 

A summary and discussion are provided in Section 4. 

 

2. Dataset and methods 

2.1 CMIP5 outputs 

The simulated monthly mean soil moisture of CMIP5 used in this study is the water mass 

in all phases in the top 10 cm layer (kg/m
2
) [Taylor et al., 2012]. We used the outputs from 30 

CMIP5 ESMs in the historical experiment, and 27 models in the RCP4.5 and RCP8.5 

experiments (Table 1). The first ensemble run was used if a model had multiple ensemble 

simulations, so the effect of “model structure” was estimated by contrasting different model 

simulations. As the models have different spatial resolutions, ranging from 0.94° to 3.75°, all 

model outputs were bilinearly interpolated to a 1° latitude × 1° longitude grid to allow 

various diagnostics to be carried out across the models and matched to those of the GLDAS 

data. We selected the period 1920 – 2005 for the historical simulations and the period 2006 – 

2080 for the RCP projections for our calculations and analyses. 

2.2 CESM outputs 

The CESM is an ESM consisting of atmosphere, land, ocean, and sea ice components 

that are linked through a coupler for exchanging state information and fluxes among these 

components [Hurrell et al., 2013]. Two model simulations, the CESM Large Ensemble 

Project and Medium Ensemble Project, were used in this study. The CESM Large Ensemble 
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Project is a community resource for studying climate change in the presence of natural 

climate variability using historical forcing from 1920 to 2005, and then the RCP8.5 forcing 

scenario from 2006 to 2080 [Kay et al., 2015]. The CESM Large Ensemble Project includes 

30 ensemble perturbation simulations, so the effects of “initial conditions” can be estimated 

by contrasting the ensemble members. All 30 CESM Large Ensemble Project members use 

the same model and the same external forcing. The horizontal resolution is 0.94° × 1.25° 

(latitude by longitude). The CESM Medium Ensemble Project uses the same strategies as the 

Large Ensemble Project but with a smaller ensemble size of 15; furthermore, it is forced by 

the RCP4.5 scenario [Lin et al., 2016; Sanderson et al., 2015]. The simulated soil moisture 

fields of CESM include 15 vertical layers from the surface to the bottom at 35 m (below the 

surface). In view of the comparability of different layers, we used the top soil moisture, and 

changed the unit of soil moisture to kg/m
2
. 

2.3 GLDAS data 

Due to the lack of high-quality observational soil moisture data, the dataset from GLDAS 

was used to evaluate simulated soil moisture in the historical simulations over the global 

terrestrial surface. GLDAS is a global, high-resolution, offline land data assimilation system, 

which can generate optimal fields of land surface states and flux by integrating satellite- and 

ground-based observational data products, using land surface modeling and data assimilation 

techniques [Rodell et al., 2004]. The GLDAS dataset was validated against available data 

taken from multiple sources [Chen et al., 2013; Dorigo et al., 2012; Zhang et al., 2008]. We 

also validated the accuracy of GLDAS soil moisture by comparing it with observations in 

China (See Figure S1, S2, S3 and the content in the supplementary materials). It is widely 
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used for data assimilation, validation, weather and climate model initialization, and 

hydrology [Cheng et al., 2015; Cheng and Huang, 2016; Lin et al., 2008; Reichle et al., 2007; 

Yang et al., 2009]. The soil moisture data used in this study were the soil moisture contents in 

the top 10 cm layer (water mass in all phases, kg/m
2
), taken from the monthly GLDAS 

Version 2 from 1948 to 2010 (spatial resolution, 1° × 1°). The GLDAS Version 2 product is a 

simulation outputs from the National Centers for Environmental Prediction/Oregon State 

University/Air Force/Hydrologic Research Lab (Noah) [Chen and Dudhia, 2001; Chen et al., 

1997; Chen et al., 1996; Ek et al., 2003] land surface model, forced with the Princeton 

meteorological dataset [Sheffield et al., 2006]. 

2.4 Methods 

The statistical methods used in this study were correlation analysis, regression analysis, 

wavelet analysis, and ensemble empirical mode decomposition (EEMD). EEMD separates 

non-uniform variability at different time scales [Huang et al., 1998]. In EEMD, time series is 

decomposed to obtain a set of intrinsic mode functions (IMFs), which are a series of 

amplitude-frequency-modulated oscillatory components. The last IMF, either a monotonic 

curve or containing only one extremum, can be recognized as the trend of the time series. 

This trend has low sensitivity to the addition of new data. This property guarantees that the 

physical interpretation within a specified time interval does not change with the addition of 

new data, consistent with the physical constraint that the subsequent evolution of a physical 

system cannot alter what has already occurred. EEMD has been widely applied in climate 

research [Ji et al., 2014; Wu et al., 2011]. In the EEMD calculation for this study, the noise 

added to data had an amplitude of 0.2 standard deviations relative to the corresponding data, 
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the ensemble number was 400, and the number of IMFs was 6. 

 

3. Results 

3.1 Historical simulations (1920 – 2005) 

Both CMIP5 and CESM experiments provided a suite of historical simulations with 

different ESMs or initial conditions. An ensemble mean is normally used to reduce model 

deviation. Figure 1 shows the global distributions of annual mean soil moisture during the 

period 1961 – 1990, namely the ensemble means of CMIP5 (CMIP5-EM; Figure 1a) and 

CESM simulations (CESM-EM; Figure 1b). For comparison, we also present the soil 

moisture distribution from GLDAS data (Figure 1c). High-latitude areas (poleward of 60°S or 

70°N) are ignored, because they are dominated by permafrost. As shown in Figure 1, the 

simulated soil moisture broadly agrees with the GLDAS data, ranging from less than 10 

kg/m
2
 to a maximum of more than 35 kg/m

2
. The driest regions are located in the Sahara and 

Arabian Peninsula, followed by the Iranian Plateau, western China, and western Australia. 

The wettest regions are mainly distributed in the tropics, especially 10°N – 10°S, such as the 

Amazon Basin and Congo Basin. The distribution of soil moisture is broadly comparable 

with precipitation characteristics but with some regional differences. This indicates that soil 

moisture depends mainly on precipitation, but precipitation is not the only controlling factor. 

CMIP5-EM underestimates soil moisture (relative to the GLDAS data) over most regions. In 

contrast, the CESM-EM is remarkably similar to the GLDAS data over most areas but largely 

underestimates soil moisture over northern Eurasia. The discrepancy for individual CMIP5 

simulations is larger than that for individual CESM simulations. All regions show standard 
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deviation of less than 10% for ensemble mean soil moisture in the CESM simulations. In 

contrast, all of the regions in the CMIP5 simulations show standard deviation larger than 10% 

for ensemble mean soil moisture, and 24.1% of the global land area show standard deviation 

larger than 40% (Figure S4). The most pronounced distinction occurred over the Sahara, 

Arabian Peninsula, Iranian Plateau, and western Australia, for which soil moisture ranges 

show the poorest agreement in dry regions.  

Global annual mean soil moisture levels in the period 1961 – 1990 for individual CMIP5 

ESMs, CESM simulations, and GLDAS data are presented in Figure 2. The discrepancy 

among the 30 CESM simulations is negligible, so only their ensemble mean is presented. 

Figure 2 shows the global annual mean soil moisture in CMIP5-EM, CESM-EM, and 

GLDAS, with values of 20.0 kg/m
2
, 20.5 kg/m

2
, and 22.1 kg/m

2
, respectively. However, there 

are large differences in the magnitude of climatological soil moisture between different 

CMIP5 ESMs, ranging from 8.5 kg/m
2
 to 26.1 kg/m

2
. The maximum soil moisture was 

approximately triple the minimum value in these ESMs. This large difference means that 

users cannot simply apply the soil moisture from one product to other models. In fact, 

previous research emphasized that the true information of modeled soil moisture lies not in its 

absolute magnitude but in its variation over time, because soil moisture climatology varies 

greatly among models, and models have different operating ranges for soil moisture 

[Dirmeyer et al., 2004]. Therefore, soil moisture anomaly (SMA) was calculated to eliminate 

the influence of large differences in absolute magnitude. The SMA in the study is the annual 

mean soil moisture anomaly relative to the base of averaged soil moisture for 30 years 

(average of annual mean soil moisture in the period of 1961 – 1990). Note that the SMA in 
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Figure 3 is monthly mean SMA, after removing the average of 12 months. 

When considering the total monthly SMA (Figure 3), there is agreement on the profiles 

of SMA between the simulations of different ESMs. In addition, CMIP5-EM, CESM-EM, 

and GLDAS show good agreement. All of the time series show higher soil moisture values in 

winter, and lower values in summer and fall, in agreement with the seasonal cycle of the 

global Aridity Index [Lin et al., 2015]. The climatological evolution of SMA in CMIP5-EM is 

dominated by an annual cycle, with a maximum (1.5 kg/m
2
) in January and a minimum (–2.0 

kg/m
2
) in August, and an annual range of 3.5 kg/m

2
. Nevertheless, there are distinct 

differences in the dynamic range of monthly variability. In eight out of the 30 simulations, 

soil moisture shows a large difference between dry and wet months with a standard deviation 

larger than 2 kg/m
2
, while the rest 22 simulations show narrow ranges. The seasonal 

amplitude is much larger for the eight simulations, i.e., at least twice of that for the rest 22 

simulations. The largest discrepancies between the two cases occur in July and August, when 

the soil moisture content is low. Despite these differences, the evolution of SMA among 

individual simulations is highly consistent, and therefore the annual mean SMA is used 

hereafter. 

The temporal variation of annual mean SMA (relative to the baseline period of 1961 – 

1990) of CMIP5-EM (from 1920 to 2005), CESM-EM (from 1920 to 2005), and GLDAS 

(from 1948 to 2010) are illustrated in Figure 4. One standard deviation is used to measure the 

differences between the ensemble members for the CMIP5 and CESM simulations. As the 

internal variability of the ensemble mean soil moisture has been removed, GLDAS is the 

20-year running mean. The time series of annual mean SMA shows an observable downward 
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trend during the 86-year period of CMIP5-EM, at a rate of –0.0084 kg/m
2
 per 10 year, which 

significantly exceeds the 95% confidence level. In comparison, the long-term trend of 

CESM-EM is not significant. Focusing on the period 1948 – 2005, there were significant 

decreasing trends in both CMIP5-EM (at a rate of –0.012 kg/m
2
 per 10 year at the 95% 

confidence level) and GLDAS (at a rate of –0.0074 kg/m
2
 per 10 year at the 95% confidence 

level). However, CESM-EM showed an increasing trend, at a rate of 0.0037 kg/m
2
 per 10 

year, which was opposite to the drying characteristics revealed by the Palmer Drought 

Severity Index [Dai, 2011] and the Aridity Index [Huang et al., 2016b]. Despite the opposite 

long-term trend, there were significant relationships between CMIP5-EM and CESM-EM 

simulations (r = 0.33, is calculated between the two detrended time series, with significant 

correlation at the 95% confidence level) for the period 1920 – 2005 at interannual to decadal 

time scales. The SMAs of CMIP5-EM and CESM-EM showed similarly significant decreases 

before 1953 (minimal value for the EEMD IMF6 of CESM-EM), at rates of –0.014 kg/m
2
 per 

10 year and – 0.017 kg/m
2
 per 10 year, respectively; these rates significantly exceeded the 95% 

confidence level. Since then, the long-term results became different: CMIP5-EM decreased, 

and CESM-EM increased. The standard deviations for CMIP5 and CESM are also presented 

in Figure 4b, and show a large range from 0.086 to 0.19 kg/m
2
 for CMIP5 (from 0.073 to 

0.16 kg/m
2
 for CESM). The standard deviations for both CMIP5 and CESM showed obvious 

year-to-year variability, but their long-term variability was different. The long-term 

variability of the standard deviation for the CESM simulation showed an upward trend over 

the 86-year period at the 95% confidence level. In comparison, the long-term variability of 

the standard deviation for the CMIP5 was not significant, despite a decreasing trend over the 
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entire time span. However, the long-term variability of the standard deviation for the CMIP5 

can be divided into two periods: rapid decrease before 1980, followed by an increase. 

Above shows the climatology and average value of soil moisture, but changes in soil 

moisture are generally of interest. Figure 5 shows the spatial distributions of annual mean 

SMA trends for the period 1948 – 2005 for CMIP5-EM (a), CESM-EM (b), and GLDAS (c). 

Significant trends (p = 0.05) can be observed for 29.4% of the global land area based on the 

GLDAS soil moisture. Of the 29.4%, 53.1% was negative and 46.9% positive. The most 

prominent drying trends occurred in the Sahel, East Asia, eastern Australia, and western 

Europe. Many strong drying trends occurred in regions that already had relatively low 

average soil moisture values. We observed subtle wetting trends in central USA, eastern 

Europe, and western Australia. The soil moisture trend was broadly comparable with various 

drought indices, such as the Palmer Drought Severity Index [Dai, 2011; 2013; Wang et al., 

2014] and the Aridity Index [Feng and Fu, 2013; Huang et al., 2016a; Li et al., 2014], 

suggesting that the broad patterns exhibited by the GLDAS soil moisture data are likely 

reliable. In comparison with the GLDAS SMA trend, however, the magnitudes of CMIP5-EM 

and CESM-EM SMA trends were much smaller. Focusing on the spatial distribution without 

considering the magnitude, the SMA trend of CMIP5-EM is remarkably similar to that of 

CESM-EM. The most prominent drying trends occurred in southern USA, northern South 

America, Europe, and Southeast Asia, and subtle wetting trends were seen in central Africa 

and western Asia. The spatial distributions were quite different from those of the GLDAS, 

especially in regions with prominent drying trends. This demonstrates that although the 

CMIP5 and CESM simulation can efficiently describe the spatial and temporal distributions 
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of global soil moisture, these models do not accurately reproduce regional soil moisture 

variation. Figure 5 also shows that the consistency of different CESM simulations is higher 

than that of the CMIP5 simulations. Stippling indicates that more than 80% (24 out of 30) of 

the simulations agree on the sign (positive or negative) of the change. Consistent changes 

were observed for 25.8% of the global land area for the CESM simulations, but the value was 

only 1.6% for the CMIP5 simulations. This demonstrates that model structure has a larger 

influence on soil moisture trend than initial conditions. 

To express quantitatively the uncertainties in model structure and initial conditions at 

each grid point, relative standard deviation of SMA for the CMIP5 and CESM simulations, 

for the period 1920 – 2005 are calculated, and illustrated in Figure 6. Relative standard 

deviation in this study is defined as the ratio of standard deviation to mean soil moisture. It is 

better than commonly used standard deviation for expressing uncertainty of soil moisture, 

because it can eliminate the influence of different climatic conditions and allow comparison 

among different climatic regions. Figure 6a shows high values in the Sahara, Arabian 

Peninsula, the Iranian Plateau, northern China, and western Australia, indicating that these 

areas are most sensitive to climate model structure. In comparison with the CMIP5 

simulations, the relative standard deviation of the CESM simulations exhibit similar spatial 

patterns (Figure 6b). The relative standard deviation values of CESM simulations are slightly 

larger than those of the CMIP5 over most regions, but the CMIP5 value for the Sahara is 

markedly larger than that for the CESM simulations. As the relative standard deviation 

depends largely on the climatic region, as shown in Figure 6a and Figure 6b, the regionally 

averaged relative standard deviation, as a function of climatological mean soil moisture, are 
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presented in Figure 6c. The climatological mean soil moisture is the annual mean soil 

moisture for the period 1961 – 1990, which represents the climatological state. The relative 

standard deviation decreases with the increase in climatological mean soil moisture. This 

indicates that the SMA agrees best in humid areas. Figure 6c is also a visual performance of 

the comparison between CMIP5 and CESM simulations in different climatic regions, which 

shows large model structure uncertainty in very dry regions, but a slightly larger initial 

uncertainty in other regions. 

Although the quantitative uncertainty was analyzed by standard deviation and relative 

standard deviation in Figure 4 and Figure 6, standard deviation can only reflect the deviation 

between the individual models or simulations. Temporal consistency of long-term and 

interannual variability cannot be revealed by standard deviation. Standard deviation is a state 

average, which may neglect some important details. Figure 7 shows the time series of annual 

mean SMA for the period 1920 – 2005, for 30 individual members of the CMIP5 and of 

CESM simulations, which shows large differences among the members. Of these 30 CMIP5 

simulations, 22 members show decreasing trends (13 of them are significant at the 95% 

confidence level), and eight show increasing trends (three of them are significant at the 95% 

confidence level). However, for the CESM simulations, only two members show significant 

decreasing trends and one member shows a significant increasing trend. Although the 

individual simulations show large variability at interannual to decadal time scales, the 

ensemble mean only shows a low-frequency signal. The averaged standard deviation for the 

individual members of the CMIP5 (CESM) is 0.13 (0.12) kg/m
2
, but the standard deviation 

for CMIP5-EM (CESM-EM) is 0.038 (0.030) kg/m
2
. This indicates that the ensemble mean 
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can effectively remove the uncertainty in internal variability. 

To study the uncertainty at different time scales, the EEMD was used to separate 

non-uniform variability at different timescales for the CMIP5 and CESM SMA. Figure 8 

shows the time series of EEMD IMF1 to IMF6 in the period 1920 – 2005, for 30 individual 

members of the CMIP5 and CESM simulations. IMF6 can be recognized as a linear trend in 

the time series, and IMF1 to IMF5 are the signals of SMA from high to low frequency. The 

highest cycle powers for IMF1 to IMF5 are 3 – 5, 7 – 10, 14 – 20, 40 – 45, and 78 years, as 

detected by wavelet analysis using the Morlet wavelet. IMF1 mainly reflects the periodic 

signal at the interannual time scale. The standard deviation for IMF1 of CMIP5 ranges from 

0.062 to 0.13 (from 0.066 to 0.11 for CESM) with temporal variability. IMF6 shows the 

linear trend of the time series. We determined the increment of the EEMD trend at a given 

time from the reference time of 1920, i.e., TrendEEMD(t) = IMF6(t) – IMF6(1920), 

representing the accumulated trend from 1920 [Ji et al., 2014]. TrendEEMD(2005) can be 

recognized as the trend of the SMA series from 1920 to 2005. Of these 30 CMIP5 simulations, 

22 members show a decreasing trend and eight members show an increasing trend, which is 

markedly consistent with the linear trend. Of these 30 CESM simulations, 21 members show 

a decreasing trend, and nine members show an increasing trend. Same as IMF1 and IMF6, 

large difference also exists for IMF2 to IMF5, which indicate that both model structure and 

initial conditions can cause uncertainty at all time scales. Comparing the ensemble mean with 

its individual simulations, we find that the fluctuation of the ensemble mean is much smaller 

than the individual simulations for all of the IMFs. This indicates that the ensemble mean can 

not only effectively removes the fluctuations in internal variability, but also the signal at 
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interdecadal time scales, which are sometimes useful and important. Therefore, using 

ensemble mean is not entirely appropriate under these circumstances. 

 

3.2 Future projections (2006 – 2080) forced by RCPs 

Using similar analysis for historical simulations, the uncertainties of future projections 

(2006 – 2080) under RCP4.5 and RCP8.5 are also presented. Figure 9 shows the time series 

of annual mean SMA in the period 2006 – 2080, relative to the period 2006 – 2025, for 27 

CMIP5 and 30 CESM simulations. The shaded area is one standard deviation. The gray lines 

show the 20-year moving averages of 30 individual members, and the black lines show the 

averaged values. The ensemble mean SMA clearly shows projected 21st century changes. 

There is a downward trend during the projected 21st century for CMIP5 RCP4.5 (RCP8.5), at 

a rate of –0.045 (–0.074) kg/m
2
 per 10 year, which significantly exceeds the 95% confidence 

level for both scenarios. In comparison with the CMIP5, the ensemble mean SMA of the 

CESM simulation also shows a significant drying trend, at a rate of –0.026 (–0.044) kg/m
2
 

per 10 year for RCP4.5 (RCP8.5). For the period 2061 – 2080, the CMIP5 (CESM) model 

simulations show ensemble mean decrease in annual mean SMA, of –0.25 (–0.14) kg/m
2 

for 

RCP4.5 and – 0.40 (–0.25) kg/m
2
 for RCP8.5, respectively, relative to the period 2006 – 2025. 

Almost all of the CMIP5 and CESM individual simulations show a significant linear 

decreasing trend for the 21st century, although large differences exist among these trends. 

The time series of standard deviation of annual mean SMA for the CMIP5 and CESM 

simulations in the period 2006 – 2080 are presented in Figure 10, showing significant 

increasing trends. The trends were 0.017, 0.037, 0.0058, and 0.0060 kg/m
2
 per 10 year for 
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CMIP5 RCP4.5, CMIP5 RCP8.5, CESM RCP4.5, and CESM RCP8.5, respectively. The 

results indicate that the uncertainties in model structure and initial conditions show an 

increasing trend in the future period. The standard deviations for the four sets of simulations 

show no significant difference before 2045, but subsequently become significantly different. 

For the period 2046 – 2080, the CESM simulations change little, at rates of 0.0073 and 

0.0035 kg/m
2
 per 10 year for RCP4.5 and RCP8.5, respectively, which are not significant. 

However, for the CMIP5 simulations, the rates are 0.016 and 0.068 kg/m
2
 per 10 year for 

RCP4.5 and RCP8.5, respectively, which significantly exceeds the 95% confidence level. The 

spatial distributions of averaged relative standard deviation of SMA in the period 2006 – 

2080 are remarkably similar to those of the historical simulations, which shows large 

uncertainties in the dry regions (Figure S5 and Figure S6). The relative standard deviation for 

RCP8.5 is slightly larger than that for RCP4.5, although the difference is not significant 

(Figure S5 and Figure S6). This indicates that the uncertainties of greenhouse gas emission 

scenarios are smaller than the uncertainties of model structure and initial conditions. 

Based on the analysis of soil moisture uncertainty, Figure 11 shows percentage changes 

in soil moisture for the 20-year period 2061 – 2080 relative to the period 2006 – 2025. 

Stippling indicates that more than 80% of the models agree on the sign of change (positive or 

negative). The broad patterns are consistent across the RCPs, with stronger changes for 

RCP8.5. Under RCP8.5 of CMIP5, 22.3% of the global land area shows consistent soil 

moisture changes across individual ensemble members. Of these, 98.3% shows drying and 

1.7% wetting. The most prominent drying change occurs in the Mediterranean region, 

northeast and southwest South America, southern Africa, and southwestern USA. The 
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multi-model mean suggests decreases larger than 4% by 2061 – 2080 in these regions. The 

agreement among CMIP5 models indicates high confidence in certain regions where surface 

soils are projected to dry. The large-scale drying in these regions is likely caused by various 

processes, such as the widening of the Hadley circulation and global temperature warming 

[Stocker et al., 2013]. However, ensemble members show disagreement in terms of the sign 

of change in Asia, central Africa, and northern USA. In addition, the drying in the soil 

moisture field of CMIP5 is largely reproduced by the CESM simulations, although the CESM 

results suggest larger increase in wetness over Southeast Asia and central Africa (Figure 11b 

and Figure 11d). 

 

4. Summary and discussion 

In this paper, the uncertainties of model structure and initial conditions of soil moisture 

were investigated using 30 CMIP5 ESMs and 30 CESM simulations. The results indicated 

that despite some disagreement, the simulated soil moisture broadly agrees with the GLDAS 

data in terms of spatial pattern, with the driest regions located in the Sahara, Arabian 

Peninsula, Iranian Plateau, western China, and western Australia, and the wettest regions 

distributed in the Amazon Basin and Congo Basin. However, the magnitude of climatological 

soil moisture varies enormously among different model simulations. In fact, the inconformity 

is largely unavoidable given the coarse model resolution and strong nonlinearity in the 

governing soil moisture–evaporation relationship [Koster et al., 2009]. 

When eliminating the influence of large differences in absolute magnitudes, all of the 

individual simulations of monthly SMA showed higher values in winter and lower values in 
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summer and fall. Therefore, we analyzed the temporal variation of annual mean SMA of the 

CMIP5 and CESM during 1920 – 2005, which showed an observable downward trend in 

CMIP5-EM, and non-apparent long-term variability in CESM-EM. Significant decreasing 

trends for CMIP5-EM and GLDAS were observed in the period 1948 – 2005, while the 

opposite trend was seen in CESM-EM. Moreover, the spatial distributions of soil moisture 

trends in CMIP5-EM and CESM-EM were quite different from those in the GLDAS, 

especially for regions with prominent drying trends. An aspect of our findings that requires 

special attention is that although the GLDAS data were used to evaluate soil moisture in the 

historical simulations, GLDAS is not observation and the results are not faultless. To obtain a 

more accurate estimate, additional observations are needed.  

The standard deviations of the CMIP5 and CESM outputs were used to express 

quantitative uncertainties of model structure and initial conditions. The results showed high 

uncertainties in the Sahara, Arabian Peninsula, Iranian Plateau, northern China, and western 

Australia, which had relatively low average soil moisture values. The uncertainty of initial 

conditions is slightly larger than the uncertainty of model structure, except for the very dry 

regions. The uncertainty in initial conditions showed an upward long-term trend during the 

86-year period, but the long-term variability in model structure uncertainty for the same 

period is not significant, due to two opposite trends: a rapid decrease before 1980 followed by 

a subsequent increase. When separating the time series of SMA by EEMD analysis, the 

results indicated that model structure and initial conditions can cause uncertainties at all time 

scales. 

The uncertainties of future projections (2006 – 2080) under RCP4.5 and RCP8.5 were 
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also presented, and demonstrated similar spatial distributions of uncertainties to those of the 

historical simulations. In addition, the uncertainties in model structure and initial conditions 

showed an increasing trend in the period 2006 – 2080, especially for CMIP5 RCP8.5. In 

contrast to the inconsistent long-term variability of historical simulations, almost all of the 

CMIP5 and CESM individual simulations showed significant linear decreasing trends for the 

21st century. In addition, the most prominent drying trends occurred in the Mediterranean 

region, northeast and southwest South America, southern Africa, and southwestern USA. 

Despite similar drying trends among the individual simulations, the degree of soil moisture 

drying is debatable due to large uncertainty.  
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Table 1. List of CMIP5 ESMs used in this study with brief descriptions. The symbols “H” 

and “R” in the experiments indicate the historical run (1920 – 2005) and two future scenario 

(RCP4.5 and RCP8.5) runs (2006 – 2080) used in this study. The first ensemble run is used if 

a model has multiple ensemble runs. 

 

 Model Names Experiments Origin 

1 bcc-csm1-1 H,R Beijing Climate Center, China Meteorological 

Administration, China 

2 bcc-csm1-1-m H,R Beijing Climate Center, China Meteorological 

Administration, China 

3 BNU-ESM H,R College of Global Change and Earth System Science, 

Beijing Normal University, China 

4 CanESM2 H,R Canadian Centre for Climate Modelling and Analysis, 

Canada 

5 CCSM4 H,R National Center for Atmospheric Research, USA 

6 CESM1-BGC H,R Community Earth System Model Contributors, USA 

7 CESM1-CAM5 H Community Earth System Model Contributors, USA 

8 CESM1-FASTCHEM H Community Earth System Model Contributors, USA 

9 CESM1-WACCM H Community Earth System Model Contributors, USA 

10 CNRM-CM5-2 H Centre National de Recherches Météorologiques / 

Centre Européen de Recherche et Formation Avancée 

en Calcul Scientifique, France 

11 CNRM-CM5 H Centre National de Recherches Météorologiques / 

Centre Européen de Recherche et Formation Avancée 

en Calcul Scientifique, France 

12 GFDL-CM3 H,R NOAA Geophysical Fluid Dynamics Laboratory, USA 

13 GFDL-ESM2G H,R NOAA Geophysical Fluid Dynamics Laboratory, USA 

14 GFDL-ESM2M H,R NOAA Geophysical Fluid Dynamics Laboratory, USA 

15 GISS-E2-H-CC H,R NASA Goddard Institute for Space Studies, USA 

16 GISS-E2-R-CC H,R NASA Goddard Institute for Space Studies, USA 

17 GISS-E2-R H,R NASA Goddard Institute for Space Studies, USA 

18 HadCM3 H Met Office Hadley Centre, UK 

19 HadGEM2-CC H,R Met Office Hadley Centre, UK 

20 HadGEM2-ES H,R Met Office Hadley Centre, UK 

21 IPSL-CM5A-LR H,R Institut Pierre-Simon Laplace, France 

22 IPSL-CM5A-MR H Institut Pierre-Simon Laplace, France 

23 IPSL-CM5B-LR H,R Institut Pierre-Simon Laplace, France 

24 MIROC5 H,R Atmosphere and Ocean Research Institute, Japan 

25 MIROC-ESM-CHEM H,R Japan Agency for Marine-Earth Science and 
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Technology, Japan 

26 MIROC-ESM H,R Japan Agency for Marine-Earth Science and 

Technology, Japan 

27 MRI-CGCM3 H,R Meteorological Research Institute, Japan 

28 MRI-ESM1 H Meteorological Research Institute, Japan 

29 NorESM1-ME H Norwegian Climate Centre, Norway 

30 NorESM1-M H Norwegian Climate Centre, Norway 

31 ACCESS1-0 R Commonwealth Scientific and Industrial Research 

Organization (CSIRO) and Bureau of Meteorology 

(BOM), Australia 

32 ACCESS1-3 R CSIRO and BOM, Australia 

33 CESM1-CAM5-1-FV2 R Community Earth System Model Contributors, USA 

34 CSIRO-Mk3-6-0 R CSIRO in collaboration with Queensland Climate 

Change Centre of Excellence, Australia 

35 FGOALS-g2 R LASG, Institute of Atmospheric Physics, Chinese 

Academy of Sciences and CESS, Tsinghua University, 

China 

36 GISS-E2-H R NASA Goddard Institute for Space Studies, USA 

37 inmcm4 R Institute for Numerical Mathematics, Russia 
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Figure 1. Spatial distributions of annual mean surface soil moisture in the period 1961 – 

1990 for (a) ensemble mean of the Coupled Model Intercomparison Project Phase 5 

(CMIP5-EM), (b) ensemble mean of the Community Earth System Model (CESM-EM) (b), 

and (c) the Global Land Data Assimilation System (GLDAS). The stippling in (a) denotes 

that the standard deviation is more than 40% of the ensemble mean soil moisture. 
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Figure 2. Global annual mean soil moisture in the period 1961 – 1990 for CMIP5 (Nos. 1 – 

30), CESM-EM (31), and GLDAS (32). The dashed horizontal line is the average value of 30 

CMIP5 Earth System Models (ESMs). The numbers of CMIP5 ESMs (1 – 30) are the same 

as those in Table 1. The discrepancies among the 30 CESM simulations are negligible, so we 

present their ensemble mean here. The numbers indicate their average values. 
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Figure 3. Global monthly mean soil moisture anomaly (SMA) for the period 1961 – 1990. 

The blue curve shows the CMIP5-EM, the thin blue curves show 30 individual CMIP5 

simulations; the black curve shows the CESM-EM, and the red curve shows the GLDAS. The 

discrepancies for the 30 CESM simulations are negligible, so we present their ensemble mean 

here. 

 



 

© 2017 American Geophysical Union. All rights reserved. 

 

Figure 4. (a) Time series of annual mean SMA in the period 1920 – 2005 relative to the 

period 1961 – 1990 for the CMIP5-EM and CESM-EM. Uncertainty (shading) is one 

standard deviation. The red curve is the 20-year moving average of GLDAS soil moisture. (b) 

Time series and 10-year moving average of standard deviation of annual mean SMA for the 

CMIP5 and CESM in the period 1920 – 2005. 
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Figure 5. Spatial distributions of the annual mean SMA trend in the period 1948 – 2005 for 

(a) the CMIP5-EM, (b) CESM-EM, and (c) GLDAS. Dotted areas in (a) and (b) indicate 

more than 80% (24 of 30) of the simulations agree on the sign of change (positive or 

negative). The areas marked with crosses in (c) denote significant trends at the 95% 

confidence level according to the two-tailed Student’s t test. Note the color scheme for each 

panel is different. 

 



 

© 2017 American Geophysical Union. All rights reserved. 

 

Figure 6. Spatial distributions of averaged relative standard deviation of SMA in the period 

1920 – 2005 for (a) 30 CMIP5 ESMs and (b) 30 CESM simulations. (c) Relative standard 

deviation as a function of climatological mean soil moisture. The climatological mean soil 

moisture of the x-axis is the annual mean soil moisture for the period 1961 –1990. 

Uncertainty (shading) is one standard deviation. 
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Figure 7. Time series of annual mean SMA in the period 1920 – 2005 relative to the period 

1961 – 1990 for (a) 30 CMIP5 ESMs and (b) 30 CESM simulations. The colors show 30 

individual members and the black curve is their ensemble mean. 
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Figure 8. Time series of intrinsic mode functions (IMFs) of annual mean SMA based on 

ensemble empirical mode decomposition (EEMD). The colors show 30 individual members 

and the black curve is their ensemble mean. 
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Figure 9. Same as Figure 4a, except for Representative Concentration Pathways (RCPs) in 

the period 2006 – 2080. The anomalies are relative to the period 2006 – 2025. The shaded 

area is one standard deviation. The gray curves show 20-year moving averages of 30 

individual members and the black curves is their ensemble mean. 
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Figure 10. Time series of standard deviation of annual mean SMA for CMIP5 and CESM in 

the period 2006 – 2080 under RCP4.5 (blue and red) and RCP8.5 (black and green). 
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Figure 11. Percentage changes in soil moisture for the 20-year period 2061 – 2080 relative to 

the period 2006 – 2025. Stippling indicates that more than 80% of the models agree on the 

sign of change (positive or negative). 

 

 


