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On the Transient Response of a Simple Coupled Climate System
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This paper presents quasi-analytical solutions to a class of coupled atmosphere-ocean models
for time-dependent ramp- and step-forced climate changes. The model consists of a conventional
two-dimensional energy balance model of the atmosphere with an oceanic mixed layer coupled to
a deep ocean having vertical heat transports due to horizontally uniform vertical diffusion and
upwelling. The solution is partitioned into the particular or asymptotic part and the homogeneous
or transient part. This partitioning facilitates understanding the different time constants involved
in the problem. For ramp forcing there are two time constants: the lag time in the asymptotic
straight line warming solution and the characteristic adjustment time to the asymptotic curve.
The lag behind the “no inertia” warming is a few decades, while the adjustment time to the
asymptotic curve is several hundred years due to the restructuring of the thermal profile near the
main thermocline. This is in strong contrast to the step-forcing scenario where the adjustment
time to the new constant steady state is only a few decades. The latter experiment suggests
that step-forcing scenarios are not very similar to ramp-forcing scenarios. The model produces
a warming of ~ 0.5°C over the last hundred years provided the simulation is started 200 years
ago. An interesting feature of the solutions is that the land surface areas lead the ocean surface
areas in heating up by 0(0.1°C). This may lead eventually to a fairly robust signature of the
greenhouse forcing. Future models of this type probably need more horizontal dependence on the

vertical heat transport parameters as well as horizontal transport mechanisms.

1. INTRODUCTION

Long records of global temperatures suggest that the
global mean surface air temperature of the Earth has in-
creased by about 0.5°C during 1880-1980 [e.g., Jones et al.,
1986; Hansen and Lebedeff, 1987]. The record clearly shows
an irregular but steady increase of the global temperature.
It has been speculated that this rise in the global tempera-
ture is due to the increased concentration of the greenhouse
gases. At least the argument that the observed warming
trend is above the natural variability of the climate system
is very appealing [ Wigley and Raper, 1990].

It has long been recognized that the transient response of
the climate system depends strongly on the effective ther-
mal inertia of the ocean. On the other hand, processes
transporting heat from the surface to the deep ocean de-
termine the effective heat capacity of the ocean. Therefore,
earlier attempts to understand and to reproduce the signa-
tures of the greenhouse gas warming via climate models with
mixed-layer ocean were inadequate from the outset. These
thin-slab ocean models tend to overestimate the global tem-
perature increase during the early years because the ther-
mal equilibrium is quickly reached in the absence of energy
transport from the surface into the deep ocean.

Some preliminary basis for understanding the time-
dependent response to greenhouse gas forcing has been
established via climate models which include the deep
ocean [e.g., Hoffert et al., 1980; Thompson and Schneider,
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1982; Hoffert and Flannery, 1985; Schlesinger et al., 1985;
Schiesinger, 1989; Washington and Meehl, 1989; Wigley and
Raper, 1990; Morantine and Watts, 1990; Manabe et al.,
1990; Schlesinger and Jiang, 1990]. The prescription of the
ocean is different from model to model. Some more de-
tailed models have oceans forced by dynamically computed
winds, currents, convective processes, etc., Some only have
a schematic deep ocean with processes transporting heat
from the surface to the depth, which increases the effective
thermal inertia of the ocean. As suggested by Hoffert and
Flannery [1985], vertical heat diffusion and upwelling may
be two important processes essential to modeling the tran-
sient response.

One interesting class of studies considers the transient
response of the globally averaged world [ Wigley and Raper,
1990; Morantine and Watts, 1990] or zonally averaged world
[Watts and Morantine, 1990; Schlesinger and Jiang, 1991]
with a deep upwelling-diffusion ocean. Use of these sim-
ple mechanisms has illustrated the possible role of the
deep ocean in the transient response of the Earth. These
highly averaged models, however, have provided little in-
sight into the geographical distribution of the warming sig-
nature, which is important in the study of impacts and in
the issue of detection or attribution of the causes of climate
change.

Another class of studies considers the CO, doubling re-
sponse of general circulation models (GCMs) coupled with
ocean general circulation models (OGCMs) to an abrupt in-
crease in atmospheric CO2. These formulations are presum-
ably a more realistic representation of the Earth’s climate
system [Schlesinger et al., 1985; Washington and Meehl,
1989; Schlestnger and Jiang, 1990; Manabe et al., 1990].
Such studies in principle can provide important geographi-
cal and seasonal signatures of the greenhouse gas warming.
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Since simulations of large ensembles are prohibitively ex-
pensive for these models, however, results raise questions
of sampling error bias. Because the oceanic processes have
very long (and unknown) time constants, proper statistics
could only be derived from ensembles of very long runs. Fur-
ther, these comprehensive models may not have yet been
properly tuned. Finally, as addressed by Thompson and
Schneider [1982], the time-dependent response to gradual
changes in forcing of the system may be quite different from
the response to abrupt CO; doubling in several respects.
Washington and Meehl [1989] report some such differences.

Considering the difficulties addressed above, it is desirable
to develop approaches simpler than the coupled GCMs yet
detailed enough to simulate a meaningful transient response
particularly of the surface temperature field. One such can-
didate is a three-dimensional simple energy balance model
(EBM). In this paper we treat the ocean as a mixed-layer
thin slab atop a deep ocean which has horizontally uniform
vertical heat diffusion and a large-scale constant upwelling.
The vertical diffusion and upwelling processes transport the
incoming energy imbalances downward thereby thermally
connecting the warmer mixed layer with the deep ocean.
Also in recognition of the differential role of the land and
the ocean, the model has an explicit two-dimensional geog-
raphy. Simple energy balance models of the surface tem-
perature field have been successful in reproducing the large-
scale features of the Earth’s climate in a number of studies
[North et al., 1983a, 1992; Hyde et al., 1989, 1990; Leung
and North, 1992; Kim and North, 1991]. In particular, the
models seem particularly adept at simulating geographical
distributions of the seasonal cycle and the continuum fluctu-
ations with time scales between 2 months and 5 years. While
more accurate GCMs should eventually be used routinely in
the simulations of the transient response of large-scale cli-
mate, EBMs are expected to provide valuable insights and
baseline solutions for comparison.

In this paper we provide solutions to two time-dependent
scenarios of forced climate change, the response to an abrupt
change in CO; and the response to an exponentially increas-
ing concentration of CO,. It is known that an increase
In CO; leads to a decrease in the outgoing radiation at
the top of the atmosphere for a given surface temperature.
Furthermore, the dependency is logarithmic [e.g., Wigley,
1987; Shine et al., 1990]. Hence, an exponentially increas-
ing load of CO; leads to a linearly decreasing amount of
outgoing radiation for a given surface temperature. This
allows us to model the radiation imbalance as a linear
ramp function switched on at ¢t = 0, say A(¢) = Ao — 7t.
The value of ¥ depends on the doubling rate of CO3; e.g.,

=0.06 W m~? yr~! for the case of doubling every 70 years
(1% per year). This value might be appropriate for model-
ing the future. A value half as large might be more realistic
in modeling the last 100 years.

Additional insight is gained through partitioning the so-
lutions to the linear response into the “particular” solution
and the “homogeneous” or “transient” solution, the latter
being the decaying portion of the solution dependent on the
initial conditions. To illustrate this process, consider a very
simple slab model of climate which has a uniform heat ca-
pacity per unit area C over the globe; C is nominally pro-
portional to the thickness of the slab. The energy balance
may be written

OF A COUPLED CLIMATE SYSTEM

C£+BT

7 (1)
where T'(t) is the excess of globally averaged temperatu’
over the equilibrium steady state value before the ramp for.
ing is turned on, B is a radiative damping coefficient, and ¥t
represents a linearly increasing imbalance of the externally
imposed heating (e.g., an exponentially increasing concen-
tration of CO;). The factor H(t) is the Heaviside step func-
tion, 0 for ¢ < 0, 1 for ¢ > 0, which indicates that the forcing
is switched on at ¢t = 0. A particular solution for ¢ > 0 is

Tp(t) = Z(t =), )

where 7o = C/B is the “lag” behind the value that would
be obtained in the absence of any thermal inertia. The ap-
propriate homogeneous solution to go with this particular
solution is

= ytH(t),

3)

The transient solution depends explicitly on the initial con-
dition 7. It decays with the same characteristic time
70 = C/B as the lag occurring in the particular or asymp-
totic solution. Note that the second term in parentheses
above cancels the lag in the particular solution when ¢ = 0.
Therefore, the complete solution

T(t) = T(t) + Th() (@)

yields T(t = 0) = To. The decomposition above gives us
some idea of how the solution behaves. The asymptotic
solution is approached as the initial condition decays away.
In addition there is another large term which must decav
away, namely, the “lag compensator,” the second term
(8). These points are illustrated in Figure la. In this pape.
we use the same partitioning to study the adjustments of a
deep diffusive-upwelling ocean coupled to the surface energy
balance model. As a second example, consider the case of
step forcing: AA H(t) on the right-hand side of (1). In this
case the particular solution is

a4

o ®)

while the homogeneous solution has the same exponential
decay form as (2):

TP ()= (To -

Th(t) = (To + %To)e_'lro.

T;tep(t) = t> 0,

Byl (6)
Hence, in both cases the adjustment to the asymptotic form
is accomplished in a time of the order of 5. The response
to step forcing is illustrated in Figure 15. In both Figures
la and 1b, a somewhat arbitrarily chosen lag of 60 years was
used for all the characteristic times: asymptotic lag, expo-
nential adjustment time to the ramp forcing, and exponen-
tial adjustment time to the step forcing. We will find that
in the deep diffusive-upwelling ocean coupled to the surface
energy balance model these three adjustment times are not
equal but quite different from each other, in some cases by
an order of magnitude. Hence, it will prove to be misleading
to use the step experiment to estimate the adjustment time
for other forcing scenarios such as ramp-forcing cases.

In the next section we will describe an energy balance cli-
mate model with two-dimensional geography coupled wi
the deep diffusive-upwelling ocean. Then we will derive
essentially analytical solutions of the model to a class of
time-dependent forcings utilizing the Laplace transforma-
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SLAB WORLD SOLUTION COMPONENTS
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Fig. 1. Time-dependent solution components for the slab world
described by equation (1). (a) Solutions for ramp forcing: nl
is the solutions that would be obtained in the absence of any
thermal inertia (the no-lag solution); a is the asymptotic or par-
ticular solution; h is the transient or homogeneous solution; ¢ is
the complete solution Ty, + Tp. (b) Solutions for step forcing: a is
the asymptotic or particular solution; h is the transient or homo-
geneous solution; c is the complete solution T;, + Tp. In all cases
we have (arbitrarily) taken 70 = C/B = 60 years.

tion. Use of this technique results in significant computa-
tional savings. Finally, model results will be analyzed and
applied toward the understanding of the transient response
and warming signatures due to greenhouse gases.
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2. MODEL

We next introduce our linear surface energy balance cli-
mate model coupled with a deep ocean with horizontally
uniform vertical heat diffusion and a constant upwelling. Let
T(#, z,t) be the local departure of the temperature from its
value at constant steady state, where ¥ = (6, ¢) is a unit
vector denoting a ray pointing out of the spherical surface
at latitude # and longitude ¢, and 2z is depth (over ocean)
below the mixed layer (z < 0). The heat equations in the
oceanic interior and in the mixed layer slab are

o , T _&T
ot 0z 822’

c(f)?a—:f + BT ~ V. (D(z)VT) — wC*(#T

=k z2<0,

(7a)

+ kC‘(f')z—Z = F(1), z=o0, (78)
T—0 as z — —00, (76)
T(f', z,t = 0) = To(f, Z), (7d)

where z sin@ is the sine of latitude, C(#) is the lo-
cal heat capacity per unit area (Cw over the mixed-layer
ocean, C, over the land, and Cr over the permanent sea ice),
D(z) = Do(1+4 D22+ D4z*) is the local horizontal diffusion
constant in the atmosphere and the mixed layer, T(%, 2,1) is
the temperature field, F(&,1) is the radiative forcing, B is
slope of the best linear fit for the infrared emission to space,
w is the upwelling speed, k is the vertical heat diffusion co-
efficient, and C*(f) is the heat capacity of sea water per
unit volume. Table 1 shows the values used in this study for
these parameters.

Equation (7a) is the heat budget equation for the ocean
interior, which originally was proposed to describe the main-
tenance of the main thermocline [e.g., Munk, 1966; Over-
street and Rattray, 1969; Turner, 1981]. Recently, renewed
interest in (7a) has focussed on the role of the deep ocean in
the transient response of the Earth’s climate [Hoffert et al.,
1980; Lebedeff, 1988; Waltts and Morantine, 1990; Wigley
and Raper, 1990; Morantine and Watts, 1990]. In simulat-
ing the transient response of the Earth’s climate, consid-
eration of the effective thermal inertia of the deep ocean
is essential. The upwelling and the vertical diffusion pro-
cesses are regarded as important mechanisms which effec-
tively remove heat energy from the mixed layer into the
deep ocean, thereby increasing the effective heat capacity of
the ocean far beyond that of the mixed-layer ocean. Note
that in our formulation we impose the boundary condition
that the thermal departure from initial equilibrium be zero

TABLE 1. Model Parameters

Symbol Value Reference
B 2.094 W m~2 °C—1 North et al, [1983q)
Cw/B 4.6 years North et al. [1983q]
Cr Cw/6.5 North et al. [1983q]
CL Cw /60 North et al. [1983a]
c* Cw /75 m over ocean; 0 over land present study
Dy/B 0.39 m? North et al. [1983a]
D, -1.33 North et al. [1983a]
D, 0.67 North et al. [1983a]
k varied € [2000,8000] m? yr—! present study
w varied € [2,8] m yr—! present study
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at infinite depth. We think of this deep temperature (ac-
tually, potential temperature) as being at freezing. Some
authors have allowed this lower boundary condition to de-
pend on some surface property such as the polar tempera-
ture where most deep water is presumably formed [Hoffert
and Flannery, 1985]. We keep our formulation of the lower
boundary condition fixed, maintaining the overall linearity
of the system, and at the same time we avoid introducing an-
other phenomenological parameter. However, we must keep
in mind that this is an important constraint on our present
approach.

Equation (7b) is the energy balance equation for the sur-
face of the Earth including the mixed-layer ocean with time-
and position-dependent radiative forcing F(#,t). The sur-
face is coupled with the deep ocean through the thermal
forcing term at the bottom of the mixed layer:

aT
o (8)

Other than this additional forcing term, (78) is very much
the same as its predecessors [e.g., North et al., 1983a; Hyde
et al,, 1990]. This surface energy balance model satisfac-
torily reproduces the geographical distribution of the an-
nual and semiannual harmonics of the seasonal cycle of the
Earth’s climate mainly through the position-dependent heat
capacity C(£). Recently, the model has also been shown
to reproduce the geographical distribution of variance and
other second-moment statistics when forced by simple noise
forcing white in space and time [Kim and North, 1991; North
et al., 1992; Leung and North, 1992).

Equation (7) is difficult to solve in its present form for gen-
eral initial condition field, To(F, z), even for a fairly simple
forcing F(f,t). To facilitate finding the solution, we divide
(7) into two parts as was done in the slab ocean example
given earlier:

Fbonom = wC'(i‘)T - kC'(i-)

Ty (%, 2,1) T, _,9°T,
i B2 ~ kg 750 (%a)
8
C(i-)% + BT, - V- (D(2)VT,) - wC*(8)T;
N
+kC (r)a—? —F(,1), z=0, (9)
T, —0 as  z — —oo, (9¢)
Tp(f, z,t=0)= Tpo(f‘, Z), (gd)
and
OTu(f,2,t) 3Th _, 8°Th
a1 w;; = k—ﬁ’ ¥4 S 0, (10a)
0T
C(r)a—t" + BTy — V- (D(z)VTh) — wC*(#)Th
s ax OTh
+ kC (r)g = 0, zZ= 0, (lob)
Th —0 as z— —oo, (10¢)
Th(f, z,t = 0) = To (%, 2) — Tpo(F, 2). (10d)

We will refer to the (unknown) dependent variable fields in
(9) and (10) as the particular and the homogeneous solu-
tions of (7). Note that the solution of (7) is the sum of the
particular solution and the homogeneous solution. In the
next section we will derive the particular solutions of (9) in
closed form for the two special cases of forcing. We will also
derive a semi-closed form of the homogeneous solutions for
a useful special class of initial conditions.
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3. ANALYTICAL SOLUTIONS

The particular solution is very easy to find in both t}
step- and ramp-forcing cases. Hence, we begin by solvi
for these in simple closed form. Then the transient solutions
will be presented with details of the solution technique in the
appendix.

Particular Solutions

Consider first the step function increase in CO,. In terms
of the radiative forcing,

F(&,t) = -AAH(®), (11)

where for a doubling, AA = —4.20 W m™2. It can easily be
shown by insertion that the solution of (9) is

Tp = ae’*, (12)

where
§ = wlk, (13)
a = —AA/B. (14)

The particular or asymptotic solution to the instantaneous
CO: doubling is the spatially uniform surface temperature
rise which decays exponentially with depth. This result is
consistent with North et al. [19835].

Now consider the case of ramp forcing, F(f,t) = ytH(t).
Let us try a solution of (9) in the form

Tp = a(t — () + z/w)e’™. (15)

Note that r(#)e’ and —(z/w)e’* serve as local tempo
lags of the response to the radiative forcing and that t.
latter vanishes near the surface in particular. It follows from
(9a) that

§=w/k. (16)

Furthermore, from the boundary condition (9b4), it can be
shown that

a

Br(t) — V- (D(z)Vr(#))

v/ B, (17)
C(})+C*(7)/6, (18)

where (%) is the position dependent temporal lag of the
particular solution. Noting that 1/6 is the depth of the per-
manent thermocline, we shall refer to the right-hand side of
(18) as the effective heat capacity. It is the total heat capac-
ity per unit area of the water column down to the permanent
thermocline including the mixed layer. The system (18) is
a familiar damped diffusion process that can be solved for
by well-known methods. It is the same equation that needs
to be solved in the case of steady state EBMs, for example.
It is easy to see that large effective heat capacity on the
right-hand side leads to long delay times r(#) with diffusion
serving to smooth the field. For later use, let us define

Two = —a(r(F) — z/w)e’”.

(19)

Before proceeding, we note that the solution has the shape
of an instantaneously forced response, but with a lag that
depends on horizontal and vertical location.

Transient Solutions

The homogeneous or transient solution which depends on
the initial condition field is much more complicated to de-
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rive. In this section we present the general path but rele-
oate details to tlie appendix. To approach the problem, it is
>ful to eliminate the time by the use of the Laplace tran-
srmation [e.g., Watts and Morantine, 1990]. Equation (10)
then is rewritten as

*T,  oTh
_wZh T =T <0, 20
k 322 w—o- sTh ho, z< (20a)
sC(#)+ B -V . (D(z)V) —wC*(#)
+ kC'(f-):—z] T = C(F)Two, 2=0,  (200)
Th — 0 as z — —o00, (20¢)

Tho(R, 2) = Tr(F, 2,t = 0) = To(F, z) — Two (¥, ), (20d)
where

(=)
Th(l",z,s) = / T(#, z,t)e*" dt. (21)
0

This form has the advantage of introducing the initial condi-
tion field explicitly into the equations. Note from (20) that
the transient problem is converted into a nonhomogeneous
problem due to Laplace transformation.

Being motivated by (12) and (19), we will consider a spe-
cial class of initial conditions, i.e.,

Tho(F, z) = u(F) + v(E)e” + w(F)ze®, ¢>0. (22

Bear in mind that (12) and (19) are special cases of (22)

for which ¢ = §, etc. This special class of intial conditions

includes the most interesting and probable case that the

“nitial climate is in equilibrium, i.e., T(E, z, = 0) = 0. One
.oceeds by assuming a solution

Ta(F, 2, 8) = f(F) + 9(F)e’® + h(F)ze*" + R(F, z,5)e™*, (23)
where f(#) + g(F)e‘” + h(#)ze¢” is the particular solution of

20a) and R(F, z, 8)e*? is the homogeneous solution required
g
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to satisfy the boundary conditions. The position dependent
coefficients satisfy partial differential equations in #, These
equations may be formally solved and then the task is to
invert the Laplace transforms. All but part of the last step
can be performed analytically. The essential steps in the
procedure are sketched in the appendix. The result of the
computations just outlined is a numerical form for the ho-
mogeneous solution to both the step and the ramp forcings.
In the next section we describe the findings.

4. RESULTS AND DISCUSSION

First consider the solutions of the transient problem for
ramp forcing (F = vtH(t)). Figure 2 shows the verti-
cal structures of —Typo in (19) at (0°N, 180°W) for w = 4
m yr~!, k = 4000 m? yr~'; w = 4, k = 3000; and for w = 3,
k = 4000, respectively. Note that the values of w and % used
in (8) are in line with those generally accepted by modelers
of the deep ocean circulations [e.g., Turner, 1981; Broecker,
1981]. Aside from the linear trend in time, these figures
represent the particular solutions of (9) for F = ¥t (also
see equation (15)). Specifically, they are the temporal lags
of the response to the radiative forcing. They are also the
initial conditions for the homogeneous problem.

An interesting feature of these solutions is the heat ac-
cumulation near the permanent thermocline (the depth of
which is defined to be 1/6 = k/w). An interplay of the up-
welling and vertical diffusion traps a significant portion of
the incoming energy near the permanent thermocline in the
steady warming solution. The amount of energy trapped
near the permanent thermocline may well be tied to the
depth of the thermocline, which essentially determines the
effective heat capacity. The larger the effective heat capac-
ity is, the more the energy trapping is. As the upwelling
speed w increases, energy trapping is decreased because the
supply of cold water from below compensates the addition

.
N

-+

TEMPERATURE ANOMALY (°C)

TEMPERATURE - ANOMALY (°C)

TEMPERATURE ANOMALY (°C)

Fig. 2. Vertical structure of the initial condition, —Tpo, of the homogeneous problem at
(0°N,180°W) (a) for w = 4 myr—!, k = 4000 m? yr~1; (b) for w = 4 m yr~!, k = 3000
m? yr~}; and (¢) for w = 3 m yr~!, k = 4000 m? yr~!. Dotted lines are at(#)e’*, dashed lines
are a(z/w)e’*, and the solid lines are the sum of the two. Aside from the response linear in time,
the solid line essentially is a particular solution for F(t) = ~t.
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of heat from above through the bottom of the mixed layer PARTICULAR SOLUTION TO RAMP FORCING (T = 700 Y)
thereby decreasing the depth of the permanent thermocline.
For a given w, however, the larger the vertical diffusion co-
efficient k is, the more deeply heat from the mixed layer is
transported, thereby increasing the depth of the permanent
thermocline.

Figure 3a is the temporal lag function, 7(¥), that should
be used in the particular or asymptotic solution as computed
from (18) for w = 4 m yr~' and k = 4000 m® yr™. As
might be expected from the low heat capacity, the lJand mass
temperature change leads steady increase over the ocean

LAG OF RESPONSE (YEARS)

N

908

N i . . A .
160°¥% 120°% e} CM. L ] 1208 190°R

1en Fig. 4. Particular solution for F(t) = 4t at t = 700 years. Here,

w=4myr~! and k = 4000 m? yr—1.
10°8

surface areas. As shown in Figure 34, the temperature dif-
ference between central Asia and the central Pacific asymp-
totically approaches abont 0.5°C for ¥ = 0.03 W m™2 yr—!
(equivalent to CO2 doubling in 140 years). Observatic
suggest a similar geographical dependence of different.
temperature rise between the land mass and the ocean [e.g.,
Hansen and Lebedeff, 1987]. It is misleading, however, to
argue that the model response is correct solely on the ba-
H ) sis of this comparison. Any rigorous comparison between
the model and the observations requires examination of the
homogeneous solution (transient response) as well as the
particular solution (asymptotic response). Figure 4 shows
the particular solution at time ¢ = 700 years at the surface
of the Earth.

Figure 5 shows the solutions (see (A2) in the ap-
pendix) of the homogeneous problem (10) over land (cen-
tral Asia; 50°N,90°E) and over the ocean (central Pacific;
0°N,180°W) with w = 4 m yr™! and k = 4000 m? yr~!.
Since we have no knowledge of the initial condition field
(say, the temperature anomaly field in 1880 above or be-
low the equilibrium state), we used To(¥, z) = 0 everywhere.
Therefore, the initial condition for the homogeneous prob-
lem is

70°N

10°N

Tho = —Tpo = a(T(F) — 2/w)e’*. (24)

The most prominent feature of the solution is its long decay
time. While the temporal lag 7(#) in Figure 3a is only about
60 years over the ocean, the actual temporal scale associated
with the decay of the transient response is much longer,
several hundred years, as is shown in Figure 5.

Scale analysis reveals that the temporal scales associated

/. \ with the energy equation for the the ocean interior (7a) a
908 | —— 30, — bt ——.

160°W 1200 ey oM. orE 1208 wee  the boundary condition (7b) are respectively
1 1
Fig. 3. Geography of (a) lag (7(¥)) in years and (b) the translated n = [_'w_ﬁ—’ W] = k/w’ = 250 years;

relative temperature anomaly in degree Celsius of the particular
solution for F(t) = ~t. Here, w = 4 m yr—! and k¥ = 4000
m? yr—1, °

[ cE) O

’wC‘(f)’ kﬁC'(i‘)] = dmix/’w ~ 18 Years, (25)
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DECAY OF INITIAL ANOMALY
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Fig. 5. Homogeneous solutions with the initial condition Tho =
a(r(¥)—z/w)eb?. Solid line, typical land point (50°N, 90°E); dot-
ted line, typical ocean point (0°N, 180°W). Here, w = 4 m yr—!
and k = 4000 m? yr™!.

where dmix = 70 m is the depth of the mixed layer. The lat-
ter represents the adjustment time scale in the mixed layer
which is in thermal contact at its bottom with the deep
ocean. If energy is added in the mixed layer (which is at the
top of the deep ocean), the vertical structure of the tem-
verature field changes such that the added thermal energy
; to be transported downward into the deep ocean. This
time scale is much shorter than the temporal lag shown in
Figure 3a. The former represents the adjustment time scale
in the deep ocean. Thermal energy added continuously into
the deep ocean is redistributed such that the vertical diffu-
sion and the upwelling balanice each other. Therefore, the
former is equivalently the time scale for the balance of the
vertical diffusion and the upwelling. Scale analysis indicates
that the deep ocean is responsible for the long decay time
shown in Figure 5. A close examination of the structure of
the solution in Figure 5 shows that there indeed exist two
temporal scales. Morantine and Watts [1990] also reports
the existence of two temporal scales. However, their defini-
tions are somewhat different from (25).
For further examination of the dual temporal scales in the
transient response, we divided the initial condition (24) into
two parts:

T = ar(®)e”,
T}(.g) = —a(z/w)e’.

Solutions of the homogeneous problem with (26) and (27)
indicate that there indeed are two temporal scales in the
transient response as shown in Figure 6. The initial condi-
tion (26) is associated with the shorter temporal scale and
is about 20 years over the ocean as in Figure 6a. The longer
temporal scale is about 250 years as in Figure 6b and is asso-
~jated with the forcing (equation (27)). The temporal scales
arived in (25) match with the decay time scale in simula-
tions with different values of w and k (not shown here).
Note from (12) that the initial condition for the instanta-
neous CO; doubling experiment is essentially (26) with (&)
replaced by unity. It is clear then from the above simula-
tions that the time constant associated with the instanta-

(26)
(27)
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neous doubling of CO; is about 20 years. This estimate is
within the range of values estimated or inferred by a variety
of climate/ocean models [e.g., Schlesinger, 1989; Manabe et
al., 1990; Schlesinger and Jiang, 1990].

Figure 7 shows the global temperature for the radiative
forcing in the inset. The forcing represents the scenario A
(business as usual) policy in controlling the use of fossil fuel
[Shine et al., 1990]. Between 1880 and 1980, the global
temperature rise in our simple model is about 0.5°C. This
is very consistent with the observed increase [Hansen and
Lebedeff, 1987; Jones et al., 1986]. It is worth noting that
if the simulation is started in 1880 instead of a hundred
years earlier, the increase in the last hundred years would
be several tenths of a degree larger. The earlier starting
time allows the long transient to decay significantly. (We
are indebted to M. Hoffert for pointing out this subtle point
to us.)

Figure 8 shows the complete transient solution of (7) (sum
of particular solution (15) and homogeneous solution (A2))
for the radiative forcing in Figure 7. Because of the small
effective heat capacity, land heats up faster than the ocean
surface as shown in the maps. In 1980, simulation shows
that central Asia is about 0.12°C warmer than the central

Q ! 1 N '
- T T g
———+——  LAND a

g -!- ...... Mermens OCRAN 4

Q“ -

=]

] “1 -

a ¥

|

© 4 4
n o ¥

e Ik ik
E s T3
1.

Q

@

o

N

(-]

-

S

<

o

'L

AMPUTUDE

02 03 04 05 08 0.7 08 09

-

00 O.1
I

TIME (YEARS)

Fig. 6. Homo§enéous solutions with the initial condition (a)
Tho = at(P)e’?, and (b) Tho = —afz/w)e®?. Solid line, typ-
ical land point (50°N,90°E); dotted line, typical ocean point
(0°N,180°W). Here, w = 4 m yr~! and & = 4000 m? yr~1.
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Fig. 7. Global temperature of EBM with deep upwelling-diffusion
ocean for the scenario A (business as usual) policy. The radia-
tive forcing is in the inset. Here, w = 4 m yr~! and k = 2000
m? yr_l .

Pacific. As the heat capacity contrast between land and
the ocean becomes larger, the land-sea temperature differ-
ence in the case of ramp forcing becomes larger. Equiv-
alently, as 1/6 (thermocline depth) increases, this differ-
ence becomes larger. This temperature contrast, although
somewhat small, is consistent with the observational record
[Hansen and Lebedeff, 1987] and may constitute a “signa-
ture” worth exploring further.

Earlier studies have presented arguments that coupling
to the ocean’s interior (processes of upwelling and vertical
diffusion) is responsible for the actual warming being only
a fraction of that which would have occurred in the absence
of the deep ocean. The deep ocean indeed contributes to de-
laying the warming due to the lag in the asymptotic form.
However, the long adjustment time actually increases the
early response at the surface due to the time required to fill
out the vertical thermal profile of the waters below. Return-
ing to Figure la we note that solution ¢ will lie higher at a
given time after onset for longer adjustment times and fixed
lag time.

Keeping as close as possible to the present framework,
we list a few additional considerations which might improve
the model: (1) The model does not include time-dependent
natural variability of such internal parameters as w, the up-
welling rate, as suggested by Watts and Morantine [1991].
(2) There may be additional influences in the radiation en-
tering the system to be incorporated in the heat budget
such as aerosol. Such a perturbation could be easily incor-
porated if its time dependency were known [Wigley, 1989].
(3) Other possibilities include the shortcomings of the model
connected with its lack of horizontal dependence of w and
k together with no horizontal transport in the deep ocean.
Locally large values of vertical transport could be short-
circuited into the deep ocean and then smeared around. This
mechanism would allow a faster reconstruction of the profile
near the thermocline and effectively shorten the adjustment
time to the asymptotic straight line. Some evidence for this
response can be found in recent simulations with coupled
ocean-atmosphere models [Cubasch et al., 1991; Manabe et
al., 1991].
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5. SUMMARY AND CONCLUSION

We examined the Earth’s transient response by using
simple energy balance model with a deep diffusive-upwell:
ocean. The model has an explicit two-dimensional geogra-
phy. Vertical diffusion and upwelling are horizontally and
vertically uniform throughout the water column. A tech-
nique based upon the Laplace transformation has been used
to convert the problem into an almost analytically solvable
one.

Model results show that for both ramp and step forc-
ings, the land surfaces heat up to a given temperature level
earlier than the ocean surfaces because of their smaller ef-
fective heat capacity. With a realistic rate of CO; increase,
central Asia is about 0.12°C warmer than the central Pacific
in 1980. Such a signature of differential heating is consis-
tent qualitatively with the compilation of observations by
Hansen and Lebedeff [1987]. The land-sea differential is a
possibly important fingerprint that suggests further study
involving signal-to-noise analysis.

In our past century experiment with a realistic radiative
forcing, the simulated global temperature increases about
~ 0.5°C in 1980 relative to 1880. This estimate is consistent
with that suggested in the observational record [e.g., Jones
et al., 1986; Hansen and Lebedeff, 1987]. We note that it was
necessary to start the simulation 200 years before present
to achieve the result. This permitted the slow transient to
decay, significantly reducing the warming during the last
hundred years.

It is usually argued that coupling to the deep ocean will
delay the warming to a given value at a given time after t*
onset of forcing. Such an intuitively appealing argumen
based upon the analogy with a slab ocean. In the case o.
a just slightly more complex ocean the sequence of events
is much more subtle due to the existence of several time
constants instead of a single one.

As our analysis shows, there is a position-dependent lag
of the asymptotic solution behind the imaginary instanta-
neously responding solution. In the case of ramp forcing,
our complete model solutions suggest that this lag is a few
decades. A much longer time scale enters in the transient
adjustment to this asymptotic form. In order to fully ad-
just to the asymptotically linear curve, the surface may
be warmer earlier than the water in the neighborhood of
the thermocline while the latter adjusts to its asymptotic
profile, which differs appreciably from the profile in static
steady state equilibrium (local difference proportional to
(z/w) exp(—wz/k)). For the generally accepted model pa-
rameters we employed, this restructuring of the permanent
thermocline for the ramp steady state takes several hundred
years.

It is interesting that the restructuring of the deeper por-
tions of the profile near the permanent thermocline is not
as severe in the case of step forcing (local difference propor-
tional only to exp(—wz/k)). For this reason we find that an
instantaneous doubling of CO; requires only a few decades
for adjustment to its asymptotic constant value. As is al-
ready recognized, it is not a good idea to accept the single
time found in step increase experiments to infer the adjv
ment times for other forcing scenarios.

In summary, we list a few specific consequences of the ex-
istence of two temporal scales: (1) As was noted by Thomp-
son and Schneider [1982], climate response to forcing lin-
early increasing in time is different from that due to instant
CO; doubling. The former forcing induces a response with a
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Fig. 8. Transient response of EBM with deep upwelling-diffusion ocean for the scenario A (business
as usual) policy: (a) year 1880, (b) year 1980, (c) year 2050, and (d) year 2100. Here, w = 4

m yr~! and k = 2000 m? yr—1.

very long time scale (several hundred years) while the latter
is very short (several decades). (2) Because of the sluggish-
ness of the deep-ocean processes, the model ocean initially
responds to ramp forcing similarly to a slab ocean response.
At the onset, the incoming energy excess is mainly used to
heat up the top of the ocean. Therefore, the ocean sur-
" ce temperature increases rather rapidly and keeps up with

2 greenhouse gas forcing closely. Unlike the slab ocean,
nowever, it takes several hundred years for model ocean to
reach its asymptotic profile. (3) While there is no way of
knowing exactly what the initial condition field was at the
onset of greenhouse gas forcing (say, temperature anomaly
in 1780 from the true equilibrium state), observational evi-

dence seems to suggest that there was a warm anomaly. If
the vertical structure of such natural fluctuation is €%, it
will decay rapidly. As was shown earlier, the transient sig-
nal of this anomaly is almost zero after 100 years. Thus an
accurate knowledge of the initial condition and its vertical
structure is extremely important in addressing the global
temperature rise during 1880-1980.

Before ending this discussion we wish to remind the reader
that we are not advocating the simple ocean model used here
as an ultimate tool to use in greenhouse gas warming sce-
narios. In fact, we believe that the model is too simple.
The adjustment times are likely to be shorter. We suspect
that at least part of the problem lies in our assumption of
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horizontally uniform values of the vertical transport param-
eters and the lack of horizontal transport in the lower ocean.
Combining nonuniform transport and horizontal transport
is likely to increase thermal communication between layers
and speed up the adjustment process in the case of ramp
forcing.

We feel the approach taken here is likely to prove useful in

OF A CoUuPLED CLIMATE SYSTEM

gaining a better understanding of the global warming prob-
lem. For example, we intend to use similar models to study
noise-forced fluctuations of the temperature field similar
the work conducted by Kim and North [1991] based u}
a mixed-layer-only model. Such studies shed light on the
many signal-to-noise issues that are vital to completing the
picture of climate change detectability and predictability.

APPENDIX
For a special class of initial conditions
Tho(F, 2) = u(®) + v(#)e** + w(#)ze®*, (20, (A1)
one finds a solution of (20) in the form
Ta(F, 2,9) = f(£)+9(F)e” +h(F)ze* + R(E, z,5)e™*, (A2)

where f(#) + g(#)e‘* + h(#)ze¢* is the particular solution
(satisfying the nonhomogeneous problem with Tho given by
(A1)) while E(i")e'\z is the homogeneous solution (satisfy-
ing the Sturm-Liouville problem with Tho = 0). Here the
eigenvalue A is defined by

w+ Vw? + 4ks _é

A= 3F =3 + u;
§ = w/k;
p = \/s/k+82/4.

It readily follows from (20a) that

fE) = u(®)/s;
§) = ——r® | (@R wu(d)
96) = T e =5 T @ —we = 5)
o _ _ —w(®)
k(t) = W —wl s’
Therefore,
Th(E, z,3) = R(F, z,8)e™ + u®) _ —w(i.)—zec’
b b b ) s k<2 — wc — 3
L) e, GK-we® o
k(2 —w(—3s (k¢? — w¢ — 9)?

Now, from the boundary condition

[c@ +5{B-v. (DE)V) ~we @)} + ’;\kC"(f-)] R(8, z,3)e™

u(f)

wl—3s

(2k¢ — w)w(F)
(k¢? — w( — 5)?

=—c@{-18 - ¥

<'2

z - wC*(# u(f) v(f) (2k¢ — w)w(#) oM
{B v(D(=)V) C()}[ T (k= w( —9) s(k("’—w(’—s)z]

N < B ((28¢ = () | s

L )[ s(k¢?—wC—3) s(k(>~w(-3) s8(k(?—-wl— 3)2] (A3)

Taking the inverse Laplace transformation of (A3) [see
Abramouwitz and Stegun, 1971], we obtain
C(#)R(E, 2,1) + {B -V (D(z)V) - Ec'(f)} /t R(%, 2, 7)dr

kC* (7 £, z,7)e (67 k/(=T) 8 (k1) (t=) 2 — ) bar
+RC*( )/ R(F,z,7) {\/W (V&R - ) }4
= C(#)fi(F,2,t) — {B -V - (D(2)V) — wC*(#)} fo(#, 2, 1) = KC*(}) fa (#, 2, 1), (A4)
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(%, 2,t) = @{e_“/zedc(—g 2\/_) + e“/zerfc(i - 2\;5)}

”(f'){ —(¢—6/2)z ,¢(¢— )kt ( z ) (¢=8/2)z ¢(¢= )kt z
_ur) fe(—(¢ - 6/2)Vkt ~ —— f( -.sm/u---)}
5 1° e erfc| —(¢ — 6/2) W +e e erfc| (¢ — 6/2) Wi

_@(Zk( =) / e ete(~(¢ - 8/2) VT
1]

(=6/2)z ¢(¢—=8)kt 2
+e e f( —§/20Vk ——)d,
e\ oVRr = ) O

)

a t
fa(R,2,t) = @‘/ e'“”erfc(—g\/kr - ) + e"‘/zerfc(.‘.s.\/k.,- -z ) dr
0

z
2Vkr 2 kT

v(f) / b =121 ()R ( 2
+ e e erfc{ —(¢ - §/2)Vk )
> | € - 6/2)VEr - =

(¢=68/2)z _¢(¢—8)kT zZ
+e e erfc( —_ 6 2 k —_ _—) d
=ik = 7)o

r 2kc z -~8)kr =8kt
_,_wg )c(s Cu; “#6}/ —(¢-8/2) { C~O)kT _ 4(¢=0) }erfc(_(c_ﬁ/z)\/_

(- 6/2):{ C—t)kr _ (((—6)kt} ( z )
+e e e erfc| (¢ — 6/2)Vkr — —— ] dr
(¢-6/2)v ST

) + e6’/2eric( vkr

v

)

+@(2k6 - w)l =6} /t(t - 1) {3_6'/2erfc(—ng_ 2\/_

fa(f', z,t) = M

t
~(¢—8/2)z (({~&)kT ( o ) (¢—6/2)z _((¢—6)kr ( W/ o )
x e e erfc §/2)Vk + f -6§/2
/; (¢ 12)Vkr 2VkT ¢ ¢ erfe{ (¢ 12VE ovkr dr

a t
+@ 226__;” Iicusy / e_(c_6/2)'{ec(c_6)kr - ec(c_6)k'}erfc (—(C —§/2)Vkr -
0

+ e((-&/z)z{ec(c—6)kf _ e(((-")"‘}erfc ((C - 8/2)Vkr -

z
2\/kr)
z
—d
2\/kr) T
) + e“/zerfc(6

“’(’)g(zkc w) Ie=s) / (t—r){ '6'/2erfc(—£\/F

)}dr

\/F

and

I _ if expression is true;
{expression} = § g otherwise.

Therefore,
T(8,2,1) = u(f) + {o(8) + zu(F) fet e

+(2k¢ — w)w(#)tet* e D% 4 R(%, 2, 1).

For computational reasons, we rewrite (A4) as follows:
tn
CH)R(F, z,tn) + {B -V (D(z)¥) - %C‘(i)} / R(#,z,7)dr
tah—y

+.‘2‘_’c'(f) /. ;R(i‘,z,r)erf( (62k/4)(tn — 7)) dr

tn
+kC'(F) [ RE, 2, 7) e~ (PR =) g

Y )
~{B-v-(D@)v) - 2c* @)} /O_H R(#, z,7)dr
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—-“-’c'(f) / " R(#, z, T)erf(\/(62k/4)(ta — 7)) dr

_ ; o for) L —(Ek/aYen—m) g
RO )/ R, )\/rk(tn—r) ¢
+C(#)fi(f, z,ta) = {B = V- (D(2)V) = wC*(#)} folf, 2, tn) — kC*(¥) f3(F, 2, tn), (A5)

where t, is the nth time step. Using the finite-difference
method, it can be shown that

tn
/ R(#, z,7)dr = At" (Rn + Rn1);
t

n—1

tn
/ R(F, 2, 7) exf(\/(BK[A)(tm — 7)) dr = 20 (6°k/4)Atn
tn-1
/‘" R(&, z,‘r)—l e~k tn =) 4o
thot Vrk(tn — 1)
— 2yt — Te_(oﬁk/4)(t,.—-r)R(i-,’ 2,7) i,
m n—1
t
" 2fla—T —(67k/4)(t,.—-r){ 2 . dR(f',Z,T)}
+ /;—! JoF e (6°k/4)R(F,2,7) + i dr
2 WA —@kmoenp | Al 2VAL ',—At" STk [(6’k/4 )Rn-1 + M]
V1|'k 2 Atn
VAl _s2
= Tk"e (62K /4)Atn [{1 +(8°k/4)Atn } Rny + R,,],

where R, = R(f¥,2,ts) and At, = tn — tn-1. Therefore a
finite-difference analog of (A5) in time is written as

URp=VRn1 +f, (A6)

where the operators U and V are respectively

U=C()+ Atn

{B-v. (D(z)V) } + [__V':/A;t"e—(azm)m,. _ %w] C*(F)

Ve At,, At tp_v. (D(z)V)} - [_V’:/_itne—(oﬂkh)m,.{l +82k/4)At, )

+%w{erf( @A) - ) - 1}] ")

and

—{B -V (D(z)V)}/; "~ R(#,z,7)dr + %C.(f’)/; " R(t,z,7)dr
- %C.(f)/; ; R(F, 2,7) erf(\/(82k/4)(tn — 7)) d7 — kC.(f')/; "~ R(¢, ::,‘r)—1 (82K (tn 1) g

VEk(tn — 7)

+ C(#)f1(E, z,tn) — {B = V - (D(2)V) — wC*(¥)} fa(£, 2, ta) — kC*(#) fa(F, 2, tn).

In terms of the spherical harmonic basis functions, (A6) is
further rewritten as

M£H=N£n—l+£,
or equivalently,
Mi;R} = Ni;R?™! + i,
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where R™(z) = {Rin(2)] 0 < 1 < L;=1 < m < 1} is the
axpansion coefficients of R"(%, z), i.e.,

L
R'8,2) = ) Y Rin(2)Y"(#),
=0 |m|<!
= ) RV,
and '
M;; = / (UY;(§)Y: (7) 92,
Ny = [v@)ve e,
ji = / JY: (#)dg.

Here, ;™ (%) is the spherical harmonic function of order l and
rank m, and L is the maximum expansion order of R"(#, 2).
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