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ABSTRACT

This paper employs some recently developed bivariate wavelet analysis techniques to study the correlation be-
tween Asia monsoon and El Nifio southern oscillation (ENSQ). Various energy spectral densities are defined for
wavelet transforms, analogous to those used in conventional Fouricr analysis. Some comparisons are made by ap-
plying botk wavelst and Fourier spectral methods to the data. The wavelet analysis shows evideno of some relution-
ship beiween Asia monsoon and ENSOQ, which the Fourier analysis resolves poorly. Correlation on seversl time
scales, ranging from 2—4 years, 11 years, and 22 years, become apparent with the warele! cross—spectrum. Finally, the
wavelet cross—transform provides time localization of the distinetive features within the data record.
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I. INTRODUCTION

The influence of ENSO events on global atmospheric circulation and associated weather
has been one of the recent focuses of air—sea interaction research, and a number of interesting
studies have shown that the ENSO phenomenon has a significant effect on the climate of the
middle latitudes. Several investigaiors have analyzed the relationship between Asia monsoon
and ENSO, e.g., Bjerknes (1969). Horel and Wallace (1981) have found that a teleconnection
exists between the Eastern Asia atmospheric circulation and the ENSQ phenomenon, thus,
the Asia monsoon is not simply a component of SO. The development of Asia monsoon may
be associated with latge scale topography and the planetary waves aloft. The subtropical high
over the western Pacific is an important component of the East Asian monsoon system. It is
believed that ENSO may excite a stationary wave train, thus producing a teleconnection pat-
tern. The immediate downstream effect of the propagation of this wave train is excrted upon
the subtropical high over the western Pacific.

Guo (1987) and Ding (1994) showed that, while there is indeed a relationship between
Asia monsoon and ENSOQ, the relationship was not very clear due to limitations of the Fou-
rier technique. In this paper, we attempt to reexamine this relationship by using recent ad-
vances in wavelet spectral analysis. These methods have been successfully applied by the au-
thor to provide a wavelet timescale decomposition for the bivariate case, which permits the
study of local correlations at various scales. Related applications of these techniques have
been reported in Hudgins et al {1993a) and Hudgins ¢t al (1993b), while the full mathematical
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development may be found in Hudgins (1992).

Up to now, the Fourier transform has been the main mathematical tool for studying the
frequency spectrum of climatic data. A spectral density distribution identifies the underlying
frequencies and their relative contributions to the time series, but it shows no information re-
garding their temporal locality. Therefore, non—stationary signals which appear only in a
short time interval are poorly detected by Fourier analysis, since these signals are averaged
oul over the entire data record. In searching for fundamental structure in the time—frequency
domain, even very weak signals may be important if they influence the overail response of the
system. In this regard, detection of weak or non—stationary signals may be crucial, and alter-
pative time series analysis techniques may be required. This was a major motivation for stud-
ying the wavelet transform in mathematics and in applied areas, e.g., Grossmann {1984). By
decomposing signals into elementary building blocks that are well localized both in time and
frequency, the wavelet transform can characterize local singularities (see Mallat et al {1992)).
Recently, considerable attention has been given to applying wavelet techniques to the study of
geophysical phenomena, e. g., Foufoula—Georgiou (1994), Meyers et al (1593), and Gamage
et al. {1993).

First we recount the basic wavelet definitions and main properties in Section 2, using our
notation. In Section 3, we introduce wavelet specira and their natural extension to wavelet
cross—transforms. Section 4 consists of wavelet and Fourier spectral analysis of monsoon pre-
cipitation and SO, and in Section 5 we discuss the relationship between monsoon intensity
and ENSO. Finally, we summarize our main results in Section 6.

II. WAVELET TRANSFORMS

In this section we first briefly review some definitions and basic properties of wavelet
transforms, while introducing our notation which differs slighrly from the usual one. In the
next section we develop the central concept of waveler spectra, which we have used for our
analysis. A comprehensive treatment of the wavelet subject can be found in Combes (1989),
Chui (1992), Daubechies (1992), and references therein. Further details regarding wavelet
spectra and the special notation may be found in Hudgins et al (1993a) and Hudgins et al
(1993b).

The theory described in this and the subsequent sections is developed within the context

of any separable Hilbert space, so the operatorsj » dt and .” = dsdz are linear functionals as

given in Reisz’s Theorem. In the discrete case the measures are also discrete, so that the inte-
grals may be equivalently written as convergent summations, which ir ifself doesn’t introduce
any numerical errors. Of course, sampling the time—series amounts to quantizing and map-
ping onto a finite—dimensional Hibert space {i.e, digitizing and truncating the record), in
which case we would have to live with the usual guantization errors, windowing, and
anti—aliasing effects. Such important considerations belong to the discipline of signal pro-
cessing, and will not be discussed further here.

1. Continuous Wavelet Transforms

The wavelet transform decomposes functions into various scales by expanding in terms
of simple functions called wavefets. The wavelet transform of a function f{r) is defined as
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Wizt = J fINY, (¢t —ndt ,

where s is the dilation parameter, 7 is the translation parameter, and the functions

¥, (1) =1s[P(ss)

are defined in terms of the mother wavelet ‘P(¢). In most of the existing literature on wavelets,
the scale length parameter a appears in the denominator, so that ¥, (v} =la| ™' *¥(t / @),
for a #9. In the Fouriet context, a is the analog of wave length. In order to simplify the
mathematical equations in this section and the next, we use the variable s =1/ a, which is
analogous to wave number and call it scale number. We will allow s to take negative values, in
conirast to a, which is often assumed to be strictly positive.

A wavelet is required to be integrable and square integrable. We also need it to satisfy the
admissibility condition:

g =

- 2
Iﬂfla‘m<w \

where ¥{w) denotes the Fouries transform of W(1).
2. Time—frequency Locafization

The square of the Fourier transform of any admissible wavelet is mainly concentrated on
some frequency interval called the passband. In this sense, the function ‘¥{¢) can be inter-
preted as the impulse response of a bandpass filter. [t becomes critically important then, to se-
lect an analyzing wavelet with properties appropriate to the task. Wavelet selection is both an
art and a science, and a complete treatment of the subject is beyond the scope of this article.
Throughout our present work we employ the cubic spline wavelet (see Fig. 1), as it provides an
excellent trade—off between short length (which gives good time localization} and high
peak—to sidelobe—ratio {(which minimizes filter leakage) while maintaining phase linearity (by
virtue of its symmetry).

If we assurne that .[| $(w)|* dw = 1, then the “center” of the passband, w, , is defined as

W, =Jvl@(v)|’dv . )

Time Series: Cubic Spline Wavelet Power Spectrum: Cubic Sph'lne Wovelet
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Fig. 1. Cubic spline wavelet and its frequency response.
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Similarly, the “width” of the passband, A, , is given by
24, =I(v —a, V¥l av , @

once the center is known. The reader may easily verify that for an arbitrary scale number s,
the center and width of ¥, are respectively :

w, =sm,;, and A, =sA, . A (3)
Similarly, if 1, and A_, are the center and width of the time window respectively, then

=lTl aﬂd Au =1A71
5 5

In our analysis, we calibrate the. wavelet -mponse by employing (3). If ¥ has center fre-
quency o, , then P, will have center frequency w, =1 when £ =1/, . By using ¥=v,
=+/|&|¥P(kt) as our mother wavelet, we effect the desired calibration.

11I. WAVELET SPECTRA

In practice, one of the primary uses of Fourier analysis is to study a signal via its power
spectrum:

Po(w)=f)

for fe L* (R). The power spectrum provides a decomposition of the energy of a signal into fre-
quéncy components. In the strictest sense, the left—hand—side above should be called the en-
ergy spectrum of f, but we refer to it as a power spectrum since this abuse of notation is so
common as to be a de facto altenative. In polarized form, one obtains the cross—spectrum of
two signals:

Cpe ) =fl@)ie) ,
which studies both the spectral similarities and the timing relationships between f and g.
1. Wavelet Power Specira

The so—called Parseval relation in Fourier analysis makes the Fourier transform an
isometry between L spaces, and is responsible for many of its useful properties. In terms of
the power spectrum, the Parseval relation can be written as

ﬁJ‘P,(m)dag - f loPar ,
or more generally,
EIT—JC,K (w)do = j el |

Using the notation introduced in Section (2) above a similar relationship may be stated for
wavelets: when f isin L? (R), we have

1 ’U.| W, (s,0) drds = J.lf(t)|2dt ,
Cy
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. and in polarized form,

41
Ty

”u{,(s,r) W, {s,7)drds = J_f(t_)g(r)d: .

A direct analogy with the Fourier—Parseval relation can be made by defining the wavelet
power spec:rum as

Pr(s)= j |, (5,0 dr .
This wavelet power speciral density inlegrates to the total energy as in
CLJP}” ()ds = JU“(:)P- dt . ' ®
b .
These equations polarize to give what we call the wavelet cross—spectrumt.

c; (s)=JWWg saMe )
and its corresponding Parseval relation:
ij . (s)ds =Ifﬁg(:)m. ®
The connection between Fourier and wavelet spectra may be stated as
PPy =5 J:o v, (P (@)de |

where P(w) is the Fourier power spectrum of the signal f, and Py (w} is the Fourier power
spectrum of the analyzing wavelet ¥ at scale number s. In words, the wavelet power spectrum
of / (with respect to the admissible wavelet ¥}, at scale number s is the weighted average of
the Fourier power spectrum over all frequencies. The weighting function is the Fourier power
spectrum of the wavelet ‘¥, at scale number 5. In polarized form we have

Cpy ) =ﬁqu, @)y @M ,

so that the wavelet cross—spectrum of f and g at scale number 5, is the weighted average of the
Fourier cross—spectrum of f and g.

Note that this is not simply Fourier smoothing, which is typically accomplished by
convolution of the Fourier spectrum with some smoothing function in the frequency domain,
as in

Pt (@)= |AlE — w)Pr(w)de .

In contrast, the wavelet spectrum as a function of the scale number s, derives its func-
tional dependence from the scaled wavelet, which in turn provides 2 window of variable center
and widih.

The dependence of the center and width of an analyzing wavelet on the scale number is
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what gives the wavelet transform its useful properties. This dependence carries through to the
wavelet power spectrum. Thus, wavelet spectra embody the main ideas that make Fourier
spectra useful, while retaining the ‘adjustable window’ which makes wavelet analysis so ver-
satile.

2. Wavelet Cross—transforms

The right hand side of (4), JM:)IZdt, is typically called the signal energy. Mathema—

tically, it is more frequently referred to (at least for mean—zero signals) as the variance
of /. Equation (4) thus clearly displays the wavelet power spectrum as a scale decompaosition
of the signal variance. Similarly, (6) makes the wavelet cross—spectrum a scale decomposition

of J}ﬂg(r)d:, the covarignce of £ and g. In these terms, we may write
var{f} = L Py (5)ds
ey | T

L 2
b J.J| W,(s;1)| dsdr , and

covif,g) = %JC}; (5)ds
¥
= i— j. W (s,0)W (s,0)dsdz . (8)

Now let us focus attention on the integrand in the right hand side of (8). While the
cross—spectrum is certainly a scale decomposition of the covariance of f and g, the
quantity W (s, )W, (s,1) is a time—scale decomposition of the covariance. As a two paramet-
er function, it has no readily identifiable counterpart from standard Fourier analysis. Its inte-
gral over the time axis is the wavelet cross—spectrum (which is closely related to the Fourier
cross—spectrum), but its behavior is better understood as that of a bivariate wavelet
transform@TWe thus refer to W,{s,7)W¥, {(s,7) as the wavelet cross—transform of f and g, and
its density plot in the 1 — 5 plane as the wavelet cross—scalogram.

Regions where the coefficients of the wavelet cross—transform are large may be inter-
preted as locations in timg and scale where the two functions are well correlated. When f, g,
and ¥ are real, the wavelet cross—transform is real, and the quadrature spectrum vanishes.
Note that this is in contrast to the Fourier case, where cross—spectra are in general complex
even for real signals. This may be viewed as either an advantage or a disadvantage of wavelet
transforms, depending on one’s needs. When absolutely necessary, the extraction of phase in-
formation may be accomplished handling wavelet spectra in one—sided form. The interested
reader is referred to Hudgins (1992) for full mathematical details. '

V. MONSOON PRECIPITATION AND ENSO

The summer monsoonal rainfall in Asia shows a significant interannual variability.

@, The square magnitude of the wavelet transform is of course a time—scale decomposition of the vari-
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Meiyu—the major rainy season in early summer over East Asia—exerts an important effect on
drought and flooding conditions over the Yangtze River Valleys. Also, as an integrated sys-
temn of summer monsoon circulation and an important heat source, it exerts a significant ef-
fect on large—scale changes (see Ding (1994)). Tao et al. (1980) has studied the long—term va-
riability of the standard deviation of precipitation—over Shanghai for 1874—1986. To a certain
extent, the precipitation over Shanghai represents the Meiyu precipitation over the middle
and lower Yangtze River Valleys. They found that, of 24 E1 Nifio vears, 15 cases had positive
departures of precipitation, and 9 cases had small magnitude negative departures. The rainfall
amount during Meiyu in this region would seem to be above—normal in E1 Nifio years.

In fact, the relationship between Meiyvu and the ENSO events greatly depends upon the
timing of El Nifio onset. When the warming E1 Nifio events occur in fall or winter,
the Meiyu rainfall amount in either the same year or the following year is usually greater than
normal. When the onset of the E1 Nifio event occurs in spring or summer, the rainfall amount
during the Meiyu period is usually less than normal for either that year or the following year.
So the rainfall during the Meiyu peried for the middle and lower Yangtze River Valleys tends
to be related to El Nifio warming (see Ding (1994)).

To examine the relationship between Meiyu and ENSO, the anomaly of precipitation for
Shanghai and the southern oscillation index (SOI) from 1951 to 1989 was analyzed. Precipita-
tion data for Shanghai was obtained from the Chinese National Meteorological Center, and
the SOI data came from the Climate Analysis Center (CAC). Both datasets were normalized
to remove the seasonal cycle. In Fig. 2 we plot the anomalys for the SOI and precipitation
time series. Power spectra were then computed using both Fourier and wavelet transforms,
the latter making use of a cubic spline wavelet. Conventional Fourier power spectra and their
wavelet equivalents are shown in Fig. 3.@1In order to show the variation in spectral density as
a function of scale, we use the method of plotting them in area—preserving form on a
semi—-logarithmic scale, i.e., the abscissa is the log of the scale number, while the ordinate is
- plotted linearly as density times the scale number.
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Fig. 2. Time series of SOI and Precipitation for Shanghai. The data have been normalized to re-

move seasonal variations,

(DFourier's and Nyquist's theorems imply that the Fourier analysis should be limited to periods ranging
from the length of the data record down to twice the sample interval. Similar reasoning applies to

wavelet transforms.
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Fig. 3. Pcwer'spemra of SO1 and Precipitation for Shanghai. Ordinates are plotted as frequency x
power. The Fourier spectrum is shown as a solid line, while the wavelet spectrum is shown as dia-

monds.

From Fig. 3, one can see that the SOI power spectrum has a strong peak corresponding
to a 2—4 year period (frequency of 0.2—0.5 cycles per year). the wavelet method as imple—
mented in the present analysis seems to give a better smoothed representation of the
spectrum, especially for the high frequencies. We find a weak peak in the low frequency
wavelet spectrum, but fail to find it in the Fourier spectrum. Although the Fourier spectrum
has many high frequency peaks, these actually represent background noise: the wavelet
spectra do not show any peaks in high frequency band. At the same time, the logarithmic fre-
quency spacing of the wavelet transform provides arbitrarily high resolution at the low fre-
quencies. To obtain an equivalent resolution with the Fourier analysis, one must use very long
FFT's, which represent increased compute time.
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Cross Spectrum: SOI & Precipitation
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Fig. 4. Cross~spectra of SOI and Precipitation for Shanghai. The ordinate is plotted as frequency
x cospectral demsity. The Fourier cross—spectrum is shown as 2 solid line, while the wavelet
cross—spectrim is shown as diamonds.

Using the definition of wavelet cross—spectrum in (5), the SOI ard precipitation were
jointly analyzed. Fig. 4 compares the wavelet results with fourier estimates. From this we see
that the main contributions to the cross—spectrum are at scales that peak around 2-4 years
(0.2-0.5 cycles per year) and 18—22 years (0.05 cycles per year). OQur results show evidence
that a relationship exists between the interannual oscillation of the rainfall in East China and
the oscillation of ENSO.

The effect of the E1 Nifio event on the precipitation in China is a manifestation of the va-
riation of the East Asian monsoon system caused by this oceanic phenomenon. Relationships
between the monsoon intensity and ENSO are analyzed in the next section,

Y. MONSOON INTENSITY AND ENSO

The data used in this section, the Asia monsoon intensity index and southern oscillation
index (SOI), were archived by Guo (1987). The monsoon intensity index is defined as:

I=Y(Pupe — Piger)i » (61 =10°N;5=350"N)

where P is the monthly mean sea level pressure. This index is computed both for “perpetual”
summer, denoted 7, , and for “parpetual” winter, 7, . The SOI is defined as the difference of
the mean pressure between two regions: the first region is bounded by $0°W—130°W and
20°—30°S, while the second region is located at 100°E—-140°E and 10°S5—20°S. Fig. 5 shows
the evolution of these four indexes from 1871 to 1980. Each time series shown in this figure
has units of hPa= 100 Pascals. The variation in both the Asia monsoon and the southern
oscillation has a long—term trend; although one cannot exactly give the length of the cycle, it
is probably longer than 100 years.

The data were analyzed with Fourier and wavelet transforms, using the cubic spline
wavelet as before. Conventional Fourier power spectra of the four indexes and their wavelet
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Fig. 7. Cross—spectra of SOI and | for winter and summer. The ordinsies are plotted as frequency
* cospeciral density. The Fourier cross—spectra are shown as solid lines, while the wavelet
cTass—specira are diamonds.

equivalents are shown in Fig. 6. From this, one can see that the winter SOI power spectrum
has two peaks corresponding to periods of 3—4 years (0.3 cycles per year) and 22 years (0.05
cycles per year). A strong 6 year peak {~ 0.2 cycles per year) and a weaker 22 year feature
{0.05 cycles per year) can found in the winter power spectrum of the monsoon intensity.

Using the definition of wavelet cross—spectrum in (5), the monsoon intensity and SOI
were jointly analyzed. Fig. 7 compares the wavelet cross—spectrum with Fourier estimates.
This figure shows that the main coniributions to the cross—spectrum occur in winter, and are
al scales that peak around 2—4 years (0.2—0.5 ¢ycles per year), 11 years (0.1 cycles per year),
and 22 years (0.05 cycles per year). The 2—4 year scale has a positive peak in winter which
indicates a direct correlation. The negative peak in summer means that the SOI and monsoon
intensity are anti—correlated at this scale. This sign change is another mamfesm:on of the
phenomena discussed by Ding (1994), (cf Section 4, paragraph 2) in which Bl Nifio onset in
winter tends to increase rainfail, while onset during summer frequently decreases rainfall.
Like the 2~4 year peak, the 11 year feature also exhibits a (small but potentially significant)
sign change from winter to summer. Further study of these phmmnqmuyh;d to a better
understanding of the underlying processes.

Plotting the first moment of the amplitude is also an eﬂ'acme way to display the
2—dimensional scalograms. Included here in Fig. 8 are crossscalograms of SOI and monsoon
intensity for winter and summer. The instantaneous product of the SOI and monsoon
intensity time series is shown above ¢ach scalogram@Below them are the wavelet
cross—scalograms, with abcissa in years, and scales {reciprocal of scale number) in years also.
Regions where the wavelet cross—transform is positive have been colored blue to show that
local direct correlation between SOI and monsoon intensity existy al-thise scales. We have
used red for the negative regions in the wavelet cross—transform, indicating anti—correlation.

Not surprisingly, most of the activity in these plots (espe&inlly for summer) corresponds
to the 2-4 year scale. The principal contributions to the covariance at this scale are spread out

({OWhile the wavelet cross—transform is 7ot the wavelet transform of the instantancous product of the
two time series, we plot this for reference since it provides information about the local covariance.
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Fig. 8. Wavelet cross—scalograms for winler and summer. Instantaneous products of 501 and
monsoon intensity are shown above each scalogram. Wavelet cross—scalograms are colorized to

indicate magnitude versus time and scale (both in years). Positive are blue, showing direct correla-

tion, whilered is used for negative regions, indicating anti—cerrelation.



No.3 Lonrie Hudgins and Jianping Huang 311

more or less evenly throughout the 110 year data record, although there is a distinct increase
in activity from 1960 and following. These post—1960 regions are primarily red for the sum-
mer cross—scalogram (corresponding to the negative cross—spectrum and anticorrelated vari-
ables), and blue in winter (anticipated by the positive cross—spectrum, which indicates direct
correlation).

Still more activity can clearly be seen near the 1] year scales, perticularly during the
1940’s. At this scale, the signs in the cross—spectra were reversed from the 2—4 year scale.
Consequently, we observe intense colorations of red (negative) in winter, and to a lesser extent
blue (positive} in summer.

Four very prominent regions at the 22 year scale occur in the winter cross—scalogram be-
tween 1900 and 1930. These blue regions contribute to the stongly positive aétivity at the cor-
responding (22 year) scales in the winter cross—spectrum. Blue patches also appear in the
summer cross—scalogram, bul they seem to be less organized, and tend to occur after 1920.
One might speculate that we have observed a migration in the preferred period from 22 years
prior to 1930, to all year cycle in the 1940°s. This migration could be an indication of frequen-
cy variation in ENSQ., )

The intermitient quality of these features is very difficult to analyze with FFT's. In par-
ticular, to resolve such structures with Fourier techniques, one would have to know their scale
a priori, and set the length of the window function accordingly. In contrast, the wavelet trans-
form uses a “dynamically adjustable window”, which varies in a manner appropriate for each
scale as it is analyzed.

V1. CONCLUSIONS

The present work provides an example of applying recently developed wavelet spectral
techniques to climate data analysis. We show that this extension of traditional wavelet analy-
sis to the bivariate case can be extremely useful in representing a time—scale decomposition of
the covariance. This method also provides smooth power spectra and cross—spectra capable
of distinetly separating muitiple features in the climate system. We found several active time
scales ranging from 2—4 years, 11 years, and 22 years. The 2—4 year activity in the wavelet
cross—spectra simply and graphically confirms the statistical correlation between E1 Nifio on-
set timing and precipitation over the Yangtze River Valleys.

This work was partially supported by 2 grant from the, Northrop Electeonics Systems Division and climate sys-
tem Research Program, Texas AaM. University. We also wish to thank Prof. $— W. Wang and Q. -Y . Guo for pro-
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