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ABSTRACT

Due to the variety of periodic or quasi-petiodic deterministic forcings (e.g., diurnal cycle, seasonal cyele,
Milankovitch cycles, etc.), most climate fluctuations may be modeled as cyclostationary processes since their
properties are modulated by these cycles. Difficulties in using conventional spectral analysis to explore tl;e
seasonal variation of climate fluctuations have indicated the need for some new statistical techniques. It is
suggested here that the cyclic spectral analysis be used for interpreting such fluctuations. The technique is adapted
from cyclostationarity theory in signal processing. To demonstrate the usefulness of this technique, a very simple
cyclostationary stochastic climate model is constructed. The results show that the seasonal cycle strongly mod-
ulates the amplitude of the covariance and spectrum. The seasonal variation of intraseasonai oscillations in the
Tropics has also been studied on a zonally symmetric all-land planet in the absence of external forcing. The
idealized planet has no ocean, no topography. A 15-year length seasonal run of the atmosphere is analyzed with
the NCAR Community Climate Model (CCM2, R15), Analysis of the simulation data indicates the presence of
intraseasonal oscillations in the Tropics, which are also localized in the time of year.

Both examples suggest that these techniques might be useful for analysis of fluctuations that exhibit locality
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in both frequency and season.

1. Introduction

Fluctuations are associated with almost all naturally
occurring phenomena in the climate system. A better
understanding of these fluctuations may provide the ba-
sis to create simplified models of the atmosphere that
can be used in the coupled system for long-term runs
essential for the study of gradually forced climate
change. At present, it is impossible to retain all the
atmospheric complexity in such simulations because of
limited computing capacity. Even when sufficient com-
puter time is available to implement fully coupled high-
resolution models in both the ocean and atmosphere, it
is anticipated that the results from simplified models
will prove useful in interpretation.

A number of investigators have discovered that cli-
mate fluctuations strongly depend on the time of year
over a broad frequency range. Lau and Lau (1986)
noted that although the eastward propagation of the in-
traseasonal oscillation modes is present throughout the
year, there exists strong modulation of these modes by
the seasonal cycle. Madden (1986) and Gutzler and
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Madden (1993 ) found that the intraseasonal oscillation
is strongest during winter and weakest during summer.
Recent studies have proposed that the irregularities of
the interannual fluctuation, El Nifio-Southern Oscilla-
tion (ENSO), can be viewed as a low-order chaotic
process driven by the seasonal cycle (Jin et al. 1994;
Tziperman et al. 1994). Further understanding of how
the seasonal cycle modulates climate fluctuations de-
mands special efforts in time series analysis.

Due to the variety of periodic or quasi-periodic de-
terministic forcings (e.g., diurnal cycle, seasonal cycle,
Milankovitch cycles, etc.), the climate system is not
stationary in time, which means that all the traditional
methods related to Fourier spectral decomposition are
inappropriate (in spite of their ubiquitous use) except
for very special types of analysis such as annual means,
etc. To give such cyclostationary processes a more pre-
cise meaning one must first establish some method of
characterizing the structure of processes, such as spec-
tral estimation; empirical orthogonal representation.
Gardner (1986, 1988, 1994) has developed a number
of techniques for estimating cyclic covariance and cy-
clic spectral densities for cyclostationary processes.
These techniques have been applied in many other
fields (Gardner 1994), such as periodic-system iden-
tification, detection, and extraction of modulated sig-
nals from corrupted observed data. Recently, consid-
erable attention has been given to applying periodic
correlation techniques to the study of climatological
time series (Bloomfield et al. 1994: Lund et al. 1995).
They introduced a frequency domain test for periodic
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correlation. Several prediction techniques for cyclo-
stationary climate systems have also been developed
and applied to the problem of predicting ENSO (Has-
selmann and Barnett 1981; Zwiers and von Storch
1990). On the other hand, we have undertaken a Sys-
tematic study of the eigenfunctions of the covariance
kernel and have developed a cyclostationary, empirical
orthogonal function representation through introduc-
tion of Bloch functions (see appendix). This provides
a convenient framework for forced climate signal de-
tection in the presence of cyclostationary noise.

The present paper attempts to employ cyclic spectral
analysis to study the seasonal variation of climate fluc-
tuations. This study is partly motivated by the fact that
the conventional spectral analysis is dependent on the
assumptions of stationarity. We could study the sea-
sonal variation of the spectra by breaking the time se-
ries up into segments approximately ‘locally station-
ary’’ such as a season long. Seasonal spectra would
then be estimated by Fourier analysis and averaging the
squares and products of harmonic coefficients across
all years for segments beginning the same day each
year. Many segment-averaged spectra could be com-
puted with different starting dates. Comparison of re-
sults would reveal any seasonal dependence if it exists.
Unfortunately, we do not know, a priori, if and when
the spectral characteristics change during the year and,
therefore, what are appropriate starting dates. To avoid
the necessity of computing many segment-averaged
spectra determined from segments starting on different
days of the year in a trial-and-error fashion, Madden
(1986) has developed a seasonally varying cross-spec-
tral analysis technique. This important technique, how-
ever, is based on the assumption of stationarity.

In this paper we attempt to provide an estimate of
cyclic spectra from two perspectives. First, estimations
are to be obtained from a highly simplified, zero-di-
mensional, cyclostationary, stochastic climate model.
Stochastic climate models have been used for a variety
of applications in recent years (e.g., Hasselmann 1976;
North and Cahalan 1981; North et al. 1992). In these
studies it is assumed that the evolution of a climatolog-
ical function such as global average surface tempera-
ture T(t), is governed by a Langevin-type equation.
However, the phenomenological coefficients will in
many cases be seasonally variable. Hence, we will in-
troduce here a cyclostationary, stochastic climate
model by including a periodic modulation of one of the
coefficients in the model’s governing equation. We will
use the model to demonstrate the usefulness of the cy-
clic spectral analysis. The second application is to be
obtained from a specific GCM simulation. To isolate
how the seasonal cycle modulates the fluctuations,
the ocean, topography, and any symmetry-breaking
sources of forcing are removed from the planet whose
atmosphere is being simulated by the GCM. The nat-
ural timescale of the climate system is then greatly re-
duced because of the lack of ocean surfaces. It is hoped
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that the analysis so obtained can lead to a better un-
derstanding of the response of intraseasonal, low-fre-
quency oscillation to the seasonal solar radiation forc-
ing. The intraseasonal oscillations usually have been
considered as essentially self-excited and not caused by
external astronomical forcing. However, the phase-
locking relationship between intraseasonal and sea-
sonal cycle suggests that intraseasonal variations may
also be partially influenced by annual solar forcing.

Section 2 gives the background and basic concepts
of the techniques of cyclic spectral analysis used in this
study. The readers who have already had such back-
ground may skip this section and go directly to section
3, in which the cyclostationary, stochastic climate
model and their cyclic spectrum are to be described.
Section 4 applies the cyclic spectral analysis to the sea-
sonal variation of intraseasonal oscillation in the Trop-
ics in this specific GCM simulation. In section 5, we
present the conclusions including a discussion on the
further application of cyclic spectral analysis.

2. Cyclic spectra and cyclic cross spectra

In this section we first briefly review some defini-
tions and basic properties of cyclostationary processes,
while introducing cyclic spectra that we have used for
our analysis. A comprehensive treatment of cyclosta-
tionarity in time series can be found in Gardner (1994 ),
and references therein.

a. Definitions of cyclostationary process

If and only if the moments, such as the ensemble
mean M(¢) and the covariance C(¢, t + 7), are inde-
pendent of time, the process T(¢) is defined to be sta-
tionary. If the mean M(¢) and covariance C(¢,t + 1)
exhibit periodicity in #, the process T(#) is defined to
be a cyclostationary process with period d (Bennett
1958; Gardner and Franks 1975); that is, for all ¢,

M(+d)=M()
Cit+d,t+d+7)=C(t,t+71) (1)

for monthly data, d = 12, for daily data, d = 365, and
so on. If the mean M(¢) and covariance C(f, t + T)
exhibit the poly-periods {d} = d,, d>, d3, - - -, the pro-
cess T(t) is defined to be a poly-cyclostationary pro-
cess with periods {d}. Such cyclostationary processes
occur commonly in the climate system due to diurnal
or seasonal forcings.

Bennett (1958) perhaps first introduced the term
“‘cyclostationary’’ to denote this class of processes in
his treatment of synchronously timed pulse sequences
used in digital data transmission. The first mathematical
treatment of these processes was by Gladysev (1961),
although Bennett (1958) discovered their characteriz-
ing property in a communication theoretic context. Cy-
clostationary processes have also been called periodi-
cally correlated processes (Hurd 1969), periodically
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nonstationary (Markelov 1966; Ogura 1971), and pro-
cesses with periodic structure (Jones 1964; Jones and
Brelsford 1967).

b. Cyclic covariance

Similar to the stationary process, the covariance is
given by

Clt. 1+ 7) = ((T(1) — M(O)(T(t + 7) — M),
2)

where the angular bracket (-) denotes ensemble aver-
age. For a cyclostationary process T(¢), the covariance
is periodic in ¢ for each 7. By the properties of periodic
functions this implies that C(¢, t + 7) can be decom-
posed (for each fixed 7) into a Fourier series with re-
spect to ¢, as

C(t, t+ 7_) — z: Ca(T)ei27ra(/+T/2),

a =0, x1/d, £2/d, ---; (3)
where
/2
CQ(T) P C(t, t+ T)e~i2mx(r+r/2)dt’
d —df2
a=0,*1/d, £2/d, --- (4)

are the Fourier coefficients of the nth harmonic of 27/
d, and C“(7) is said to be a cyclic-covariance at cycle
frequency a. The a index is called the cycle frequency
parameter and ranges over all integer multiples of the
fundamental frequency 1/d. The sine wave exp[i2ma(t
+ 7/2)] in the Fourier series introduced here contains
a time shift 7/2 so that the discrete-time theory pre-
sented here will match the continuous-time theory in
which the function C(¢ + 7/2, t — 7/2) is expanded
in a Fourier series with unshifted sine wave exp(i2wat)
(Gardner 1986, 1988, 1994).

¢. Cyclic spectra

Analogous to the dual timeé and frequency domains
for stationary processes, one can define the seasonally
varying spectral density as

S(t,f):fjm C(t,t+7')e"2”-"’dr, (5)

It follows from (3) that the seasonally varying spectral
density for a cyclostationary process is completely
characterized by the cyclic spectral density

S(t,f) =2 S fre™™, (6)
where the cyclic spectral density is defined as the Fou-
rier transform of the cyclic-covariance
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+%
Sf) = f C(r)e *"dr. 7)
For @ = 0, the cyclic spectra reduce to conventional
spectra, since these represent the stationary time series
of annual averages.

d. Cyclic cross spectra

Similar to cyclic spectra, we can introduce the cyclic
cross spectra. Consider the cyclostationary signals
T,(t) and T,(t) with the same periodicity d, the cross-
covariance C;,(¢, 7) can be expressed (for each fixed
7) as a Fourier series with respect to ¢, as

C(t, 1+ 1) =3 ChH(m)e™ 7, (8)

where
1 di2
C?Z(T) = —f C(z(t, t+ T)e—i27ra(r+'r/2)dt (9)
d ~dI2

are the Fourier coefficients at the nth harmonic of 27/
d, and C{,(7) is said to be a cyclic cross-covariance
at cycle frequency a.

Analogously, the seasonally varying cross-spectral
density and cyclic cross-spectra SY, for two cyclosta-
tionary signals 7,(#) and T,(¢) are given by

St f) = 2 S1(f)e™ ™ (10)

and
S$%(f) =f Ch(rye *dr. (1D

The seasonally varying coherence squared and phase
are thus

Pio(t, )+ Qn(t, f)?

h? = 12
Cob ) =g hsan ¢
_ o Qe 1)

le(t,f)‘—'taﬂ P|2<t,f) L] (13)

where the P, (¢, f) and Q,(¢, f) are the real and imag-
inary parts of the cross spectrum, respectively. Here
S,(z,f) and S,(¢, f) are the seasonally varying spectra
for T,(t) and T,(¢).

It should be emphasized that essentially all the fun-
damental results of the theory of cyclic spectral analysis
are generalizations of results from the conventional the-
ory of spectral analysis, in the sense that the latter are
included as the special case of the former for which the
cycle frequency a is zero or the time series is purely
stationary (Gardner 1986).

e. Estimation of the cyclic spectrum

If the problem has a priori knowledge of the cycle
frequencies of interest, and the number of cycle fre-
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quencies is not large, estimation of the cyclic spectrum
has a computational cost comparable to the conven-
tional spectral analysis. On the other hand, if the cycle
frequencies of interest are unknown, then estimation of
cyclic spectrum over the entire bifrequency plane can
be required. In this case the computational burden can
be much greater than it is for the conventional spectral
analysis.

The theory and implementation of cyclic spectrum
estimation algorithms has been covered in a number of
publications. The basic time and frequency smoothing
method of the cyclic spectrum are proposed by Gardner
(1986). By itself, the time smoothed cyclic periodo-
gram is not computationally efficient for computing es-
timates of the cyclic spectrum over large regions of the
bifrequency plane. However, modification of the time
and frequency-smoothed cyclic periodogram leads to
several computationally efficient algorithms. In gen-
eral, fast Fourier transform (FFT) based time-smooth-
ing algorithms are considered most attractive for com-
puting estimates of the cyclic spectrum over the entire
bifrequency plane. Frequency smoothing methods of
cyclic spectrum are best for computing estimates of the
cyclic spectrum along the lines of constant cycle fre-
quency for moderate values of cycle frequency. A de-
tailed review of estimation of the cyclic spectrum can
be found in Roberts et al. (1994), and references
therein.

3. Cyclostationary stochastic climate model

The cyclostationary stochastic energy balance model
describes the behavior of the global average surface-
air temperature anomaly field 7 and is governed by the
following Langevin equation
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dT(t)
dt

where ¢ is time, a and b are constants, wy, = 27f, f
= 1/d is the fundamental cycle frequency such as an-
nual cycle, and F(z) is (roughly speaking) a white
noise function. This is, of course, a very simplified
model, which is only intended as a mathematical ex-
ample. The noise F(¢) satisfies

(F(t))=0
(F(OF(t")) =076t —t"),

+ [a + bcos(wet + ¢)IT(t) = F(r), (14)

(15)

where the angular brackets mean ensemble average and
é is the Dirac delta function. The formal solution T'(t)
of the nonhomogeneous, linear, stochastic differential
equation (14) can be written (after transients have de-
cayed) as

!
T(t) — e—(ar+b*sin(w0r+¢)) f F(tr)e(at'+b*sin(w01'+¢))dtl,
(16)

where

17)

The integration of Eq. (16) can be performed ex-
panding e *"*" 9D into a Bessel series:

4o
e(h*sin(w0r+¢))= Z l-nI”(b*)e(fin(wot+d>)},

H=—%

(18)

where I,(x) is the modified Bessel function. Therefore,
the covariance function can be represented by the series

+% iwo(m+n—k)leiu)(yrreid)(ern—k)
2, —ar Bnm b* s = 0
OFe m.n%—x k( ) (2(1 - ikw()) 7
Cit,t+71)= ) (19)
s +o% b* iwo(m+n—k)reiwo(lz—k)rei¢(m+n—k) 0
ar B . N =
gre mvnqkz;,—x ”If/(( ) (2a . lk(.do) T
where ‘
B (b*) = ()" "L (b*),(b*)[(2b*). (20)
Inserting the expression (19) into (4), we have the cyclic covariance
40 iwgnt , —inaTt ,ip (m+n—k) _— -
cie= S B (b%) e g TimaTe 6('(m +n—-kfi—a) ’ -0
mupk=-~x (20 —-leM)
) = 4o wo(n~k)r  —i $ (mtn=k) g ( k) f; ) 20
elLu'() H— Te’Iﬂ'aTel m+n— m + n —_— () —_— a
2 a7 an b* 5 = 0
ore kZ_x «(6%) (2a — ikwo) T
Using (7), it follows that
46 id)(m+n—k)6 + — k —
S(f) =0k % Buu(b®) : (m+n = O — @) (22)

mpnk=—=

(a — iwgn + ira + 27fY(a + iwy(n — k) — ira — 2nf)
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FIG. 1. Variance (autocovariance at time lag 7 = 0) of the
cyclostationary stochastic climate model.

As a numerical example for illustration we have cho-
sena=02mo™',b=0.18mo™", and f, = 1/d, where
d = 12 mo, corresponding to the seasonal cycle; ¢
= 72.5° is the initial phase; 0z = 1.0. Figure 1 shows
the variance [i.e., C(¢, 0)] with this set of values. As
can be seen in Fig. 1, the variation of variance with
time of year, ¢, is obviously strong in winter and weak
in summer, but for the stationary case (b = Q) the vari-
ance (or covariance) is independent of seasonal phase.
Figure 2 shows the seasonally varying spectra of this
model. The spectra decrease with increasing frequency
in all months, which can be modeled to a good ap-
proximation as a first-order Markov process or ‘‘red
noise.”” The spectra also exhibit a strong seasonal cycle
and the seasonal maximum is in February and the min-
imum spectrum occurs in August. Figure 3 shows the
cyclic spectral density fora =0, a = 1/d, and a = 2/
d. The real part of cyclic spectral densities at « = 0
(Fig. 3a) is a typical red spectrum as well as the con-
ventional spectral density. The seasonally varying com-
ponent of cyclic spectral densities (i.e., component at
o = 1/d) are much stronger than the component at o
= 2/d. According to Eq. (6), cyclic spectral densities
are the Fourier coefficients of seasonally varying spec-
tra. The real and imaginary part of the cyclic spectrum
indicate the amplitude and phase of each component.
The seasonal variations of the spectra are completely
and conveniently characterized by the cyclic spectra
{S~}. Figures 2 and 3 indicate that this model is
strongly modulated by its seasonal cycle.

4. GCM simulation

We have conducted a 15-yr run of a seasonal climate
model and will use the output as a further example of
our procedures. We used the Community Climate
Model version 2 (CCM2), developed at NCAR, that is
solved by a spectral method truncated at R1S with 18
vertical levels and is described in detail by Hack et al.
(1993). To completely remove the asymmetric and ex-
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FiG. 2. Seasonal variation of spectra of the cyclostationary
stochastic climate model.

ternal forcings, we idealized the boundary conditions
as follows: 1) the ocean and sea ice were removed, that
is, the planetary surface was made to be all land; 2) all
topographic features such as mountains were removed
to make a zonally symmetric lower boundary at sea
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Fic. 3. Cyclic spectra of the cyclostationary stochastic climate
model: (a) real part of cyclic spectral density; (b) imaginary part of
cyclic spectral density. Solid line for @ = 0, short-dash line for a
= 1/d, and long-dash line for « = 2/d, d = 12 mo.
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FiG. 4. Hemispherically averaged daily surface temperature for the 15-yr simulation.

level; 3) the surface albedo for the visible spectrum was
taken as 0.1 over all land and for the near-infrared spec-
trum 0.25 over both strong zenith-angle-dependent sur-
faces and weak zenith-angle-dependent surfaces. The
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FiG. 5. The seasonal variation of simulation climate: (a) zonal-
mean surface temperature; (b) the zZonal-mean of the standard devi-
ation of surface temperature.

only latitudinal variation of surface albedo was due to
zenith angle. Snow was also removed, so thers was no
snow-albedo feedback; 4) other surface parameters
were simply taken as constant over all land; such as,
evaporation factor (soil wetness factor) 0.25, vegeta-
tion type 5 (shrubland ), aerodynamic roughness 0.4 m;
5) the ozone distributions were prescribed as zonally
symmetric, reflection symmetric about the equator and
fixed in time. The ozone volume mixing ratios were
taken as the annual average of the Northern Hemi-
sphere. This model planet is called Terra Blanda and
simulations of its atmosphere at perpetual equinox with
CCMO have been discussed in some detail elsewhere
(Leung and North 1991; North et al. 1992; Yip and
North 1993; North et al. 1993). In this experiment, we
introduce the seasonal cycle to our simplified model.
The declination angle will vary from —11.75%to 11.75°
over one year (half the range for earth), so that the
solar heating passes through identical, successive sea-
sonal cycles; thus, no interannual variability will be
introduced to the external forcing of the model envi-
ronment. We need the weaker seasonal forcing to pre-
vent an excessive seasonal cycle on the all-land planet.

Figure 4 presents the 15-yr daily hemispherically av-
eraged surface temperature. The time series shows 15
annual cycles with the minima in December—January -
February (DJF) and maxima in June-—July-August
(JJA). The seasonal variability is much stronger than
the interannual variability. The major features of the
observed seasonal cycle are captured by the model. Fig-
ure 5a shows a well-defined seasonal cycle of the zonal-
mean surface temperature. Comparing the variation in
one hemisphere with that in the other hemisphere after
shifting its phase by a half year, we find that they are
quite symmetrical with respect to the equator. In the
equatorial region, the seasonal variations are very small
because the solar irradiation does not change substan-
tially throughout the year. In middle and high latitudes,
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FiG. 6. The seasonally varying spectra for the zonal
wind u at (a) 189 hPa; (b) 866 hPa.

a variation with a period of 1 yr is dominant, Figure 5b
shows the seasonal variation of zonal-mean standard
deviation of the surface temperature. As expected, the
variability exhibits a strong seasonal cycle and is larger
in the winter hemisphere especially over middle and
high latitudes.

Next we apply the cyclic spectral analysis techniques
to the fluctuations in the Tropics in this specific simu-
lation. Since the simulation climate is north—south
symmetric and longitudinal location makes no differ-
ence in the climate, the spectral estimate is not sensitive
for using data from different longitudes or from both
sides of the equator. The data we use here are latitu-
dinally averaged over 2.2°N to 20°N at the longitudinal
location 180°. The data were normalized to remove the
seasonal cycle. The climatological seasonal cycles
were averaged by the data over 15 yr for each day of
the year. The algorithm used for computing estimates
of cyclic spectra is the FFT accumulation method. For
details of the algorithm, the reader is referred to Roberts
et al. (1994).

Figure 6 shows the seasonally varying spectra for the
zonal wind at 189 and 866 hPa. There are obvious os-
cillations with a 40-50 day period (frequency ~0.02
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d~") with significant seasonal variability. Figure 6 in-
dicates that, for the 189-hPa u, the spectrum in the 50-
day band has a relative maximum from December
through May, whereas that for the 866-hPa u has a
relative maximum from July through November. As a
comparison, Fig. 7 shows the conventional spectral
density of the zonal wind u, at 189 hPa. A very prom-
inent peak stands out at the 50-day period. The con-
ventional spectral analysis does yield a distribution of
oscillation, but clearly it is unable to provide infor-
mation on season-frequency localization consistent
with the cyclic spectral analysis. Figure 8 shows the
seasonally varying coherence squared and phase dif-
ference between 189- and 866-hPa u. From Fig. 8 we
infer that the 189- and 866-hPa u winds are coherent
in 30-70 day bands in all months except March and
April. In all months, the phase is larger than 0.5 cycle,
and the 866-hPa u tends to be out of phase with the
189-hPa u in 50-day bands. It is consistent with that
found by observational studies (e.g., Madden 1986).

Based on an analysis of the fluctuations occurring in
the NCAR CCMO with the same simplified boundary
conditions mentioned as above, Yip and North (1993)
suggested that an intraseasonal wavelike oscillation
may be generated by the internal dynamics of the model
instead of being directly forced by imposed boundary
conditions. However, the phase-locking relationship
between intraseasonal and annual variation suggests
that intraseasonal variation may also be modulated by
the seasonal cycle through one or more seasonal-de-
pendent energy sources.

In earlier studies (Madden and Julian 1971, 1972),
no peaks were found in the v-wind spectra as pro-
nounced as those in the u-wind spectra at 40—-50 day
periods. On the other hand, both theoretical and sim-
ulation studies indicate that convective forcing near the
equator, which we presume to be important in the 40—
50 day oscillation, excites Rossby waves as well as
Kelvin waves. The Rossby waves have v-wind pertur-

30 F T —T T T ]
25 3
20t 3
15} 3
: ]
10} ]
o ]
5¢ >
ot e I
0.00 0.02 0.04 0.086 0.08 0.10
Frequency (1/day)

Fi1G. 7. The conventional spectral density
of the zonal wind u at 189 hPa.
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FiG. 8. The seasonally varying coherence squared (a) and phase
(b) between 189- and 866-hPa i. Contour interval is 0.1 for coherence
squared. Phase is in fractions of a cycle. Phase between 0 and 0.5
means 866-hPa u leads. Solid line is for the phase at frequency of
50-day period, short-dash line for 40-day period, and long-dash line
for 60-day period.

bations of comparable magnitude to that of the u-wind
perturbation (Yip and North 1993). These results led
us to compute seasonally varying spectra for v-wind
and cross spectra between # wind and v wind io see if
they could shed more light on the role of the v wind.

Figure 9 shows the seasonally varying spectra for the
meridional wind at 189 hPa. There is a weak peak in
40-50 day frequency from December through May. It
reveals why conventional spectral analysis that aver-
ages over all seasons cannot detect this week peak. Fig-
ure 10 shows the seasonally varymg coherence squared
and phase between 189-hPa 1 and 189-hPza v. The 189-
Pz 1 and 189-hPa v winds are at least coherent in 50-
day frequency bands during winter. The seasonally
varying coherence squares exceed 0.8 in 50-day bands
in January. In general, the # and v are out of phase, and
elthcugh phase angle changes, there is no clear cut
phase shift between winter and summer.

5. Conciusions 2nd discussions

in this paper we provide the basic framework and
some examples of an application of cyclic spectral
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analysis to climate fluctuation. A process is said to ex-
hibit cyclostationarity in the wide sense if its time-vari-
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Such processes occur commonly in the climate system
due to the variety of periodic or quasi-periodic deter-
ministic forcings (e.g., diurnal cycle, seasonal cycle,
11-yr cycle, Milankovitch cycles, etc.). We have ana-
lyzed the cyclic spectra of a cyclostationary stochastic
climate model. Our results show a strong seasonal mod-
ulation in the covariance and time-varying spectra with
respect to time of year. We have also presented the
cyclic spectral analysis of the intraseasonal oscillation
taken from a long seasonal run with a general circula-
tion model (CCM?2-R15) that has simplified boundary
conditions. Analysis of the simulation data indicates the
presence of intraseasonal oscillations in the Tropics,
which are also localized according to time of year. The
strength of the intraseasonal oscillations in the upper
troposphere is strongest during DJF and weakest during
JJA, whereas for the lower troposphere they are strong-
est during SON. These results suggest that intrasea-
sonal oscillations may be generated by the internal dy-
namics of the model instead of being directly forced by
imposed boundary conditions. However, the phase-
locking relationship between intraseasonal and annual
variation suggests that intraseasonal variation may also
be modulated by the seasonal cycle through one or
more seasonally dependent energy sources.

Both examples suggest that these techniques might
be useful for analysis of fluctuations that exhibit local-
ity in both frequency and season. The seasonal varia-
tions are completely and conveniently characterized by
the cyclic spectra. Our characterization of the variations
contains more information than the conventional spec-
tral estimate, which results from considering cyclosta-
tionary data as being stationary.

Another application of this technique is to detect and
classify the multiple fluctuations buried in noise. The
essence of the difference between stationary and cy-
clostationary processes is that the latter exhibit spectral
correlation. The existence of correlation between
widely separated spectral components can be inter-
preted as spectral redundancy. The distinctive charac-
ter of spectral redundancy makes signal detection and
classification possible. Specifically, for the composite
signal

L
T(r) =Y, T,(t) + n(2), (23)
1

where the set { 7;(¢) } includes both signals of interest
and interference and where n(t) is background noise,
we have the cyclic spectral

7(f) = X S5(f) + S2(f). (24)
]

But if the only signal with the particular cycle fre-
quency «, is T;(¢), then as 1 = «© we have

a o a
T =97,
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regardless of the temporal or spectral overlap among
{T,(1)} and also n(t). This perfect signal selectivity of
an ideal cyclic spectral density enables us to detect the
presence of signals buried in noise and classify such
corrupted signals according to modulation type. This
would be impossible if only conventional spectral den-
sity (cyclic spectra at « = 0) were used. This appli-
cation will be the subject of a subsequent publication.

Finally, we reiterate here the differences between or-
dinary Fourier analysis, cyclic spectral analysis, and the
temporal empirical orthogonal function (EOF) method.
If the process is stationary, the Fourier components for
a particular realization of the process will be indepen-
dent. This makes it especially convenient for an anal-
ysis of variance, since variance contributions in differ-
ent frequency bands add up to give the total variance
(there are no cross terms). If the process is cyclosta-
tionary, we can also perform a similar kind of analysis
with the eigenfunctions of the lagged covariance along
the time axis. These functions (the Karhunan—-Loeve
functions), which are the Fourier basis for a stationary
process, have to be recomputed for every shape of
lagged covariance function, a tedious and sometimes
hopeless undertaking. The appendix gives the basic
concepts of the techniques of cyclostationary EOF. We
are investigating the usefulness of this approach in a
separate study.

Acknowledgments. The authors wishes to thank Prof.
W. G. Gardner for his careful review and helpful sug-
gestions. We would also thank the anonymous review-
ers for their helpful comments on the manuscript. We
are grateful for the support of the National Science
Foundation (Climate Dynamics Office) and the Na-
tional Institute for Global Environmental Change
(DOE) through its South Central Regional Center at
Tulane University. -

APPENDIX
Cyclostationary EOFs

A cyclostationary process 7(t) can be represented
by a set of jointly stationary processes {T;(1): [ = 0,
*1, =2, - - -} as follows:

di2
T(t) - Z Tl(t)ei27rlt/d,

I=—d/2

(AD)

where d is the period of cyclostationarity. The jointly
stationary processes, 7;(t), can be expressed as

T.(t) =f mw(t — )T(r)e & dr  (A2)

for which

_ sin(nt/d)
- it )

w(t) (A3)
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This representation is most easily understood in the fre-
quency domain. This representation partitions the fre-
quency support of T(#) into disjoint bands of width 1/
d centered at integer multiples {//d} of 1/d, so that
the Ith component in (26) is simply the response of an
ideal bandpass filter.

The Ith representor, T,(?), is the frequency-centered
(low-pass) version of the /th component. It follows that
there are only a finite number of nonzero representors
for a process with finite bandwidth. Although (A1) is
a valid representor for any process, it is especially ap-
propriate for a cyclostationary process with period d
because then the representors are jointly stationary
(Gardner and Franks 1975).

It follows from (A1) that the covariance function for
T(¢) is represented by

drz
Z C”’(t — tl)eIZﬂ'(lt—l! )/d’
W'=—dl2

C(t,t')= (A4)

where

Cy(t —t") = (T(OTF (")), (A5)

Now we seek the solution of eigenfunction ¥(z):

NI2
f C(t, t')YU(t")dt' = \NU(1). (A6)
—~N/2
The eigenfunction W(¢) can be represented by
dl2
\I’n(t) — 2 l/lnlei27rlt/dei27rm/1\" (A7)

I=—d/2

where label n corresponds to a kind of Fourier fre-
quency that might be very low compared to 1/d, which
then corresponds to interannual variability. Here N is
the length of data. Label ! corresponds to a kind of
seasonal cycle frequency, which refers to seasonal vari-
ability.

After some manipulation, we obtain

. I+
Z S(l —l)ld(f_*_ W)lllnl = )\nll,nl” (AS)
!

where $"4(f) is cyclic spectral density. The above sug-
gests that the eigenfunction is easily found if the cyclic
spectral density are found in advance. A computation-
ally efficient algorithm based on Bloch’s theorem was
proposed by North (G. North 1994, unpublished man-
uscript). This application will be the subject of a sub-
sequent publication.
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