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ABSTRACT

From the large-scale equations of atmospheric motion, we investigated the long-time be~
haviour of atmospheric system forcing by ecxterior steady sources. Firstly, we established
the fundamental functional space and operator equations, and then demonstrated the exist-
ence and uniqueness theorems of solutions. Based on these results, the existence of the
bounded global absorbing set and invariant set in it were discussed. Finally, the nonlinear
adjustment process to exterior sources was revealed.

Keywozrds: solutions of atmosphere equations, nonlinear adjustment process,
absorbing set. ’

I. INTRODUCTION

Long-range numerical forecasts and climatic theories deal with the long-time
behaviour of the atmospheric system. Thus, betore we design the model, its char-
acteristics should be understood. To lay a more solid mathematical and physical
foundation, the study of basic theories needs to be made, and a more strict theory
and new computing method in this respect were established.

We started by studying the overall asymptotic behaviour of the atmospheric sys-
tem and its dependence on the surrounding conditions under the ideal assumption
(i.e. steady situation or strict period). Chou™? first discussed the nonlinear
adjustment process of the atmospheric system adjusted to exterior sources in n-
dimensional space. He found that there exists a bounded global absorbing set in R®
space and no matter how initial conditions are, the state of system will develop to
the bounded absorbing set with the increase of time. We guess that the conclusions

* This work was performed under the auspices of the Laboratory for Numerical Modeling of
Atmospheric Scicnces and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Ac~
ademia Sinica.
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are also temable in the infinite dimensional Hilbert space. The purpose of this
paper is to verify it and do further investigation.

Firstly, we established the fundamental functional space and operator equations,
and then demonstrated the existence and uniqueness theorems of solutions. Based on
this, the existence of the bounded global absorbing set and invariant set in it were
discussed. Finally, the physical meaning of solutions was explained.

II. Tue MopeL

As we are interested in the large-scale motion of the atmosphere, we use the
following equations in spherical coordinates™:
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T = T(P) is the time mean on the isobaric p surface, T the deviation from
the T, ¢ the deviation trom &, & the diabatic heating rate of the atmosphere, other
symbols are always used in meteorology.

We discuss the motion around the earth globally. So the domain here is Q =
§* % (po, P) with py> 0, and thus the boundary value conditions are

p=P, V=0,w=0,—g—T=a,(T,——T) (2.6)
?
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p=p, Y 0, w=0, T =y, . (2.7)

and
op op

where T is the temperature on the surface pf earth, @ the parameter relevant to
the turbulent heat conduction rate and dependent on the characteristics of the surface.

IT11. Basic Seace AND OperAtor EqQUATION

Let Wy be the closure of C5(LQ2) with the following norm:

ot = ([ + (2 ) o).

Then it is easy to see that W, is a Hilbert space (see Ref.[4]) and can be endowed
with the following equivalent norm:

foll = (S(gf) asap)” . G.1)

Let TQ|s be the restriction of the tangent bundle of @ on §*. Then a smooth
section of TQ| is a smooth vector field on © with values in the tangent space of S*.

Let C3,(TQ|s2) denote those sections of TQ|s, taking value zero near §* x {P}.
And then we can define

= {(V,w) €C(TQ|s) x CH(Q)IV-V + O _ 0},
op

Fr=9 X C7(Q);
and
V: = the closure of %°r in H'(TQ|s) X W, x H(Q),

H; = the closure of ¢°r in L¥(TQ) x L*(Q),

here H(@) is the standard Sobolev space, H*(TQ|s:) the Hilbert space made by those
sections of TQ|s2 with all the first order derivatives belonging to L? (see Ref. [5]).

Using the diagnosis equation (2.5), there are obviously two constants m;, m, > 0
such that

m (V12 + [T < VI + ol + TP < m(| VI + IT]?), where [V] takes
H'(TQ|g)-norm, ||T| the H'(Q)-norm and |lw| the W-norm.

So we can use the following equivalent norm in V7 (see Ref. [4]):
lell = AIVIE + ITIDY2, Vo =(V,0,T)€ Vr,
In order to handle the second order terms, now we define a linear operator A:
Vr— V‘I"" by
2
(g, gy = | [msV - 9V, +, (] V. OV
@ RT/ 9p 0Op

>8T 6T]ds,dp
RT/ 0p Op

+ j (3—’_>2 0. TT.dS, (3.2)
s*x (P2 RT
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where ¢ = (V,0,T), ¢ = (Vi,01,T1) € V1 and V¥ is the dual space of Vi,
Then it is obvious (see Ref. [4]) that there exist positive constants C,, C, such that
Cillel? < (4o, @) < Cilol*, Vo€ Vi, (3.3
As for other parts appearing in the equation, we let
Vi =V:N(HYTQ) x H¥Q2)), (k=0),
then we can define a trilinear functional b;; V3 X Vi X V,— R by
b, @1, p2) = 59[(‘% vV + w %%) -V, + g;:(v- vT, + w%> - T,
—((k : (Y_‘—V—Si_iﬁ))k x V,) - V)| dsedp, (3.4
a \/G J
where ¢ = (V,0,T), ¢ = (V,,0,,T1) € Vi, @2 = (V3,0,,T2) € V3, G is the deter-

minant of the Riemannian metric matrix, and 6 is the colatitude. In spherical coor-
.dinates, G = sin@ and &, represents the advective and curature terms.

Moreover, we define a bilinear functional b,; V; % V;— R by
bp,p) = gg[—% (T, — Tyw,) + 2Qcos8Chk x V) - Vz] dS¥dp,

V(Pi = (Vr;,w,-,T,') € VTy (’ = 132))

‘then, obviously, by the diagnosis equation (2.5) and integrating by parts, & and &,
are well-defined and satisfy

(@) =0, VpeVr, eV, (3.5)
by(@i,p) =0, Vg € Vo, (3.6)

The above twe equalities embody the physics fact that the energy is invariant
under the actions reflected by &; and &,,

Proposition 3.1 (see Ref. [4]). Assume that
a‘Ecz(Sz)’ TJGHZ(SZ)’0<”'<G;<M<OO, (3.7)
then there is T* € H*(Q) suck that

|b(s &> 0)| < % clloll?, Yoe Vi (3.8)

and

aT* {a,(T, —T*), p=P,
6P 02 0, P = Po,
where o =1(0,0,0,T*), and C, is given by (3.3),

With the above preparation, we can easily see that the initial-boundary value
problems (2.1—2.7) are equivalent to the following Cauchy problem:

Problem 3.1. Find ¢ € L*(0,7; V;)(r > 0) such that
Bpe L=(0, r; LX(TQ) x L}(Q)),
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%qu + Ap + Ni(p,9) + No(@) + Nulp,d) + Ni($,9) = F, (3.9)

Bp| o = By,
where (3.9) makes sense in V¥, @€ Hy and B is the diagonal matrix B = diag(l,
1,0, R*/C?). For any ¢, ¢ € Vy, the operators Ni(p, ¢;) € VI and Ny(p) € V¥ are
defined by

(N(p, @), p) = 0@, @1, @), Vr € V5,
(NL@)» ) = bp1s @) Vpr € Vi,

Moreover, in (3.9), one has

*
F=(0,0, =212, B2y porre 45, 2 ((g”)z——%"T ) SR AT
4 cc, Op op

The equivalence of Problem 3.1 and the original problem means that if ¢ is a
solution of Problem 3.1, then ¢ -+ ¢ is the one of the original problem. Conversely,
if @ is a solution of the original one, then @ — ¢ is a solution of Problem 3.1.

Obviously, (3.9) in Problem 3.1 is also equivalent to the following variational
equation:

d
Z (B(P=<P1) + <A<P,(P1> + bl(‘P:‘P"Pl) + bz(q?,‘Pl) + bl(‘Pﬁby (Px)

+ 5:(L,@sp0) = (Frp), V€V, (3.11)

Then we have the following existence theorem which is proved in Ref. [4] by
the method of finite differences with respect to the time 7,

Theorem 3.1. Under the assumption (3.7), if & € L¥(0,7;(H'(Q))*), then there
is ot least one solusion of Problem 3.1 such that

@€ L(0,7;Vy), Bpe L=(0,7;L(TQ) X LA(Q)),
| Bup|® + %clj: lpCltde < | Bupol® + CLginfct)nzv;dt, € 10,2 ae., (3.12)

where B, = diag(1, 1,0, R/C) and |B,p| takes L’-norm.

Remark 1. (3.12) is better than the corresponding inequality in Ref. [4], but
the proofs are the same.

Remark 2. It follows from (3.12) that there is a constant C, > 0 such that
(Bl + &) | Beplde < [Binl® + & [ IO g

So one has

Bl <{iBgul® + CLS: RN pde} e, ae, r€10,71. (313

1

IV. A Uniqueness TrEorEM

Theorem 3.1 gives an existence theorem for weak solutions. However, we do not
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know any uniqueness of the solutions. So in this section, we show a uniqueness:
theorem under some regularity assumption for the solutions.

Theorem 4.1. If T* € H*(Q), then there is a:r most one solution of Problem.
3.1 such that

Bp€ L*(0,7; H(TQ) x H(Q)), 4.1)
¢ € L(0,7; H*(TQ) x H(Q)). (4.2)»

Proof. Since

| b, @) | < Clipllaz + | Bolz - il

one has [[Ni(p,@)llyx < Cllolls - | Bolea.
By (4.2) and Bp € L*(0,7;L*(TQ) x L*(Q)), one obtains

N(p, )€ L*(0, 7; V).,

Similarly, one can prove that Ny(@), N,(¢, @), Ni(p, ¢) € L*(0, 7; VF),
So Eq. (3.9) implies that
By € L*(0, 7; VT), (4.3»

and Be is a continuous function from [0,7] into L*(TQ) x L*(Q) after possibly a.
modification on a set of measure zero.

Now suppose ¢, and @, are two solutions of Problem 3.1 satisfying (4.1—4.2)
and let ¢ =@, —¢,. Then it is easy to see that

d
R | Bip|? + 2{Ap,p) + 26:(p1,1,¢) — 2b:(p15 P2, @) + 25:(p, P)

+ 26(p,¢,p) + 2b,(H,p,p) =0, (4.4)

d
= | Bip|* + 2C,llpll? < 2| bi(@,p1,@) | + | Bi(@, ¢, ). (4.5)

But ,bl((P: (Pz,(P)[ < CI‘PI * |quol . ”BI(PzHH3 < _6‘4__l ”‘P“2 + 5| Bl‘P’2 . ”B(Pz”H’: (4.6)

and [6(ps b, )| < Stlgll + Tl Bigl - 19, (+.7)

Consequently,

Ed; | Bipl® + Cillgl* < T4l + | Bigall ) - | Biopl?,

a
dat

2

| Bip|* < C(|lellee + | Bupell) - | Bup

Therefore, |Byp|*<< 0 and then @, = @,, hence the result.
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V. A GrosaL ABsORBING Skt

For simplicity, let & be time-independent. As for the case of & depending on 7z,
we can discuss similarly. By Theorem 3.1, we can see that Problem 3.1 has solution
< such that

@€ Lin(0,00; V), Bpe Li(0, co; L*(TQ) x L¥Q)), (5.1)
and the emergy inequality (3.12).

Since s is time-independent, by (3.12) one has
2
1B + L e lolra: < | Bigelt + LUy
2 0 C, T
It follows that

~ (¢
IBl¢(t)|1 + C, So )BﬂPU)lZdt < 'Bl%lz"" Zt.‘ llfll“,;,
1

~
for some constant C,> 0. Consequently,

| B[ < e~ Bapel* + == (1 — e WA, (5.2)
Cl 1
Let

By={p=(V,0,T)e L(TQ) x LY @)||p|* <K}, (5.3)

where K> = [y
1“1

It |Bigol < —L— [If7x, then

1“1 T

1

| Bl < e Ly (1= 8 e < K,

Cll Cll

ie. Bip()€ By, Vi 0,

On the other hand, if | B,po|*> :—1—l|f|]’

1%1

| Buga[F — = 11y

1~1

1
K —-;—”f”zv;

y*, then letting
T

1“1
one has |Bip()|* < K for all 1 >>4. Thus, we have shown that:
Theorem 5.1. Any solution @ of Problem 3.1 satisfies

1) Ve =0, B,p(s) remains in By if [Bl¢°[’é~—1—|lf[l’

v*;
T
C.C,

2) B\p(z) € B at least for 1 =1, if |Byq|*> N—l— [1F]? v,

C,C,

This theorem tells us that ¢ always goes into the bounded ball Bx at least for
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#z which is sufficiently large. So we call Bx the absorbing set of Problem 3.1. Since
all the solution of Problem 3.1 will go into the ball, we also call it a global absorb-
ing set. The above result also shows that the long-time behaviour of the system
only depends on points in Bg, but not on points out of it. Of course, since the w-
equation does not contain « explicitly, we cannot obtain any estimates about c.

VI. PuncrioNnAr INvARIANT SET

In this section, we establish the existence of some functional invariant set. To
this end, we assume that there is a subset Y of By such that all the solutions of
Problem 3.1 with an initial value B,p,€ Y satisfy the conditions given in Theorem

4.1 and
sup{|/le()| e the solution with initial value Byp,€ Y} < M < o0, (6.1)
*30

where M is a constant.
By Theorem 4.1 and its proof, B,p is uniquely determined by its initial value
B,p,, and
Bip€ C([0,00), LATQ) % L(Q)). (6.2)
So, let S,Bypy = B,p(#) then S, is a continuous mapping of s. Therefore, one

can define

x=0 Usy,

S>0 28§
where the bar denotes the closure in L2(TQ) % L*(Q) and
S’Y == {S,Bﬂpol VBI(POE Y}.
The main result in this section is

Theorem 6.1. X is a funciional invarian: set, i.e. X is a bounded set in
LYTO) % L*Q) suck that

S X =X, V6=0,
sup inf {|8,B,po — x|} —0, (+ > 0), (6.3)

B,pg€Y rE€X
Proof. That X is bounded in L*(TQ) % L*(Q) is obvious.
By the continuity of §,, we have for any 6 =0, B,p,€Y,

Se{S:Bipo |2 = 1} {SivoBipo |t = v} {S,Bipu[t =7 + 6},
Sos SeXCX, '
On the other hand, Vx € X, there is t;—> o0, B;p; € Y such that
x = !imst,-Bl(Pi = Iiimso(stj—eBl(Pi).
] —>®@ ->a

By the assumption and Rellich compactness theorem, one may also assume that
Si;-eByp; —> z. By the definition of X,z€ X, i.e. X = Spz, In a word, §X = X,

If im sup inf {|S,Bipo — x|} == 25> 0, then there ares; — 00,242, Bip; € Y

Bipo€Y £€X
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such that.
inf{|S, Bip; — x|} =8, i=1,2,---, (6.4)
reX

So, we may assume that S,,.qua,-—*x' € X, which contradicts with (6.4). Namely
(6.3) holds true.

The above result tells us that as ¢ increases, the system will tend to some func-
tional invariant set, which represents the limiting state of the system. From the
physical point of view, this means that the system is nonlinearly adjusted to exterior
sources.

VII. Concrusions AND DiscussioN

From the above discussion, we can see that if 7 is iarger than some definite-
critical time 1,, the system will go into the bounded absorbing set By, more and more:
close to invariant set X, and the distance between them tends to zero, that is to.
say, the system is situated in the state of the attractor. For the real atmospheric
system, if the change of the exterior sources as opposed to the monthly scale is a
slow process, the long-range weather process studied by us is actually situated in the
state of the attractor. Because the evolution of which the dissipative system shrank
from the higher phase space to the lower attractor is in fact the process that lumped
the degrees of freedom together, the dissipation expended a large amounts of faster
small-scale motion and decreased in numbers of degrees of freedom determining the
long-time behaviour of the atmospheric system. In the evolution many degrees of
freedom changed to variables of no importance, and finally remained a few degrees of
freedom which were chosen to describe the system state just including the degree of
freedom which played a role at ¢t — 0o, then we could get a successful macroscopic
description'. In other words, the long-range weather is different from the short and
medium. range weather, we should set up an effective macroscopic description which
represents the attractor state from the statistical analysis of theory and real observation
data,

It is necessary to point out that this study is just the beginning of this topic;
the dimensional estimation of attractor of the large-scale motion forcing by the exte-
rior sources will be discussed further using the real data and theory.
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