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ABSTRACT

Many climatic time series seem to be a mixture of unpredictable fluctuations and changes that occur at a
known frequency, as in the case of the annual cycle. Such a time series is called a cyclostationary process. The
lagged covariance statistics of a cyclostationary process are periodic in time with the frequency of the nested
undulations, and the eigenfunctions are no longer Fourier functions. In this study, examination is made of the
properties of cyclostationary empirical orthogonal functions (CSEOFs) and a computational algorithm is de-
veloped based on Bloch’s theorem for the one-dimensional case. Simple examples are discussed to test the
algorithm and clarify the nature and interpretation of CSEOFs. Finally, a stochastic model has been constructed,
which reasonably reproduces the cyclostationary statistics of a 100-yr series of the globally averaged, observed
surface air temperature field. The simulated CSEOFs and the associated eigenvalues compare fairly with those

of the observational data.

1. Introduction

Important issues in the study of climate are the es-
timation, detection, and prediction of forced signals
against the background noise (e.g., Hasselmann and
Barnett 1981; Epstein 1982; Barnett 1986, 1991; Has-
selmann 1988; von Storch and Zwiers 1988; Zwiers
and von Storch 1989; Santer et al. 1991, 1993; Shen et
al. 1994; North and Kim 1995; North et al. 1995). We
call them collectively the linear estimation problems.
Mathematical and statistical prescriptions of the linear
estimation problems are rather diverse. One of the most
popular quantities derived from the temporal and spa-
tial structure of the covariance kernel of background
noise is the frequency-dependent empirical orthogonal
functions (EOFs) (e.g., Wallace and Dickinson 1972;
Kim and North 1993). A similar concept is the prin-
cipal oscillation pattern (Hasselmann 1988; von Storch
et al. 1988, 1995). These EOFs serve as a natural basis
set for designing optimal filters (also called finger-
prints). Fingerprint approaches have been adopted by
many authors including Barnett (1986, 1991), Barnett
and Schlesinger (1987), Barnett et al. (1991), and
Santer et al. (1991, 1993, 1994). By projecting a signal
onto this frequency-dependent orthogonal basis set, we
can calculate the individual statistical mode contribu-
tion to the squared signal-to-noise index. The formal-
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ism is then used to design a suitable filter for a partic-
ular signal (e.g., Hasselmann 1993). We have applied
this concept with success in the studies of estimation
and sampling error (Shen et al. 1994) and of detection
and prediction (North et al. 1995; North and Kim
1995).

Fourier functions are a natural basis set for time se-
ries variables that are statistically stationary in time.
The term ‘‘stationarity’’ means that various statistics
of a variable are independent of time. Technically, the
lagged covariance statistics are functions only of lag
[see Eq. (1)]. A spectral analysis with the stationary
assumption allows the investigator to apportion the
variance into distinct frequency bands and examine the
contributions from different uncorrelated contributions.
There are no cross-correlation terms to contend with,
which allows the total variance to be decomposed into
a sum of variances. This approach facilitates the con-
struction of optimal filters, which can be used in pre-
diction and detection algorithms. Unfortunately, the as-
sumption of stationarity in time does not hold for many
important climate variables for which we would like to
formulate optimal estimation algorithms.

Instead of being stationary, however, most climate
and weather variables are cyclostationary. The term
“‘cyclostationarity’’ is used here in the sense that many
climatic processes and hence their variability are char-
acterized by multiple, distinct temporal scales. The
earth’s surface temperature, for example, exhibits not
only interannual variability but higher frequency fluc-
tuations that strongly depend on the time of the day and
of the year. Not only is the variance a function of sea-
son, but so are the spatial autocorrelation lengths (Mad-
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den 1977; Jones and Briffa 1992). There are distinct
internal cycles, such as annual and diurnal cycles, that
characterize many climatological processes and their
associated variability. Various statistics of a cyclosta-
tionary process, therefore, depend upon a particular
phase of the internal cycle. The lagged covariance sta-
tistics of a cyclostationary process, then, are functions
of both lag and time. In a strict and technical sense in
this study, the lagged covariance statistics of a cyclo-
stationary time series are further restricted to be peri-
odic in time [see Eqs. (1)—(4)]. Each realization, of
course, is not periodic in time.

The multiple temporal scales of the meteorological
variables mean that the Fourier basis is not a proper
basis for a statistically useful decomposition (different
frequency components will be correlated, making a
straightforward analysis of variance impossible). The
nested fluctuations often contain significant informa-
tion for parameter estimation, signal detection, and lin-
ear prediction. To take full advantage of this, we must
abandon the stationarity assumption and account for the
dependency of the statistics on the phase of the under-
lying cycle [see Eq. (4)]. Early investigators recog-
nized the importance of this phase dependency of de-
tectability and predictability (e.g., Gardner and Franks
1975; Parzen and Pegano 1979; Hasselmann and Bar-
nett 1981).

The remedy is to look to the eigenfunctions of the
lagged covariance function for a particular process in-
volved [see Eq. (7)]. These eigenfunctions are called
cyclostationary empirical orthogonal functions
(CSEOFs). Unfortunately, the computation of CSEOFs
is usually very difficult because of the size of the co-
variance function involved. We intend to exploit the
fact that the eigenfunctions of a cyclostationary time
series may be factored into a periodic part whose period
is the cycle length and a complex sinusoid of all fre-
quencies (Bloch’s Theorem; Smith 1969). It, therefore,
takes two indices to characterize a CSEOF [see Egs.
(5)-(7)]. In some limiting cases, the two indices may
be interpreted as the interannual frequencies and the
harmonics of the seasonal cycle. This factorization tre-
mendously stretches the feasibility of generalizing
CSEOFs to spatiotemporal EOFs for cyclostationary
time series.

In this stuady we examine and elaborate on a few
examples of one-dimensional cyclostationary pro-
cesses, including one example that degenerates to a sta-
tionary process, to better understand the algorithm and
the nature of CSEOFs. We illustrate as much as pos-
sible the detailed aspects of the exercises. In the next
section we discuss the method of computing CSEOFs
based on Bloch’s Theorem. In the section of examples
we examine several simple cases of cyclostationary
processes in which an analytic form of the covariance
matrix and its CSEOFs are possible and compare these
CSEOFs with numerical solutions to verify the algo-
rithm. Such solutions may also help us understand and
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develop intuition about CSEOFs. Finally, we will gen-
erate a synthetic time series that mimics the statistics
of the earth’s global average surface temperature field,
which is followed by a summary and conclusions.

2. Methods

The covariance kernel of the surface temperature,
T(t), is defined as :

Kt t') = K(t, 7) ={T()T(t')), (1)
or in a slightly different form,
K(t,7)=%K(t =712, t + 1/2), 2)

where 7 = t' — t.. The covariance kernel of the sta-
tionary time series is characterized as a function only
of T, that is, it is independent of ¢. The covariance ker-
nel of the cyclostationary time series is such that

K+d,t' +d)= %, t'),
or equivalently,
K(t+d,v)=K(,71),

(3)

(4)

where d is the period of the cyclic process. In addition
to this periodicity property, K(¢, 7) is assumed to be
square integrable on the Euclidean space and vanish as
T approaches infinity. Most pioneering work and a sig-
nificant amount of research on cyclostationarity has
been conducted and published in the fields of electrical
engineering and econometrics. Gardner (1994 ) has de-
tailed accounts of this work.

Figure 1 illustrates the structure of the cyclostation-
ary covariance kernel. The covariance kernel is sym-
metric with respect to ¢ and ¢’. (The same information
emanates in the direction of %7 in each segment delim-
ited by black circles.) This is a strong constraint on the
possible modal interactions in the frequency domain.
As a result of this constraint the covariance matrix in
the frequency domain, namely a covariance matrix in
terms of Fourier basis functions, becomes block diag-
onal and each block matrix represents an outer mode
number # and is solved for separately as will be shown
below. We elaborate this finding in the form of Bloch’s
theorem.

We define the CSEOFs

(1) = €>™U,, (1), (5)
Unm(t) = Z unmle27ril:ld (6)
1
as functions satisfying
T
)]

lim | K(t, £ ) (2" dt" = Npfm (2)
T ¥ T
where T is the record length and 4 is the period of
nested fluctuations. The limit sign here indicates that
the exactness of the derivation of the CSEOFs assumes
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FiG. 1. Schematic diagram showing the structure of a cyclostation-
ary covariance kernel. The covariance kernel is symmetric with re-
spect to ¢ and ¢'. The same information repeats with periodicity d
along the line 7 = 0. The same information also emanates along the
direction of 7 in each segment delimited by black circles according
to (3) and (4). This allows one to carry out the computation in the
direction of 7 for only one of the segments.

an infinitely long record. In practice, of course, it
should suffice to consider a “‘fairly long’’ record as in
the analysis of stationary time series. The limit sign
should be understood accordingly.

This particular form of CSEOFs is suggested by
Bloch’s theorem, which is well known in the band the-
ory of solids (Smith 1969). [The theorem states that
the eigenfunctions of the wave equation for a periodic
potential are of the form of the product of a plane wave
exp(ik-r) times a function Ug(r) with the periodicity
of the crystal lattice. The subscript k indicates that the
function U, (r) depends on the wave vector k. Equation
(5) is a similar statement in the time domain.] The
function U,,,(?) is called the Bloch function and is cy-
clic with period d. Note that there are two indices n
and m attached to CSEOFs. We call them ‘‘outer’’ and
‘‘inner’’ mode numbers, respectively. The n pertains to
the frequency of outer modulation and the m identifies
amode of nested fluctuations as implied in (5) and (6).
The limits of summation with respect to / in (6) are
given in (16) and (17). The upper limit determines the
truncation of the representation of the Bloch’s function
and can be chosen smaller than that specified in (16).

Since the covariance kernel K (¢, 7) is cyclic in ¢ with
periodicity d, it can be written as

K(t,7) = zIe'(T)eZnih/denilr/d, (8)
4
or equivalently,
&)

R(r,7) = X K(r)erie.
!
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Since K(t, 7) is real, K_,(7) is the complex conjugate
of K,(7). Note also that the factor exp(wilT/d) is in-
troduced to make K,(7) symmetric in 7 as will be ap-
parent in the following. Now, the left-hand side of (7)
is rewritten as

T
> i’ il in(t+7)/
Z K,r(T)ez’”’ tldeml Tid eZmn(: TMT
-T Id

lim

T—0

T

X z Uy e21r11"(1+'r)ldd7_ — Z Z hm

"o T—0 ~T

Kl (m)

X eZvri(niT-i'l 1d+l1 l2d)'rd,r unml”eZ'lrl(an+l ld+! /d)l’

(10)
whereas the right-hand side of (7) is

)\nm 2 Unmi

21r lh/d 2mmIT

a1y

Since (10) and (11) should be equal for all ¢, it follows
that

> ¥ lim

g T

T
KI (T)€21”("/T+, 1d+1" /Zd)rd,r unml"‘sl ey

= (12)

nmWnml >

or in a compact form,

2 C(n) Upmt nmunml, for any ! and m, (13)
where
W =8 (nIT + (1 + I")12d), (14)
and
T A
Si(f) = limf K(m)e*™ " dr (15)
Tooo O o

is the cyclic spectrum.

Equation (13) constitutes an eigenvalue problem
with the eigenvector { u,,, } and the eigenvalue A, for
the complex matrix C. Although C™ consists of the
spectral density functions (Fourier transformation of
the covariance function), we will simply call it a co-
variance matrix. As was mentioned earlier, the covar-
iance matrix is block diagonal and (13) represents one
of the block matrices. Note that the covariance matrix
(14) is Hermitian and is symmetric with respect to the
two indices ! and /’. This symmetry is achieved by
introducing a factor exp(nil7/d) in defining the Fou-
rier expansion of the covariance matrix in (7). Since the
covariance matrix is Hermitian, this complex eigenvalue
problem can be converted into a real eigenvalue prob-
lem. Then the problem is solved using various orthog-
onalization transformation techniques (Press et al.
1988).
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FiG. 2. Illustration of the global mode numbers in terms of the
outer mode number (n) and the mode number of the nested fluctua-
tions (/) according to (17). Each number in small print represents a
mode number of a discrete Fourier analysis. Fourier functions along
two different columns (different n’s) are uncorrelated but are gen-
erally correlated along the same column. Therefore, the covariance
matrix is block diagonal and is partitioned into 10 smaller covari-
ance matrices [Eq. (10)] each of which represents an outer mode
number n.

3. Properties of CSEOFs
a. Uniqueness of eigenfunctions

Equation (13) depicts an eigenvalue problem for a
cyclic spectrum matrix, each element of which is a
function of frequency. For each covariance matrix,
which is a subset of the whole covariance matrix ac-
cording to the factorization theorem presented by Smith
(1969), one can compute the eigenfunctions that are
orthogonal to each other. However, this orthogonality
within a subset does not guarantee the uniqueness of
CSEOFs across different outer mode numbers. There-
fore, we need to constrain the outer -and inner mode
numbers to ensure the uniqueness of CSEOFs.

As indicated in (14), the covariance matrix is de-
pendent upon the frequencies of the outer and nested
fluctuations. To ensure the uniqueness of CSEOFs, we
define n and / such that the frequency band of the co-
variance matrix does not overlap for different n values.
Such n and [ are found to be

n=1---Tld, 1=0,---,d/2—-1, (16)
where d is the period of the nested fluctuations and T
is the total number of sampling points, which is a mul-
tiple of d. Note that the range of the discrete frequen-
cies of the eigenfunctions defined by (5) and (6) for
the above choice of n and [ is

n/T+1l/d=[n+1+(T/d)1/T = kIT,
k=1,---,T/2. (17)

An example for T = 120 (say, 120 months) and d
= 12 (12 months) is illustrated in Fig. 2.
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b. Orthogonality

From (5) and (13) it follows that Bloch functions

are orthogonal to each other:

T -
lim Unm(t) U:‘m’(t)dt = 2 Z unmlu:fm'l'
T I

T—oo o —

T

X Hm | e¥ "Gt =Y Yttt = S
Too ¥ T I

(18)

We then prove that the complete set of CSEOFs also
satisfies the orthogonality property:

T
11mf lpnm(t)l)l’;r'm'(t)dt = 2 Z unmlurT'rr;'l'
T &T Lo

T

X llm e27ri(n—n’)rlTeZm'(l—l')rlddt
T-e ¥ T

= Z Z unmlu;k'm’!'ﬁn,n'(sl,l' = 6n‘n’6m,m’-

o

Thus, CSEOFs are orthogonal with respect to both the
outer and nested mode numbers n and m.

(19)

c. Completeness

Complemented by a constant value forn, [ =0, (16)
defines a set of complete eigenfunctions (see also Fig.
2). Namely,

FiG. 3. Real (left) and imaginary (right) parts of CSEOFs of a
stationary process with a length of 10 years. The slope of the covar-
iance spectrum (a) is 0.1. The outer mode number is n = 2 and the
inner mode number is m = 1, - - -, 6 (from top to bottom). With the
assumed period of d = 12 mo for the nested fluctuations, each CSEOF
is identified with the cosine and sine functions of frequency (n/T
+ mld), where T = 120 mo is the total record length.
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FIG. 4. Plot of (normalized) covariance kemnel, %(¢, t'), of a peri-
odically modulated stationary process. The period of modulation is
12 mo and the slope of the covariance spectrum (a) is 0.1. T1 and
T2 represent two different times at which covariance is computed.

2 han(DPh(1") = (2 — 1),

nm

(20)

when summed over all n and m. Therefore, it can be
shown from (7) that

Kt t') = X Nntpum (DY E.(2"). (21)

This equation convincingly shows why Bloch’s fac-
torization theorem works. Along ¢t = t', ¥(¢, t')
should be a periodic function with period d (see Fig.
1). Thus, the product of a CSEOF with the complex
conjugate of itself on the right-hand side of (21)
should not produce any harmonics with a period longer
than d. This is possible only when the CSEOFs are
defined as in (5) and (6). By substituting the definition
of CSEOFs in (21) one can interpret the covariance
matrix (13) as

C(") J.f GK(t ! )e27rl(n/T+l 1d)yt’ —21r1(n/7‘+l/d)ldtldt
(22)

4. Examples

Simple examples below are used to validate the
developed computational algorithm and to under-
stand and develop intuition about CSEOFs. For val-
idation we compare solutions from the analytical
and numerical approaches. We first assume a cy-
clostationary time series for which an analytic form

KIM ET AL.

1011

of the covariance kernel K(¢, 7) is known. We then
proceed to compute Ri(1) in (8) using a discrete
Fourier transformation technique or other equivalent
methods. We calculate the analytic form of K,(r),
too. Then, the cyclic spectrum S,(f) is given by (15)
and the computation of (15) is carried out using a
Fourier transformation technique. We also calculate
the analytical form of the cyclic spectrum. Note that
this particular process is somewhat prone to com-
putational error and the discrete Fourier transfor-
mation sometimes yields significant error. Therefore,
caution should be exercised in computing (15). Fi-
nally, a covariance matrix is set up according to (13)
and (14). In the examples below both approaches
yield essentially the same CSEOFs. Therefore, only
one set of the solutions is shown.

a. Stationary case

We first examine a degenerate case of a stationary
time series. Let us consider an autoregressive model of
order one (hereafter, AR-1) as our example. Then, the
lagged covariance kernel is independent of time and is
given by

K(t, 7) < exp(—alT1]), (23)

where « is the regression coefficient of the model. We
know that CSEOFs of a stationary time series of infinite
length should collapse into Fourier functions. The ei-
genvalues of the covariance kernel (4) are given by a/

[a? + (20f)?].

FiG. 5. Real (left) and imaginary (right) parts of CSEOFs of a
periodically modulated stationary process with a modulation period
of 12 mo. The length of record is 10 years. The slope of the covari-
ance spectrum (a) is 0.1. The outer mode number is » = 2 and the
inner mode number is m = 1, - - -, 6 (from top to bottom).
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FIG. 6. Plot of (normalized) covariance kernel of an order-1 auto-
regressive model with a periodic coefficient. The AR coefficient is
0.1 — 0.05 cos(2xfyt), where the frequency f; is 1/12 month.

As shown in Fig. 3, the real and imaginary parts
of CSEOFs are identified with the cosine and sine
functions as expected. The Bloch functions are also
pure sinusoids. As shown in (5) and (6) the fre-
quency of each function is n/T + mld,m =1, -- -,
6, where n and m are the inner and outer mode
numbers, T is the total record length, and d is the
period of the assumed nested fluctuations. The ei-
genvalues were also computed correctly. The esti-
mated eigenvalues are very close to the theoretical
values above.

Since covariance is independent of ¢ this case is
equivalent to assuming d = 1. Therefore, each seg-
ment in Fig. 1 collapses into a line that represents
the lagged covariance of a stationary time series. In
line with the earlier argument, the full covariance
matrix in the frequency domain is diagonal and each
basis function, Fourier function, itself is an eigen-
function. This is also consistent with the computa-
tional algorithm. Since the covariance kernel is in-
variant in ¢, K,(7) in (9) is zero for nonzero .
Therefore, a covariance matrix is diagonal from
(14) and (15).

b. Periodically modulated autoregressive model

Let us consider a time series

T(t) = R(t) cos(2nfyt), (24)
where R(t) is an AR-1 model such that
(R(DR(t + 7)) = exp(—alT]), (25)

and f; is the modulation frequency of the fluctuations.
Then, the lagged covariance kemnel is given by
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K(t,7) = exp(—alt|)
X cos(2xfyt) cos[2nfo(t + 7)]. (26)

Figure 4 is a plot of the lagged covariance kernel,
H(t, t'). We see the periodic nature of the covariance
kernel in accordance with (3).

From (8) and (15) it follows that

S(f) = {[SR(f+.ﬁ)) + Se(f = f)1/4, 1/d=0;
Se(f)I4, Uid = +2f,,
(27)
where
Sr(f) = — N (28)
a? + (2nf)?

is the spectrum of an AR-1 model. In view of
(14) and (27), all the off-diagonal elements of
the covariance matrix are zero except for those
elements that are two columns apart from the diag-
onal. The position of these off-diagonal elements
are related to the modulation frequency according
to (27). .

Figure 5 shows the real and imaginary parts of the
CSEOFs based on the lagged covariance kernel
(26). These CSEOFs compare accurately with those
based on (27). They are not pure sinusoids but are
perturbed, which is due to nonzero off-diagonal el-
ements of the covariance kernel. Note also that the
position of the first two modes are switched com-
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FiG. 7. Real (left) and imaginary (right) parts of Bloch functions
of an order-1 autoregressive model with a periodic coefficient. The
AR coefficient is 0.1 — 0.05 cos(2nfyt), where the frequency f; is
1/12 mo. The length of record is 10 yr. The outer mode number is n
= 2 and the inner mode number ism = 1, - - -, 6 (from top to bottom).
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pared with those in Fig. 3. This is due to strong fluc-
tuation of the covariance at the frequency f, as
shown in Fig. 4.

c. Autoregressive model with periodic coefficient

Let us consider a model

% + [A + B cos(fit)1T(t) = w(z),

(29)
where w(?) is a zero-mean white noise with standard
deviation oy. The solution to (29) is derived as

T(t) - e—[At+B’sin(f0t)]
'
X [TO + fw(p)e [A”W’Si"‘f“"”dp] , (30)

where B' = B/f, and T, is T(t) at a reference
time. The process becomes cyclostationary when ¢
> 1/A after which the initial condition T, is for-
gotten.

The covariance kernel is given by
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( T( t) T( ¢ )> = e~ [Ar+B’sin(for)]e —[At'+B'sin(fyt' )]

t ot
x f f (W(pYw(g))er+'sntin]

X e[Aq+B'sin(f0q)]dpdq — e—[AI+B'sin(f0r)]
t*
X e—[Ar’+B’sin(fot')]f 0_12\,62[Ap+8’sin(fop)]dp, (31)

where t* = min(¢, ¢'). To carry out the computation
further, we use

exsin9 — z Jn(ZBri)e—infol

n=—w

= Io(x) + 2 i (—1)k12k+1(x) SIH[(Zk + 1)0]

k=0

+2 i Ly (x) cos(2k8), (32)

k=0

where J,(x), I,(x) are the Bessel function of order n
and the modified Bessel function of order n, respec-
tively. Then, (31) is rewritten as

% o
K, t') = o.[zve—[AH—B’sin(fox)]e-—[Ar’+8'sin(foc')]f 2 J,,(2B'i)e'i"f°”dp

n=—om

o

- o-%,e'-AITle—B'Sin(fo!)e—B'Si“(fO") 2 Jn(2B'l)m
- 0

24 sin[(2k + 1) fyr*] — (2k + 1)f, cos[(2k + 1) fot*]

n=-—o

+2 3 (-1)*Lu(2B")

e ~infot*

1,(2B")

— 2 ,—Al|7|,—B'sin(fyr) —B'sin(f;ll'){
=oke e e
2A

k=0

+2 i (-D*Li(2B")

k=0

Figure 6 shows the covariance kernel. After some ma-
nipulations, we find the cyclic spectrum in the form

Si(f)=o% X, Ju(B')
XY Ju(B')Y, J,(2B")6[(k + m— n) fy — 2xl/d]
X [Sy(mfy — wlld + 2xf)

+ Sa(mfy — wlld + 27 )1/ (2A — infy),
where

(34)

A+if

A?+
Figure 7 shows the Bloch functions based on (31).

They are essentially the same as the analytic counter-

parts based on (34). These Bloch functions (and also
the CSEOFs) are very close to pure sinusoids. The ei-

Sa(f) = (35)

(2A)% + ((2k + 1) fy)?

2A sin[2kfor*] — 2k fy cos[2k for*] (33)
(24)2 + (2kfy)? '

genvalues are also close to those of a stationary case.
This behavior is explained by the almost exponential
decay of the covariance kernel with respect to lag,
which is a characteristic structure of a stationary co-
variance kernel (Fig. 6). Contribution from each set of
inner modes to the variance along ¢ = ¢’ is small. All
the modes may be required to fully explain the nested
fluctuations along ¢t = ¢'.

5. Numerical model

We have examined the cases that have exact solu-
tions for the cyclic spectrum for the purpose of testing
each component of the CSEOF algorithm. Let us finally
turn to a real problem and compute CSEOFs of the
observational data and those of a stochastic model that
mimics the observed surface temperature anomaly
field. The observation is the 100-yr (1890-1989) U.K.
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Fic. 8. Normalized lagged covariance kernel, %(z, ¢'), of (a) the
observational data and (b) a stochastic model. Here, T1 and T2 rep-
resent two different times. The parameters used in the stochastic
modelare A =1,B=3,C=1,and a = 0.15.

dataset archived at the National Center for Atmospheric
Research. The dataset is the monthly average surface
air temperature anomaly field averaged over a 5° X 5°
lat-long box. There are a number of missing observa-
tions. Processing of the observational data is the same
as in Kim and North (1991, 1992), and detailed dis-
cussion is omitted here.

The observed mean and standard deviation of the
earth’s surface temperature field have seasonal depend-

ency; namely,
p) =p(t+d), o(t)y=o(+d). (36)
"To remove the seasonal dependency of the mean and
standard deviation, it is sensible to construct the fluc-
tuating function (Parzen and Pegano 1979)
T(r) — )
a(t) )

Then, 7(¢t) may be modeled by the function R(¢) and
the known scasonal mean and standard deviation:

R(1) = (37)
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FiG. 9. Cyclic spectrum, S/(f), on a logarithmic scale of the obser-
vational data smoothed by using a Parzen covariance averaging ker-
nel with a lag of 120 [see Eq. (15)]. The frequency, f, is discretized
into {n/T|n =0, ---, 100}, where n is the outer mode number and

= 1200 is the total number of sampling points. The nested mode /
is the mode number of the nested fluctuations.

T(t) = a()R(1) + p(1). (38)

The fluctuating function may not necessarily be a sta-
tionary process. The R(t) from the observational data,
however, turns out to be almost stationary and is well
modeled by a low-order AR process.

Thus, we assume a stochastic model in the form

T(t) = R(t)*{1 + Aexp[—B*(1 — Ccos(fpt))]}-
(39)
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FiG. 10. Cyclostationary EOF eigenvalue spectra of observation
and model. The model parameters are A = 1, B=3,C =1, and a
= 0.15.
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FiG. 11. The first 10 yr of the real and imaginary parts (left and right of each set, respectively) of the first 20 CSEOFs: (a) observation and
(b) model. The model parameters are A = 1, B = 3, C = 1, and a = 0.15. The first mode is at top left and the last mode is at bottom right.
The inner mode number is 1 for all the CSEOFs shown. The respective outer mode numbers are 1, 2, 3, 4, 5, 6, 7, 8, 9, 18, 19, 10, 17, 20,
16, 21, 11, 15, 14, and 12 for the observation. For the model, outer mode numbers are sequential from 1 to 20.

Here R(t)is an AR-1 model with the lagged covariance
kernel satisfying (25) and the factor multiplying R(t)
is a modulation function. The f; is the modulation fre-
quency, and A, B, and C are parameters regarding the
shape of the modulation function. Of course, the mod-
ulating function mimics the seasonal standard deviation
of the observational data as in (38). The model param-
eters may repeatedly be adjusted until the shape of the
modulating function becomes reasonably similar to the
seasonal standard deviation of the observational data.

Figure 8 shows the covariance kemels of the ob-
servational data and model. The covariance kernel,
K(t, 7), of the observational data was computed from
(1). The periodicity of the covariance kernel in ¢t was
enforced by averaging the covariance kernel over the
same months. As 7 becomes larger there are not many
ensembles available for the average. The observational
data was also smoothed using a Parzen covariance av-
eraging kemel with a lag of 120 (Newton 1988). A
visual inspection indicates that the modeled covariance
kernel is in fair agreement with that of observation.
Variance along the diagonal direction of the covariance
kemel clearly shows stronger variability in the winter.
Variance is very small for the rest of the year. Perhaps
the most serious discordance is the model’s inability to
mimic the peak splitting (see Fig. 8a) of the observa-
tional data.

A frequency-domain counterpart of covariance is the
cyclic spectrum as defined in (15). The cyclic spectrum
is a useful generalization of the power spectrum in the
stationary time series analysis. Figure 9 shows the cy-
clic spectrum, S,(f), on a logarithmic scale of the ob-
servational data smoothed by using a Parzen covariance
averaging kernel with a lag of 120. The frequency, f,
is discretized into {n/T|n =0, - -+, 100}, where n is

the outer mode number and T = 1200 is the total num-
ber of sampling points. The nested mode represents I,
which is the mode number of the nested fluctuations.
For I = 0, the cyclic spectrum represents the smoothed
spectrum of the annual average observations, which is
typically a red spectrum. The cyclic spectrum also ex-
hibits a small but nonnegligible annual (I = 1) and
seasonal (/ = 2) excursion of interannual fluctuations.
As [ increases, the spectrum becomes essentially flat
with no preferred long-term temporal scales associated
with the bimonthly variation. The variance, of course,
is not partitioned in the cyclic spectrum and hence the
CSEQFs are needed.

Figure 10 depicts the first 100 eigenvalues of the
ordered CSEOFs from the observation and model. The
percent variance explained by the first 100 CSEOFs is
86% for the observational data and 84% for the model.
The absolute magnitude of the eigenvalue, of course,
is irrelevant because it can be tuned. The model seems
to capture the general trend of the eigenvalue spectrum
rather well.

Figure 11 shows the first 20 CSEQFs of the obser-
vation and model. As shown in Table 1, 19 of the first
20 CSEOFs of the observational data (Fig. 11a) are
identified with one of the first 20 CSEOFs of the model
(Fig. 11b) with very high pattern correlation (>0.97).
There is no correlation among the modes with different
outer mode numbers because of the orthogonality prop-
erty of CSEOFs. Thus, pattern correlation measures the
similarity between two different datasets of Bloch func-
tions with the same outer mode number. The largest
decades of CSEQFs of both the observation and model
are similar in disposition to EOFs of a stationary pro-
cess. They are characterized by peaks in the winter sea-
son, which otherwise are cosine and sine functions with
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TAgLE 1. Pattern correlation (mode number in parentheses) between the CSEOFs of observational data and the best model estimates.

Obs Best Obs Best Obs Best Obs Best
mode modeled mode modeled mode modeled mode modeled
0 0.97 (0) 1 097 (1) 2 0.98 (2) 3 0.98 (3)
4 0.98 (4) S 0.98 (5) 6 0.99 (6) 7 0.99 (7)
8 0.98 (8) 9 098 (17) 10 0.98 (18) 11 0.98 (9)
12 0.98 (16) 13 0.98 (19) 14 0.98 (15) 15 0.98 (20)
16 0.98 (10) 17 0.98 (14) 18 0.98 (13) 19 0.98 (11)

the frequency of outer mode numbers. These peaks rep-
resent higher variability during the winter of the surface
temperature field. In addition to the winter peaks,
CSEOFs of observation show small wiggles throughout
the year. Such wiggles are due to the split peaks of the
covariance kernel (Fig. 8a) and cannot be simulated in
the present model.

6. Summary and concluding remarks

This study developed a computational algorithm for
the one-dimensional CSEOFs and examined the prop-
erties of them. Simple one-dimensional examples have
been solved and analyzed to gain insight into comput-
ing CSEOFs and interpreting them. The lagged covar-
iance statistics of a cyclostationary process are periodic
with the frequency of the nested undulations. This fact
is made use of in Bloch’s theorem and facilitates the
computation of CSEOFs tremendously. Finally, a sto-
chastic model of a one-dimensional cyclostationary
process was developed, which mimics the statistics of
the observed global-average surface air temperatures.

The greatest significance of Bloch’s theorem is in
the decoupling of the nested fluctuations (such as the
annual cycle) from the long-term stationary component
of fluctuations. This decoupling allows us to write co-
variance kernel and eigenfunctions as in (9) and (5).
A consequence of decoupling is a separate eigenvalue
problem for each outer mode # as in (13). This greatly
facilitates the computation of CSEOFs. It is also im-
portant to note that the covariance kernel is decom-
posed as in (22).

The developed computational algorithm was vali-
dated using simple examples for which analytic solu-
tions are possible. The primary strategy in this valida-
tion procedure was to compare the eigenfunctions and
eigenvalues based upon the analytically derived eigen-
value problem and those from a numerical calculation.
This includes the trivial case of a stationary process.
Test results show that the developed computer codes
produce CSEOFs and the associated eigenvalues ac-
curately.

We constructed a stochastic model that reasonably
(to a first approximation) reproduces a lagged covari-
ance kernel. The largest CSEOFs of the monthly
global-average surface temperature field were faith-
fully reproduced by the model. Specifically, 19 of the

first 20 CSEOFs of observational data were identified
with one of the first 20 CSEOFs of the model with high
pattern correlation (>0.97). Many of the first 100
CSEOFs are essentially the cosine and sine functions
with the frequency of outer mode numbers and are
characterized by peaks in the winter. These functions
are an analogy to EOFs of a stationary process. The
peaks in the winter season signify the stronger vari-
ability during winter months. The eigenvalue spectra
of the first 100 CSEOFs, which explain, respectively,
86% and 84% of total variance, were consistent be-
tween observation and model.

While cyclostationary processes are commonly en-
countered in studies of the earth’s climate, scientists
have been reluctant to use CSEOFs mainly because
they are cumbersome and difficult to compute. The dif-
ficulty of interpretation of CSEOFs may also be a big
disincentive. This study shows that CSEOFs can be
computed easily by utilizing the factorization theorem
by Smith (1969). Two key issues we did not address
in this study are (1) the sensitivity of CSEOFs and (2)
a two-dimensional generalization of CSEOFs as in Kim
and North (1993). These issues should be examined
before CSEOFs are applied to the linear estimation
problems in climate studies. We hope this study rep-
resents an essential stepping stone for future studies.

Acknowledgments. We greatly benefited from the
valuable comments of the anonymous reviewers. We
are grateful to Mr. Neil Smith, who carefully proofread
the manuscript. We also thank the National Science
Foundation for its support of this work via Grant ATM-
9423335 to Texas A&M University.

REFERENCES

Bamnett, T., 1986: Detection of changes in the global tropospheric
temperature field induced by greenhouse gases. J. Geophys.
Res., 91, 6659-6667.

, 1991: An attempt to detect the greenhouse-gas signal in a tran-

sient GCM simulation. Greenhouse-Gas-Induced Climatic

Change: A Critical Appraisal of Simulations and Observations,

M. E. Schlesinger, Ed., Elsevier, 559-568.

, and M. Schlesinger, 1987: Detecting changes in global climate

induced by greenhouse gases. J. Geophys. Res., 92, 14 472

14 780.

——, ——, and X. Jiang, 1991: On greenhouse gas signal detection
strategies. Greenhouse-Gas-Induced Climatic Change: A Criti-
cal Appraisal of Simulations and Observations, M. E. Schles-
inger, Ed., Elsevier, 537—558.




1 ApriL 1996

Epstein, E. S., 1982: Detecting climate change. J. Appl. Meteor., 21,
1172-1182.

Gardner, W. A., 1994: Cyclostationarity in Communications and Sig-
nal Processing. IEEE Press, 504 pp.

, and L. E. Franks, 1975: Characterization of cyclostationary

random signal processes. IEEE Trans. Inform. Theory, 21, 4~

14.

Hasselmann, K., 1988: PIPs and POPs: The reduction of complex
dynamical systems using principal interaction and oscillation
patterns. J. Geophys. Res., 93, 11 015-11 021.

——, 1993: Optimal fingerprints for the detection of time-dependent

climate change. J. Climate, 6, 1957~1971.

, and T. P. Barnett, 1981: Techniques of linear prediction for

systems with periodic statistics. J. Atmos. Sci., 38, 2275-2283.

Jones, P. D., and K. R. Briffa, 1992: Global surface air temperature
variations during the twentieth century. Part 1: Spatial, temporal
and seasonal details. Holocene, 2, 165-179.

Kim, K.-Y., and G. R. North, 1991: Surface temperature fluctuations

in a stochastic climate model. J. Geophys. Res., 96, 18 573—

18 580.

, and , 1992: Seasonal cycle and second-moment statistics

of a simple coupled climate system. J. Geophys. Res., %7,

20 437-20 448.

, and , 1993: EOF analysis of surface temperature field in

a stochastic climate model. J. Climate, 6, 1681-1690.

Madden, R. A., 1977: Estimates of the autocorrelations and spectra
of seasonal mean temperatures over North America. Mon. Wea.
Rev., 105, 9-18.

Newton, H. J., 1988: TIMESLAB: A Time Series Analysis Laboratory.
Wadsworth and Brooks, 623 pp.

North, G. R., and K.-Y. Kim, 1995: Detection of forced climate sig-

nals, Part [I: Numerical simulations. J. Climate, 8, 409-417.

y , S. S. P, Shen, and J. W. Hardin, 1995: Detection of

forced climate signals. Part I: Theory. J. Climate, 8, 401-408.

KIM ET AL.

1017

Parzen, E., and M. Pagano, 1979: An approach to modeling season-
ally stationary time series. J. Econometrics, 9, 137-153.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
1988: Numerical Recipes. 3d ed. Cambridge University Press,
818 pp.

Santer, B. D, T. M. L. Wigley, P. D. Jones, and M. E. Schlesinger,
1991: Multivariate methods for the detection of greenhouse-gas-
induced climate change. Greenhouse-Gas-Induced Climatic
Change: A Critical Appriaisal of Simulations and Observations,
M. Schlesinger, Ed., Elsevier, 511-536.

—_ , and , 1993: Correlation methods in fingerprint de-
tection studies. Climate Dyn., 8, 265-276.

——, W. Briiggemann, U, Cubasch, K. Hasselmann, H. Hoéck, E.
Maier-Reimer, and U. Mikolajewicz, 1994: Signal-to-noise
analysis of time-dependent greenhouse warming experiments.
Climate Dyn., 8, 267-285.

Shen, S. S., G. R. North, and K.-Y. Kim, 1994: Spectral approach to
optimal estimation of the global average temperature. J. Cli-
mate, 1, 1999-2007.

Smith, R. A., 1969: Wave Mechanics of Crystalline Solids. Chapman
and Hall, 553 pp.

von Storch, H., and F. W. Zwiers, 1988: Recurrence analysis of cli-
mate sensitivity experiments. J. Climate, 1, 157-171.

——, T. Bruns, L Fischer-Bruns, and K. Hasselmann, 1988: Principal
oscillation pattern analysis of the 30 to 60 day oscillation in
general climate model equatorial troposphere. J. Geophys. Res.,
93, 11 022-11 036.

———, G. Biirger, R. Schnur, and J.-S. von Storch, 1995: Principal
oscillation patterns: A review. J. Climate, 8, 377-400.

Wallace, J. M., and R. Dickinson, 1972: Empirical orthogonal rep-
resentation of time series in the frequency domain. Part I: Theo-
retical considerations. J. Appl. Meteor., 11, 887-892.

Zwiers, F. W., and H. von Storch, 1989: Multivariate recurrence anal-
ysis. J. Climate, 2, 1538—-1553.




