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 Abstract 

 Difficulties in using conventional Fourier spectral analysis to explore the temporal variation of CO2 
short-term fluctuations have indicated the need for some new statistical techniques. It is suggested here 
that the Multiresolution Fourier Transform (MFT) can be used for interpreting such fluctuations. The 
technique is adapted from wavelet theory in signal processing. To demonstrate the usefulness of this 
technique, some examples of analytic fluctuation are first examined. The examples suggest that this 
technique might be useful for analysis of fluctuations that exhibit locality in both frequency and time. 

 MFT is then applied to study the CO2 fluctuations measured at Alert from 1988 to 1995. The results 
show that the CO2 concentration over Alert has two dominant regimes of quasi-periodic short-term fluc-
tuation: 1)20-50 day intraseasonal fluctuation and 2) 6-14 day synoptic fluctuation. Both the amplitude 
and frequency of these fluctuations are strongly modulated by the seasonal cycle and the largest ampli-
tude appears during winter time. In addition, these short-term fluctuations have significant interannual 
variability, especially for the synoptic fluctuation.

1. Introduction 

 Time series of atmospheric CO2 measurements 

made at a number of monitoring stations in the 

Northern Hemisphere show many interesting fea-

tures (Higuchi and Daggupaty, 1985; Higuchi et 
al., 1987; Trivett et al., 1989; Higuchi et al., 1995; 
Lejenas and Holmen, 1996; Engardt et al., 1996). 
Proper interpretations of these features are impor-
tant in obtaining an increased understanding of the 
processes governing the spatial and temporal dis-
tributions of carbon among the major carbon reser-
voirs (atmosphere, ocean, and terrestrial biosphere). 
Some of the most notable characteristics of a CO2 
time series are: (1) an upward secular trend, reflect-
ing an increasing carbon content in the atmosphere 
produced mainly by fossil fuel combustion; (2) a sea-
sonal cycle produced mainly by the photosynthetic-
decay process of the terrestrial biosphere; (3) short-
term fluctuations superimposed on the seasonal cy-
cle, reflecting the regional and local sources and 
sinks and (4) interannual variability in all of the 
above three features. Among the problems not yet 
well understood are the temporal structure of short-
term fluctuations and how the seasonal cycle modu-
lates them. The CO2 gas is a passive and nonreac-

Live chemical species with a relatively long residence 
time in the atmosphere. Since an air parcel com-
ing in contact with a local or regional source/sink 
of CO2 will retain, barring any substantial mixing, 
the flux characteristics of the CO2 source/sink, bet-
ter understanding of the short-term fluctuations ob-
served in atmospheric CO2 measurements is very im-
portant in addressing the issue of local sources and 
sinks in the global carbon cycle. 
 Recent observational studies indicate that, al-

though a consistent CO2 efflux from the forest tun-
dra of North Russian occurs throughout the year, 
the locations of maximum CO2 efflux do exhibit sea-
sonality (Zimov et al., 1996). Winter CO2 efflux is 
a major component of annual CO2 flux in boreal 
Russia and, in general, could contribute to the high 
atmospheric CO2 concentration observed in winter 
in the far north. If this phenomenon is widespread, 
it suggests that the large seasonal amplitude of at-
mospheric CO2 at high latitude is due more to a sub-
stantial CO2 efflux in winter rather than to high bio-
spheric productivity in summer. The present paper 
attempts to study the temporal structure of short-
term fluctuations of atmospheric CO2 over Alert. 
Alert is a Canadian CO2 monitoring station located 
on the northern tip of Ellesmere Island in the Cana-
dian Arctic Archipelago.(c)1997, Meteorological Society of Japan
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 Due to the variety of periodic or nonperiodic de-
terministic and some undeterministic sources and 
sinks, time series of atmospheric CO2 are not sta-
tionary in time. It has been pointed out by Huang 
and North (1996) that traditional methods related 
to Fourier spectral decomposition are inappropriate 
in an analysis of non-stationary time series. Fourier 
spectral analysis can identify the underlying fre-
quencies and their relative contributions to the time 
series, but it shows no explicit information regarding 
their temporal locality. Therefore, non-stationary 
signals which appear only during short time inter-
vals are poorly detected by Fourier analysis, since 
these signals are averaged out over the entire data 
record. In searching for a fundamental structure in 
the time-frequency domain, even very weak signals 
may be important if they influence the overall re-
sponse of the system. In this regard, further under-
standing of CO2 fluctuations demands special efforts 
in time series analysis. 
 Efforts have been made to overcome the draw-

back of Fourier analysis by constructing a "window" 
in the time domain so that local spectral informa-
tion can be identified. Gabor (1946) first introduced 
a Gaussian window with predefined width. With 
a fixed window width, however, the so-called Win-
dowed Fourier Transform (WFT) is not suitable for 
detecting a signal that possesses a wide range of time 
scales. This was a major motivation for studying the 
wavelet transform in mathematics and in applied ar-
eas, e.g., Grossmann and Morlet (1984). Wavelet 
transform relates window width to the frequency 
of base function (wavelet), forming a flexible time 
window to overcome the WFT's weakness. Con-
siderable attention has been given to applying the 
wavelet technique to the study of atmospheric and 
oceanographic phenomena, (Gambis, 1992; Gamage 
and Blumen 1993; Hudgins et al., 1993 Meyers et al. 
1993; Foufoula-Georgiou and Kumar, 1994; Weng 
and Lau 1994; Gollmer et al. 1995; Lau and Weng 
1995; Mak, 1995; Hudgins and Huang, 1996). 
 However, the wavelet transform is displayed in the 

state space. Although the spectral information can 
be surmised from the state space representation, the 
frequency is not explicitly presented. Furthermore, 
a serious problem arises when the window width is 
connected with frequency. Once the window widens, 
local information will be diluted on a broader base 
and time locality is degenerated. When a signal 
involves components that vary in wide ranges of 
time and frequency, a more flexible base is desir-
able. Wilson et al. (1992) have recently proposed 
a generalized wavelet transform called Multiresolu-
tion Fourier Transform (MFT) to meet this need. 
The MFT combines the windowed Fourier Trans-
form and the wavelet transform into a single trans-
form. It has some particular advantages for studying 
climate signals. The motivation of this paper is to

introduce this newly-developed approach to study 
the various fluctuations that occur in time series 
of continuous atmospheric CO2 measurements ob-
tained at Alert, Canada from 1988 to 1995. By us-
ing MFT, we can obtain spectral information related 
to the temporal variation of the relative contribu-
tions made to the CO2 variability at Alert by var-
ious spectral terms with certain characteristic fre-
quencies. This eventually allows us to speculate on 
the identity of various processes which possess these 
frequencies. 
 Before we get into the actual spectral analysis 

of the Alert continuous CO2 measurements by the 
MFT, we first briefly introduce the wavelet trans-
form and multiresolution Fourier transform in Sec-
tions 2 and 3. Then we illustrate some MFT appli-
cations on analytic climate fluctuations in Section 4. 
Section 5 presents the MFT analysis of CO2 fluctu-
ations over Alert. Finally, we summarize our main 
results in Section 6. 

2. Fourier Transforms and Wavelet Trans-
 forms 

 In this section we first briefly review some ba-
sic properties of Fourier, windowed Fourier and 
wavelet transforms. In the next section we intro-
duce the central concept of multiresolution Fourier 
transform, which will be used for our analysis. A 
comprehensive treatment of the wavelet subject can 
be found in Combes et al. (1989), Chui (1992), 
Daubechies (1992), and references therein. Further 
details regarding multiresolution Fourier transform 
may be found in Wilson et al. (1992). 
 The theory described in this and the subsequent 

sections is developed within the context of any sep-
arable Hilbert space, such that the operator f(). dt
is a linear functional satisfying Reisz's Theorem. In 
the discrete case the measures are also discrete, so 
that the integrals may be equivalently written as 
convergent summations, which in itself does not in-
troduce any numerical errors. However, sampling 
the time-series amounts to quantizing and mapping 
onto a finite-dimensional Hilbert space (i.e., digi-
tizing and truncating the record), which produces 

quantization errors, windowing, and anti-aliasing ef-
fects. Such important considerations belong to the 
discipline of signal processing, and will not be dis-
cussed here. 

2.1 Fourier transform 
 The Fourier transform (FT) is one of the most 

commonly used tools to study the frequency spec-
trum of a time series. Given a time series x(t), the 
standard Fourier transform can be written as

+00F(f)=foox(t)e-i2zrftdt.

 

(1)
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where f is the frequency and t is the time. Fourier 
spectrum analysis generally provides frequency in-
formation about the energy content of measured, 
and presumed stationary, time-series data. Charac-
teristic properties of time series such as total energy 
and dominant or average frequency can be readily 
derived from the estimated spectrum. However, the 
Fourier transform produces a fixed frequency spec-
trum from the entire signal and therefore can not ex-

plicitly provide any local information regarding the 
time evolution of its spectral characteristics. Fur-
thermore, the representation of a temporally local-
ized signal using the FT is very inefficient and re-
quires a large number of Fourier components. In an 
extreme case where a signal is represented by a delta 
function in time, the signal would be represented by 
an infinite number of components in FT representa-
tion. Moreover, if the time series is reversed in time, 
the new time series will have exactly the same FT 
representation, even though the local information of 
the two time series might be completely different. 

2.2 Windowed Fourier transform 
 The study of non-stationary time series by localiz-

ing signals in both frequency and time domains was 
first introduced by Gabor (1946) using windowed 
Fourier transform (WFT; also known as the Short 
Time Fourier Transforms). The windowed Fourier 
transform centered at T is given by:

+00F(f,T)=foox(t)g(t-T)e-22ftdt (2)

where g(t) is the window function, given by

1t2
g(t)=e22

2r
 (3)

with width determined by the standard deviation a 
of the Gaussian. T is the translation parameter with 
the same dimension as t. For any T, the windowed 
Fourier transform F(f, T) provides the spectrum of 
a windowed segment of x(t), centered at time T . In 
WFT, a time series is examined over a fixed time-
frequency window at constant sub-intervals in the 
time and frequency domains. When a wide fre-
quency range is involved, the fixed time window 
of the WFT tends to contain a large number of 
high-frequency cycles and a few low-frequency cy-
cles, or parts of cycles. This often results in an 
over-representation of the high-frequency compo-
nents and under-representation of the low-frequency 
components. Because of the constant frequency in-
crement, the WFT does not have adequate resolu-
tion in the very low frequency band; much of the 
computation effort of the transfer is spent on high 
frequency components, which results in a large num-
ber of spurious spectral peaks. The recently de-
veloped wavelet transform addresses the problem of 
resolution by introducing a flexible window, which

narrows while focusing on high-frequency signals 
and widens while searching the low-frequency back-

ground. 

3 Wavelet transforms 
 The wavelet transform decomposes a function or a 

signal into various scales by expanding it in terms of 
simple functions called wavelets. The wavelet trans-
form of a function x(t) is defined as

+00W(s)=foox(t)3(t-T) dt,
where T is the translation parameter, s is the dila-

tion parameter, and the function

8(t)=()

 

(4)

is called a wavelet. Changing the value of s has the 
effect of dilating or contracting the functions (t) 
and changing T has the effect of analyzing the x(t) 
around the point T. The waveletss (t) are then 
used as "mathematical microscopes", in which L
characterizes the optics, while t is the position ana-
lyzed and 1/s the magnification. 
 For a suitable choice ofs (t), the wavelet trans-

form may also be regarded as a local Fourier trans-
form; for a given position T, the amplitude of 
W(T,s) will be largest when the scale number s is 
roughly equal to the local wavenumber of the signal. 
The choice of the wavelet fi(t) is neither unique nor 
arbitrary. The function bs(t) is chosen so that it has 
a compact support, or has a sufficiently fast decay, 
to obtain localization in space. 
 The wavelet transform W(T,s) is displayed in the 

state space defined by the dilation s and the trans-
lation T. Although the spectral information can be 
surmised from the state space representation, the 
frequency is not explicitly presented. In any case, 
there is considerable latitude in the choice of funda-
mental wavelet L8(t, s). The functional dependence 
of the fundamental wavelet on the dilation parame-
ter s may also be arbitrarily defined. Extraction of 
spectral information from a state space representa-
tion is possible only for the very simplest of wavelet. 
The multiresolution Fourier transform can overcome 
these shortcomings of the wavelet transform. 

3. Multiresolution Fourier Transform 

 Recently, Wilson et al. (1992) has proposed a gen-
eralized wavelet transform for Fourier analysis: i.e.,
Multiresolution Fourier Transform (MFT). 

3.1 Continuous MFT 
 For a continuous 1-d time series x(t), its continu-

ous MFT at position T, frequency f, and scale a is 
defined by

+00S(fT,a)=foox(t)g(t-T,a)e-i2rftdt (5)
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where g(t, a) is an appropriate window function. 
The windowed Fourier transform F(f, T) is a par-
ticular case of S(f,r,a) with a held constant. The 
primary purpose of the dilation (or scaling) param-
eter a is to increase the 'width' of the window func-
tion g(t, o) for lower frequencies and vice versa, and 
is controlled by selecting a specific functional depen-
dency of o with the frequency f. 
 Following Stockwell et al. (1994), we have used 

the Gaussian window as window function and chosen 
the window width to be proportional to the period 
of the cosinusoid being localized,

σ=T=1/f (6)

where T is the period. Therefore (3) can be rewrit-
ten as

t2 f2

9(f,t)=e2.
2r

 (7)

The multiresolution Fourier transform is then 
rewritten as

+00
f-(t2f2227rftS(f,T)-x(t)

2ee-dt Loo  (8)

or equivalently in terms of their corresponding 

Fourier transforms

+002r2a2

S(f7T)
-(a+f)ef2e221fQTda.00

(9)

The discrete analog of (9) is used to calculate the 
discrete MFT by taking advantage of the efficiency 
of the FFT (Fast Fourier Transform) and the con-
volution theorem. 

 In essence, this transform takes a one-dimensional 
function of time into a two-dimensional function of 
time and frequency. S(f, r) is a complex function 
with amplitude and phase defined by

nU/=IS(3,)1 (10)

 T=tan-1ImSf,TfR
eST (11)

 In analogy with Fourier power spectrum, we can 

readily define the Multiresolution Fourier Spectrum 

as

P(f,T)=S(f,T)S★(f,T)=IS(f,T)-2, (12)

where an asterisk superscript indicates the complex 
conjugate. 

3.2 The Fourier transform and the inverse o f MFT 
 If the MFT is indeed a representation of the local 

spectrum, one would expect a straightforward op-
eration of averaging the local spectrum to give the 
Fourier, or time-averaged spectrum. This is indeed

the case, as the integral over all T gives the Fourier 
spectrum. Using (9) we have

 +00

 S(f,T)dTf00
 +00+02222a2

 F(c+f)ef2ei2raTdcdT 
-00 n-00

(13)

Rearranging the order of integration (which is possi-
ble d f 0) in order to perform the integration over 
T, we have

 +00 

1S(f,T)dT  o0

 +0 2r2a2 +oo

 F(cx+f)ef2 da ei2Tdy, 
-00-Do

(14)

where the integral over T can be calculated using the 

Fourier integral theorem:

 +00

I ei2raTdr 00

(15)

Using the delta function S(o), the integration over 
a gives

 +oo

 S(f,T)dT=F(f), fO,
 -00

(16)

where F(f) is the Fourier transform of x(t) as de-
fined in (1). For f=0, the MFT is defined such 
that

 +oo

 S(0,T)dY=F(0),f=0.
-00

(17)

 Equations (16) and (17) is striking in the sense 
that there is a direct relationship between the stan-
dard Fourier and multiresolution Fourier transform. 
One can compute, exactly, the Fourier transform 
F(f) from S(f,r). It follows that x(t) is recover-
able, exactly, from S(f,r), i.e.,

 +oc+oc

x(t)=J{S(f,T)dT}ei2ftdf,
-00-00

his)

3.3 Discrete MFT 
 Let x(kot), k=0,1......, N-1 denote a discrete 

time series, corresponding to x(t), with a time sam-
pling interval of Lit. Using (9), the MFT component 
at position Tk, and frequency f n can be written for 
discrete time series as

 N-1 2r2 am

S(fns Tk)=:F((m+fn)e fn e227CCYmTk
m=0

(19)

where m=rn/Nzt is the frequency at scale m, 

fn=n/NOt is the frequency at scale n, Tk is the lath 
sample point for the original sequence, and F(f) is 
the discrete Fourier transform given by
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1 N-iF(fn)=-:x(kot)e-227rfnk.
k-o

(20)

The discrete inverse of the MFT is

 1 N-1 N-1
x(kt)=-{S(fn,Y)}ei2zr fnk. 

 N
n=0 l=0

(21)

In the limit as n-0, the width of the Gaussian 
decreases to zero. The zero frequency is the average 
of the time series and is constant; that is, the value 
of S(fn, Ti) for n=0 is simply the average of x(kot).
In the representation (21), the Gaussian function at 
n=0 is replaced with the Delta function 5.0 so
that MFT is exactly invertible. 

4. Analytic Climate Fluctuations 

 Climatic fluctuations are determined by complex 
nonlinear interactions between internal dynamics 
and slowly changing external forcing. The finite-
amplitude oscillation in atmosphere is one of the 
simplest examples. Since Pedlosky (1970) proposed 
the dual-time-scale concept for nonlinear oscilla-
tions, a one-dimensional oscillation is generally de-
picted as

V=A(T)cos(wt), (22)

where w is the frequency (w=2rrf), and A is an 
amplitude that varies on a slow time scale. Many 
papers have been published since then to determine 
A(T) from different dynamical models, especially 
from finite-amplitude wave models. However, little 
has been done to obtain A(T) from real or simulated 
data. This is due to the common use of the Fourier 
transform to estimate the spectrum from data. In 
the following, we illustrate the MFT for four mod-
ulated fluctuations typical of those commonly en-
countered in the climate system. The equations are 
modified from those used by Lau and Weng (1995). 

4.1 Amplitude modulation 
 The amplitude modulated fluctuation is often 

found in the climate system involving nonlinear in-
teraction between different scales or interference of a 
frequency component from its sidebands. The fluc-
tuation examined here (Fig. la) is a combination 
of two amplitude modulated fluctuations, which is 
given by

x(t)=A(t){cos(2πf1t)+cos(27πf2t)}, (23)

where

A(t)=Aocos(27πmt). (24)

Eq. (23) represents a time series or signal with two 
fundamental oscillation frequencies, i.e, fi=0.1 
and f2=0.3, whose amplitude is modulated with 
the low frequency fm=0.05. Fig. lb shows the

spectrum of MFT. It can be seen that the two mod-
ulated fluctuations are separated in the frequency 
domain. Both dominant frequencies appear as hor-
izontal lines centered at frequency 0.1 and 0.3, re-
flecting the constancy of the fundamental periodic-
ity in time. The periodic waveform in time domain 
corresponds to amplitude modulation. However, the 
corresponding Fourier spectrum (Fig. 1c) shows two 
distinct peaks around the corresponding dominant 
frequencies (fi=0.1 and 12=0.3). 

4.2 Frequency jump 
 The fundamental frequency of amplitude modu-

lated fluctuation may also jump at some time. This 
may be found in the occurrence of a catastrophic 
event. This kind of fluctuation can be defined as

 A(t)cos(2rrfit),t<150;x(t)At cos2rrf2t,t>150 (25)

where f1 and 12 are same as in Eq. (23). Equation 
(25) shows an abrupt shift in the appearance of the 
fluctuation near t=150 in the original time series 
(Fig. 2a). Its MFT (Fig. 2b) is represented by a shift 
of frequency from f=0.1 to f=0.3. The abrupt-
ness of the change is well represented by MFT in 
the neighborhood of t=150. The corresponding 
Fourier spectrum (Fig. 2c) shows two distinct peaks 
at the corresponding frequencies but contains no in-
formation on the time of occurrence of the abrupt 
change. Moreover, comparing Fig. 1 with Fig. 2, it 
can be seen that while the two time series are com-
pletely different, they have similar Fourier spectral 
representations. 

4.3 Frequency modulation 
 The frequency-modulated fluctuation may be im-

portant if the fundamental physical properties of 
the climate system undergo secular changes such as 
an increase in atmospheric moisture due to global 
warming. This may change the stability of the atmo-
sphere and alter the frequency of its normal modes. 
The analytic fluctuation studied here is a combina-
tion of two cosine functions whose frequencies f 1 and 
f2 are modulated by changes in phase, and is given 
by (Fig. 3a)

x(t)=Ao{cos(2πf1t+Φ(t))+cos(2πf2t+Φ(t))},

(26)

where

Φ(t)=αsin(2πfmt) (27)

and f1, f2 and fm have the same values as in Eq. 
(23). Eq. (27) shows that the frequency of the co-
sine varies with time in a period of T=1/fm. The 
periodic variation of frequency with time shows up 
clearly in the spectra of MFT (Fig. 3b). Fig. 3b 
also shows the effectiveness of the MFT in localized
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decomposition into the different frequency compo-
nents. Since the frequencies evolve constantly and 
any given single frequency does not exist for a finite 
time, the Fourier spectrum of this time series (Fig. 
3c) shows several peaks. 

4.4 Frequency jump within modulation 
 The final illustrated example shows a frequency 

jump in a frequency modulated fluctuation. The 
time series can be written as (Fig. 4a),

x(t)= 1Ao cos(2n f It+fi(t)),t<150;
Ao cos(2rrf2t+(t)),t>150 (28)

where f1 and f2 are same as in Eq. (23). Eq. (28) 
shows an abrupt frequency shift in appearance of

the fluctuation near t=150 in the original time 
series (Fig. 4a). The spectrum of MFT (Fig. 4b) 
shows that the frequency jump in a frequency mod-
ulated fluctuation is well represented by MFT in the 
neighborhood of t=150. The corresponding Fourier 
spectrum in Fig. 4c, however, is similar to that in 
Fig. 3c, even though the local information of the two 
time series is completely different. 

5. Analysis of CO2 Fluctuation 

 The multiresolution Fourier transform approach 
described in Section 3 is now applied to analyses of 
CO2 continuous measurements from the Canadian 
CO2 monitoring station Alert. Alert is located on

Fig. 1. MFT and FT analysis of an amplitude-modulated fluctuation: (a) time series; (b) spectrum of 
 MFT (the contour interval is 0.2); (c) spectrum of FT.

(a) Analytic Signal

(b) Spectrum of MFT

(c) Spectrum of FT
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the northern tip of Ellesmere Island in the Canadian 
Arctic Archipelago. More than seven years (1 Jan., 
1988-31 March, 1995) of daily mean atmospheric 
CO2 measurements from Alert are chosen and ana-
lyzed. The following steps are applied to this data 
set to obtain data appropriate for MFT analysis: 

(1) The missing data gaps are filled by linear inter-
 polation. 

(2) A third-degree polynomial is fitted to the CO2 
 time series in a least-square sense to remove the 
 underlying trend (dashed line in Fig. 5a). A 
 secular trend from 1988 to 1995 suggests an av-
 erage growth rate of around 1.1ppmv/year.

(3) The detrended time series of CO2 is then used 
 to construct a composite average seasonal cy-
 cle by linearly averaging the seven annual cy-
 cles from 1988 to 1994. However, because of 
 the shortness of the data sample, the result-
 ing composite average still retains some fluctu-
 ations and fails to produce a smooth seasonal 
 curve. To rectify this, a 30-day low-pass filter 
 is applied to filter out short-term fluctuations. 

 The resulting smooth seasonal cycle (dashed 
 line in Fig. 5b) is then used as a 'representa-
 tive' background concentration and subtracted 
 from the detrended CO2 time series. The final 
 time series of CO2 deviation is shown in Fig. 
 5c.

Fig. 2. MFT and FT analysis of an amplitude-modulated fluctuation associated with a frequency jump: 
 (a) time series; (b) spectrum of MFT (the contour interval is 0.2); (c) spectrum of FT.

(a) Analytic Signal

(b) Spectrum of MFT

(c)Spectrum of FT
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 Figure 6 shows the MFT spectra of the time se-
ries of CO2 deviation in frequency and time domain. 
The short-term fluctuations occurring at different 
times and at different frequencies can be seen very 
clearly in this figure. Both the amplitude and the 
frequency of these fluctuations change with time, 
indicating their nonstationarity. Figure 6 also re-
veals that these CO2 fluctuations are characterized 
by amplitude and frequency modulation, along the 
line discussed in the previous analytic section. 
 Figure 6 also shows that the CO2 concentration 

over Alert has three dominant regimes of quasi-
periodic fluctuation: 1) seasonal cycle, 2) 20-50 day 
intraseasonal fluctuation and 3) 6-14 day synoptic 
fluctuation. On the annual scale, the seasonal cycle

is represented by a narrow horizontal bar near the 

bottom, which is a relatively weak signal since the 

composite average seasonal cycle has been removed 

prior to the MFT analysis. On the intraseasonal 
time scale, the principal fluctuation period varies 
with time, although the most pronounced fluctua-

tion is in the 20-50 day range during the winter sea-
son. Both the amplitude and frequency are strongly 

modulated by the seasonal cycle. On the synoptic 

time scale, a most noticeable feature is the appear-

ance of singularities which are displayed in the spec-

tral plane of MFT as vertical streaks covering a wide 

range of frequencies. For instance, fluctuations in 

different frequency bands in a wide frequency range 

are nearly in phase during the 1992 and 1994 win-

Fig. 3. MFT and FT analysis of frequency-modulated fluctuation: (a) time series; (b) spectrum of MFT 
 (the contour interval is 0.2); (c) spectrum of FT.

(a) Analytic Siqnal

(b) Spectrum of MFT

(c) Spectrum of FT
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ters. In a similar manner to the intraseasonal fluctu-
ations, these synoptic fluctuations are also strongly 
modulated by seasonal cycle, especially its ampli-
tude. 
 To provide a better qualitative description of the 

interannual variability of the short-term fluctua-
tions, seven segments of Fig. 6 and their average are 
displayed in Fig. 7. Each segment starts from 1 April 
of the first year and ends at 31 March of the next 

year. Even though there is a great deal of variability 
in the spectral signature from year to year, a certain 

pattern is apparent. The 7-year average (upper-left 
panel), for example, exhibits three peaks at periods 
corresponding to the seasonal cycle, 20-50 days and 
6-14 days. The seasonal cycle is represented by the

narrow color bar stretching across each segment at 
the bottom. This is slightly stronger during 88-89. 
The intraseasonal fluctuations of 20-50 days mainly 
occur during the winter season (November to Febru-
ary) and its dominant frequency shifts from about 
0.04 (20 days) in early November to about 0.02 (50 
days) in January and February. This kind of fre-

quency modulation can be detected in most of the 
individual years on the intraseasonal time scale, such 
as 88-89, 90-91 and 91-92. In addition, a minor 20-
day peak is detected in summer during the years 
90-91, 92-93 and 93-94, although this peak is ob-
scured in the 7-year average. The 6-14 days spectral 
peak averaged over 7 years is a little stronger than 
that of the 20-50 days peak during winter season.

Fig. 4. MFT and FT analysis of the frequency-modulated fluctuation associated with abrupt change in 
 frequency: (a) time series; (b) spectrum of MFT (the contour interval is 0.2); (c) spectrum of FT.

(a) Analytic Signal

(b) Spectrum of MFT

(c) Spectrum of FT
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However, compared with the seasonal cycle and the 
intraseasonal fluctuations, the synoptic fluctuations 
of 6-14 days appear to show the strongest interan-
nual variability. Figure 7 also shows a spectral peak 
in summer associated with periods from 6 to 14 days. 
The peak is quite evident during the summer of 89-
90 and 93-94. The other two seasons, spring and 
fall, are quite quiescent. 
 From the amplitude and phase of MFT defined in 

Eqs. (24-27), we can define a sinusoidal function,

C(f,T)=A(f,T)cos[27rfT+(f,T)] (29)

which provides a combined depiction of amplitude 
and phase at a given frequency. The function, 
C(f, T), evaluated at a particular frequency f, is 
called the "component". Figure 8 shows a break-

down of relative contributions made by some of the 
spectral components (periods= 6 days, 12 days, 20 
days, 50 days,and 365 days) towards the variance 
of the detrended and deseasonalised CO2 time se-
ries shown in Fig. 5c. Figures 8a-8d depict synoptic 
and intraseasonal fluctuations strongly modulated 
by the seasonal cycle, with the largest variability 
in these frequency ranges occurring generally in the 
winter season. Even though both the synoptic fluc-
tuations (6-14 days) and the intraseasonal fluctu-
ations (20-50 days) are strongly modulated by the 
seasonal cycle, the origins of these fluctuations are 
quite different. The synoptic fluctuations reflect the 
quasi-periodicity of the passage of synoptic systems 
(with different air masses) over Alert.

Fig. 5. CO2 time series used in present study: (a) the original time series (solid line) and its long-term 
 trend calculated by three-degree polynomial (dashed line); (b) the detrended time series (solid line) 
 and its composite average seasonal cycle of CO2 (dashed line); (c) the detrended and deseasonalised 
 time series.

(a)

(b)

(c)
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 The low-frequency intraseasonal circulation vari-
ability of 20-50 days in the extratropics are dis-
cussed in such notable papers as Ghil and Mo 
(1991), Schubert and Park (1991), and the ref-
erences quoted therein. These extratropical low-
frequency oscillation modes appear to be associated 
with variability in the planetary wave structure, and 
seem to be well correlated with tropical convective 
activities in the tropics (Knutson and Weickmann, 
1987). However, as Ghil and Nlo (1991) have shown, 
the extratropical oscillation modes are often quite 
independent of what is happening in the tropical 
modes. Within the context of the present study, 
it is interesting to note that a reflection or impact 
of these low-frequency circulation modes can be de-
tected in a CO2 time series in the high Arctic. 

 Interannual variability in the amplitude of these 
components is also quite evident in Fig. 8. It is very 
likely that these synoptic to intraseasonal fluctua-
tions, and their interannual variability, in the CO2 
measurements at Alert are caused by the variabil-
ity in the atmospheric circulation and its transport 
processes (Yuen, et al., 1996; Higuchi et al., 1987; 
Higuchi and Daggupaty, 1985). The interannual 
variation in the annual cycle (period=365days) is 
shown in Fig. 8e. The range in the year-to-year vari-
ation of the amplitude of the CO2 seasonal cycle at 
Alert appears to be around 0.4 ppmv. A large vari-
ation is detected in the years 1991 to 1993. The pe-
riod, interestingly enough, corresponds to the time 
when the atmospheric CO2 growth rate nearly went 
to zero globally. The large value at the beginning 
of the time series in Fig. 8e is less reliable than the 
rest of the record due to the endpoint effects.

 As a comparison with the kind of information ob-
tainable from a MFT analysis (Fig. 6), Fig. 9 shows 
a discrete Fourier spectrum of the 7-year CO2 devia-
tion time series shown in Fig. 5c. The result is basi-
cally a red spectrum with a peak around frequency 
0.0025 (period=400days). Thus, the energy is 
concentrated mainly at the annual scale. Because of 
the nonstationary nature of the short-term fluctua-
tions in the CO2 measurements, there is no indica-
tion of the intraseasonal and synoptic variability in 
the Fourier spectral density. 

6. Conclusions 

 In this paper we have attempted to provide a ba-
sic framework and some examples of an application 
of multiresolution Fourier transform (MFT) to CO2 
time series. The intention of this paper is to bring 
attention to this useful method for climate fluctua-
tion analysis. In contrast to the usual Fourier trans-
form analysis, which yields a time-mean spectrum, 
the NIFT approach can reveal the temporal struc-
ture of a spectrum. This property of MFT is partic-
ularly valuable for investigating non-stationary fluc-
tuations that exhibit locality in both frequency and 
time. The MFT method is designed to reveal scale 
characteristics in a signal. It provides a continuous 
view of the spectrum as a function of time and fre-

quency. 
 To reveal the temporal structure of the CO2 short-

term fluctuations, we have applied MFT to dis-

play time-frequency characteristics of the CO2 vari-
ation at Alert. The results show that the CO2 con-
centration over Alert has two dominant regimes of 

quasi-periodic short-term fluctuations 1) 20-50-day

Fig. 6. NIFT spectrum for CO2 deviation. The abscissas are time (days) marching forward and the 
 ordinates are frequency (1/day).
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intraseasonal fluctuation and 2) 6-14-day synoptic 
fluctuation. Both the amplitude and frequency of 
these fluctuations are strongly modulated by the 
seasonal cycle, with the largest amplitudes appear-
ing during the winter season. In addition, these 
short-term fluctuations have significant interannual 
variability, especially for the synoptic fluctuation. 
 We speculate that the seasonally modulated 
short-term fluctuations revealed by the MFT anal-
ysis are related to atmospheric circulation variabil-
ity (Peterson et al., 1980; Perterson et al., 1982; 
Halter and Peterson, 1981; Halter and Harris, 1983; 
Higuchi and Daggupaty, 1985; Higuchi et al., 1987; 
Chung, 1988; Worthy et al., 1994). Higuchi and 
Daggupaty (1985) and Higuchi et al. (1987) inter-
preted the variability of atmospheric CO2 concentra-

tion at Alert, in terms of variation in the synoptic-
scale atmospheric circulation. 
 The phase-locking relationship between the short-

term fluctuations of CO2 and the annual variation 
also suggests that northern ecosystems could consti-
tute a large seasonally-dependent local CO2 source. 
Indeed, a recent study has suggested that, although 
there is a large terrestrial carbon sink from 30-60N, 
latitudes north of 60may be a net CO2 source 

(Ciais et al., 1995). Some CO2 measured at high lat-
itudes is delivered from mid-latitudes by northward-
moving winds (D'Arrigo et al., 1987), but this can-
not explain why maximum atmospheric concentra-
tions occur at high latitudes. Northern ecosystems 
could constitute a large net source of CO2, if their 
large pools of soil carbon are being released by soil

Fig. 7. MFT spectrum of CO2 deviation for individual year (1988-1995) and its average over seven years.
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respiration, as suggested by recent measurements in 
Alaska (Oechel et al., 1993) and Russia (Zimov et 
al., 1996). 
 The present analysis revealed several important 
aspects of CO2 variation over Alert, which require 
better physical understanding. Many additional 
analyses and numerical simulations need to be con-
ducted in order to further understand the causes of 
fluctuation in atmospheric CO2. 
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Fig. 8. The component of MFT at frequency (a) 1/6(day); (b) 1/12(day); (c) 1/20(day); (d) 1/50(day) 
 and (e) 1/365(day).
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(c)

(d)

cep

Fig. 9. Fourier spectrum for CO2 deviation.
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多重解像度フー リエ解析 と北極 アラ-ト におけるCO2濃 度変動の解析への適用

Jian-Ping Huang Kaz Higuchi Neil B.A. Trivett

(Carbon Cycle Research Section, Atmospheric Environmental Service, Canada)

大気 中のCO2濃 度の短周期変動を解釈す るために、 ウェーブ レット理論 を基 にした多重解像度 フーリエ

解析 (MFT) が利用で きることを提案した。まず、 幾つかの異なった合成信号を用いて検討した結果・時間

と周波数において局在性 を示す変動 の解析 にとって本解析 は有用である と考えられた。

次に、MFTは1988年 か ら1995年 の間にアラー トで観測 されたCO2濃 度の変動を調べ るために適用 され

た。その結果、20-50日 と6-14日 の準周期 的変動が顕著であ り、これ らの変動 の振幅 と周波数 は季節変化

によって強 く変調 され、 また季節変化の最大振 幅は冬期にみ られることが見 いだされた。さらに、 これ ら

の短周期変動 (特 に後者の変動) が明瞭な年 々変動 を示すことも明 らか となった。


