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Abstract. This study presents an empirical relation that links
the volume extinction coefficients of water clouds, the layer
integrated depolarization ratios measured by lidar, and the
effective radii of water clouds derived from collocated pas-
sive sensor observations. Based on Monte Carlo simulations
of CALIPSO lidar observations, this method combines the
cloud effective radius reported by MODIS with the lidar de-
polarization ratios measured by CALIPSO to estimate both
the liquid water content and the effective number concentra-
tion of water clouds. The method is applied to collocated
CALIPSO and MODIS measurements obtained during July
and October of 2006, and January 2007. Global statistics of
the cloud liquid water content and effective number concen-
tration are presented.

1 Introduction

In the analysis of polarization-sensitive backscatter lidar
data, water clouds provide one of the best understood mea-
surement targets. Their single scattering properties follow
Mie theory, and multiple scattering contributions to the sig-
nal can be estimated from the depolarization measurements
using a simple formula found by Hu et al. (2006). Nonethe-
less, the water cloud measurements made by space-based li-
dars are quite different from those made by passive remote
sensing instruments such as MODIS. Passive remote sensing
of water clouds, which measures the spectral differences of
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reflected sunlight and thermal emissions, retrieves values of
optical depth for the entire vertical column (i.e., on a per-
pixel basis). Given sufficient sunlight, optical depths can
be accurately estimated for values as large as 100. Passive
sensors also provide effective radius information using the
absorption in near infrared solar radiation wavelength. Ac-
tive sensor measurements of water clouds provided by space-
based, dual-polarization, range-resolved vertical profiling li-
dars provide information about cloud top microphysics to a
maximum optical depth of 3, which, for dense water clouds,
corresponds to that portion of the cloud that starts at cloud
top and ends at a penetration depth of roughly 100 meters.
Unlike reflected sunlight, which consists mostly of multiply
scattered photons, the multiple scattering and single scatter-
ing contributions to CALIPSO lidar measurements from wa-
ter clouds are in the same order of magnitude. The multi-
ple scattering contributions are proportional to the number of
cloud particles that are within the lidar footprint, and can be
separated from the single scattering contributions using the
depolarization measurements. Hu and Stamnes (1993) sug-
gested that multiple scattering from water clouds can be well
characterized by extinction coefficients and effective radii,
and is not sensitive to the variances of droplet size distri-
bution. For passive remote sensing of water clouds using
intensity only measurements, the width of size distribution
does not impact the water cloud measurements significantly
in those cases where multiple scattering dominates the signal.
Monte Carlo simulations presented in this study confirm that
the insensitivity of multiple scattering to the width of size
distribution is also true for most water cloud lidar returns.
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Figure 1. Theoretical relation between layer averaged extinction coefficients and layer integrated 

depolarization ratios.  Most lidar signal comes from cloud top with optical depth between 0 and 

2.  The extinction coefficient is thus effectively the average extinction coefficient of within 100 

meter from cloud top.  

Fig. 1. Theoretical relation between layer averaged extinction coef-
ficients and layer integrated depolarization ratios. Most of the lidar
signal comes from the top of the cloud, between optical depths 0
and 2. The extinction coefficient is thus effectively the average ex-
tinction coefficient of within 100 m from cloud top.

Monte Carlo simulations also indicate that, by using layer
integrated depolarization ratios and the slope of the expo-
nential decay in the water cloud backscatter due to multiple
scattering, both the extinction coefficients and the effective
radii of water clouds can be derived from CALIPSO lidar
measurements. However, this process would require an ac-
curate deconvolution of the lidar backscatter signal to remove
any effects imparted by a non-ideal transient response of the
photo-detectors. Because suitable deconvolution techniques
are still under development, this study adopts the effective
cloud droplet radius retrieved for the Clouds and the Earth’s
Radiant Energy System (CERES) Project from the Moderate
Resolution Imaging Spectral-radiometer (MODIS) (Minnis
et al., 1995, 2006). Liquid water content and effective droplet
number concentration are then estimated using CALIPSO’s
lidar depolarization ratio, together with the effective radius
derived from the MODIS data.

The purpose of this study includes two aspects:
The first objective is to help establish water clouds as cal-

ibration and validation targets for future satellite lidar mis-
sions. The global statistics of the water cloud physical prop-
erties derived in this study should then provide a baseline
for field measurements and ground based water cloud obser-
vations. Comparing our derivations with those observations
should provide opportunities for the development of better
theory and methodology for satellite lidar data analysis of
water clouds.

The second objective is to provide the global climate
modeling community with an improved global water cloud
microphysics climatology that is relevant to understanding
ocean-atmosphere fluxes of dimethyl-sulfide and the connec-

 

Figure 2. A simple relation between layer-integrated depolarization, extinction coefficient and 

effective droplet size of water clouds at CALIPSO viewing geometry. This relation is valid for 

water clouds with different size distributions and extinction coefficients. 

Fig. 2. Relationship between layer-integrated depolarization, ex-
tinction coefficient and effective droplet size of water clouds at the
CALIPSO viewing geometry. This relation is valid for water clouds
with different size distributions and extinction coefficients.

tion with clouds. For a given climate forcing, the climate
system may respond in many possible ways. A climate sys-
tem with a swamp-like surface or a razor thin mixed-layer
ocean may respond with fast temperature changes. A cli-
mate system with a deep mixed-layer ocean may respond
to the same climate forcing with changes in cloud albedo
to re-balance the top-of-atmosphere (TOA) radiative fluxes
and changes in hydrological cycle to re-balance the surface.
Since Shaw (1983) suggested that the interaction between
clouds and dimethyl-sulfide (CH3SCH3, DMS) can be an ef-
ficient way for the combined ocean and climate system to
respond to external forcing, many studies have been con-
ducted in this area (e.g. Charlson et al., 1987; Han et al.,
1998). Meanwhile, accurate measurements of biogeochemi-
cal processes and cloud microphysics made at suitable spatial
and temporal scales remain scarce. Coupled with modeling
studies, the water cloud microphysics climatology from com-
bined CALIPSO, MODIS and possibly PARASOL observa-
tions will improve the water cloud microphysics observations
needed for cloud – climate feedback studies.

2 A simple and reliable technique for estimating liquid
water content and effective droplet number concen-
tration from CALIPSO

As shown in Fig. 1, water cloud extinction coefficients are
related to the layer integrated depolarization ratios obtained
from the CALIPSO lidar backscatter measurements. This re-
lationship was established via a simulation study using the
Monte Carlo code of Hu et al. (2001). Multiple scattering
contributions to the backscatter increase as the cloud ex-
tinction coefficient increases. Since the depolarization of
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Figure 3. Histogram of water cloud extinction coefficient and depolarization ratio relation from 

CALIPSO data. The extinction values are retrieved using CALIPSO vertical profiles. The 

markers are the modeling results of Figure 1. 

Fig. 3. Histogram of water cloud extinction coefficient and depo-
larization ratio relation from CALIPSO data. The extinction values
are retrieved using CALIPSO vertical profiles. The markers are the
modeling results of Fig. 1.

radiance from water clouds is proportional to multiple scat-
tering, the depolarization ratio increases for denser clouds
as well. For smaller particles, when contrasted with large
particles, both multiple scattering and depolarization ratio
increase faster with extinction coefficient, since bigger parti-
cles scatter more in the forward direction, thus reducing the
chances of backscatter. The width of droplet size distribution
has minimal impact on the extinction coefficient – depolar-
ization relation.

An interesting empirical relation among the extinction co-
efficient β, the effective radiusRe and the layer-integrated
depolarization ratioδ, illustrated in Fig. 2, is

β(
Re

Re0
)−1/3

= 1 + 135
δ2

(1 − δ)2
. (1)

This relation is derived from Monte Carlo simulations that
incorporate the CALIPSO instrument specifications, viewing
geometry, and footprint size. The unit ofRe is in µm andβ

is in km−1. Re0 is 1µm. Both coefficients (1 and 135) have
units of km−1. The CALIPSO receiver has channels which
separately measure the backscattered signal in orientations
parallel and perpendicular to the polarization plane of the
outgoing, linearly polarized laser pulse. The layer-integrated
depolarization ratio is then formed by dividing the integrated
attenuated backscatter from the perpendicular channel by the
integrated attenuated backscatter from the parallel channel.

Ideally, the value ofβ will be derived from CALIPSO wa-
ter cloud measurements using the exponential decay of wa-
ter cloud attenuated backscatterγ ′ with ranger within the
clouds,γ ′

=γ0e
−2ηβr . After de-convolution, the slope of the

exponential decay of the water-cloud attenuated backscatter,
ηβ, can, in practice, be obtained using 4 range bins under-

 

Figure 4. Monthly mean water cloud effective radii from CERES MODIS cloud product. Fig. 4. Monthly mean water cloud effective radii from CERES
MODIS cloud product.

neath the peak of the water cloud lidar return. Thus the cloud
top extinction coefficientβ can be derived by applying the
simple relation between multiple scattering factorη from Hu
et al. (2007),

η = (
1 − δ

1 + δ
)2. (2)

In Fig. 3, the scatter plot of the extinction coefficients derived
from CALIPSO data versus the corresponding CALIPSO de-
polarization ratio measurements is seen to be very similar to
the relationship developed from the Monte Carlo simulation
results in Fig. 1.

After retrieving the extinction coefficient, we can apply it
to Eq. (1) to deriveRe from the depolarization ratio mea-
surements. The de-convolution process, which removes the
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Figure 5. Monthly mean depolarization of low level water clouds.  Fig. 5. Monthly mean depolarization of low level water clouds.

tail of the lidar receiver’s transient response function, de-
pends on the response function used and on the exact cloud
top location within the 30 m range bin, can introduce errors
and may not always be stable. These errors in the extinction
coefficient will be magnified when it is subsequently used
for deriving effective radius using Eq. (1). Because of these
caveats, this approach can, at present, only be used for re-
search purposes with limited case studies. We will be revis-
iting it in the future for CALIPSO water data analyses after
the instrument transient response is well characterized.

As an alternative approach for deriving extinction coeffi-
cient and effective droplet radius, we adopted the collocated
water cloud droplet sizes retrieved from MODIS 3.7-µm data
for CERES (Minnis et al., 2006). The number of photons
scattered into the forward direction increases with particle
size. Thus, the chance of the photon being absorbed at the

 

 

 

Figure 6. Monthly mean layer water cloud extinction coefficient (1/km) at various 

longitude/latitude boxes. 

Fig. 6. Monthly mean water cloud extinction coefficient (1/km) at
various longitude/latitude boxes.

near-infrared wavelengths before returning back to space in-
creases with size. For the same optical depths, water clouds
with larger droplets are darker in the near-infrared wave-
lengths. The effective droplet radius derived from the ab-
sorption at 3.7µm reflects the average size information from
the very top part of water clouds, with a vertical penetration
depth similar to the CALIPSO lidar signal. Figure 4 shows
the global distributions of the monthly mean Re from the
Aqua CERES-MODIS analysis of July 2006, October 2006
and January 2007.

Using the layer integrated depolarization ratios (Fig. 5)
measured in water clouds, together with the coincidentRe

from CERES-MODIS cloud retrievals, we can derive the ex-
tinction coefficientsβ and liquid water content LWC of the
water clouds,

β = (
Re

Re0
)1/3

{1 + 135
δ2

(1 − δ)2
},

LWC ≈
2ρReβ

3
=

0.002Re

3
(

Re

Re0
)1/3

{1 + 135
δ2

(1−δ)2
}. (3)

Here, LWC is given in g/m3 andRe in µm. ρ is the density
of liquid water, expressed in g/cm3. Re0 is 1 µm. Figures 6
and 7 show the monthly mean extinction coefficients and liq-
uid water contents computed from the collocated CALIPSO
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Figure 7. Meanly mean Liquid water content of low-level water clouds. Fig. 7. Monthly mean liquid water content of low-level water
clouds.

depolarization and MODIS effective droplet sizes, respec-
tively. The liquid water content values agree with various his-
torical in situ measurements, e.g. the aircraft-based Gerber
probe measurements at the South Ocean Cloud Experiment
off the western coast of Tasmania by Gerber et al. (2001).

For water clouds with a mono-disperse droplet size distri-
bution, the water cloud particle number concentrationN can
be relatively accurately estimated if the extinction coefficient
is known,

Nmono =
β

2πr2
e

. (4)

In order to derive particle number concentrationN of wa-
ter clouds with various sizes, an assumption has to be made
about the shape of the size distributions. Here we assume a
generalized gamma distribution (Hu et al., 1993; Miles et al.,
2000),

n(r) =
N

0(γ )rm
(

r

rm
)γ−1 exp(−r/rm). (5)

Here (γ−1)rm is the mode radius of the size distribution, and
γ is the parameter representing the width of the size distribu-
tions (the larger theγ is, the narrower the size distribution).

1
γ+2 is the effective variance using the definition of Hansen

 

 

Figure 8. Monthly mean effective droplet number concentration of water clouds. Fig. 8. Monthly mean effective droplet number concentration of
water clouds.

(1971). The particle number concentration and extinction co-
efficient can be approximately related as,

β = 2πNr2 = 2π

∫
n(r)r2dr = 2πN(γ + 1)γ r2

m, (6)

Re =

∫
n(r)r3dr/

∫
n(r)r2dr = (γ + 2)rm, (7)

N =
β

2π(γ + 1)γ r2
m

=
β

2πR2
e

(γ + 2)2

(γ + 1)γ
= Ne

(γ + 2)2

(γ + 1)γ
. (8)

The effective number concentration,Ne=
β

2πR2
e
, can be de-

rived from depolarization ratios andRe following Eq. (3),

Ne = 1000
1 + 135δ2/(1 − δ2)

2π( Re

Re0
)5/3

. (9)

The effective number concentrationNe is expressed in cm−3.
Re0 is once again 1µm. Compared to the true droplet num-
ber concentrationN , the effective number concentration is
more relevant to absorption in the near infrared and thus to
the cloud albedo. However,Ne is not as closely related to
cloud condensation nucleii (CCN) as the true droplet num-
ber concentration.
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From Eq. (8),Ne/N=γ (γ+1)/(γ+2)2, and thus the ef-
fective droplet number concentrationNe and the true droplet
number concentrationN are very close whenγ is large
enough (i.e., when the effective variance is small enough).
The difference betweenN andNe is less than 50% whenever
γ is greater than 3 (effective variance smaller than 0.2), as
is the case for most water clouds. The difference can be ac-
counted for using information about the width of the droplet
size distribution. The effective number concentrationNe is
the same as the true number concentrationN for very nar-
row size distributions and thus very largeγ values, where
(γ+1)γ

(γ+2)2 ≈1. In general, the effective water cloud droplet num-
ber concentration is less than the true number concentration
and the difference increases with the width of the size distri-
bution.

Because the effective variance of the gamma distribution
is 1

γ+2, values ofγ>10 require the variance of the gamma
distribution to be less than 0.08. In an analysis of the angular
pattern of the linear polarization from the POLDER measure-
ments, Breon and Goloub (1998) suggest that the variance of
water cloud droplet size distribution can be as small as 0.02.
For water clouds with a 0.02 variance in size distribution,
Ne=0.94 N . For water clouds with a 0.1 variance in size
distribution, Ne=0.72 N . Miles et al. (2000) compiled all
the available aircraft in situ measurements of water clouds
and found the largest variance is as high as 0.2. Any knowl-
edge of the width will help make that difference smaller. The
CERES-MODIS retrievals use a modified gamma distribu-
tion having an effective variance of 0.1 (Minnis et al., 1998).

Figure 8 shows the global and seasonal distribution of
the water cloud effective number concentration. The true
water cloud droplet number concentration can be estimated
from Eq. (8) using climatological values of size distribution
widths. The errors in the number concentration can be as-
sessed using the size distribution width information retrieved
from polarization measurements of the glory scattering angle
and rainbow scattering angles.

3 Discussion

Using depolarization ratios provided directly by CALIPSO,
together with effective radius values obtained from MODIS
measurements, we can derive the effective cloud particle
number concentration of water clouds. When the width of
the cloud droplet size distribution is known, the true num-
ber concentration can be accurately estimated from the ef-
fective number concentration. Statistics of the true water
cloud particle number concentration will be compiled in the
future, using a climatology of size distribution widths esti-
mated from rainbow and glory information obtained from
PARASOL data, as well as other climatological values of size
distributions from ground and in situ measurements.

The spatial and seasonal variations of water cloud effective
droplet number concentration derived from this study show

some similarity to ocean biogeochemistry processes, and in
general agree with the patterns of DMS concentration sea-
sonal and temporal variations in the middle and low latitudes,
generated from the POP Ocean GCM by Chu et al. (2004).
Further similarities are expected between the seasonal and
spatial variations ofNe and the ocean primary productiv-
ity and phytoplankton, especially at middle to high latitudes,
consistent with the observations of Meskhidze et al. (2006).

The ocean mixed-layer depth change and corresponding
changes in low level water cloud amount may be as efficient
in terms of re-establishing the balance of TOA and surface
radiative fluxes as the sulfur cycle and cloud microphysics
hypotheses suggested by Shaw (1983). Both require more
studies using combined active and passive remote sensing of
the ocean and the atmosphere.

Edited by: Qiang Fu

References

Breon, F. M. and Goloub, P.: Cloud droplet, effective radius from
spaceborne polarization. measurements, Geophys. Res. Lett., 25,
1879–1992, 1998.

Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S.
G.: Oceanic phytoplankton, atmospheric sulfur, cloud albedo and
climate, Nature, 326, 655–661, 1987.

Chu, S., Elliott, S., and Maltrud, M.: Ecodynamic and Eddy-
Admitting Dimethyl Sulfide Simulations in a Global Ocean
Biogeochemistry/Circulation Model, Earth Interact., 8, 11,
doi:10.1175/1087-3562, 2004.

Gerber, H., Jensen, J. B., Davis, A. B., Marshak, A., and Wiscombe,
W. J.: Spectral Density of Cloud Liquid Water Content at High
Frequencies, J. Atmos. Sci., 58, 497–503, 2001.

Han, Q., Rossow, B., Chou, J., and Welch, R.: Global Survey of
the Relationships of Cloud Albedo and Liquid Water Path with
Droplet Size Using ISCCP, J. Climate, 11, 1616–1528, 1998.

Hanson, J.: Multiple Scattering of Polarized Light in Planetary At-
mospheres, J. Atmos. Sci., 28, 1400–1426, 1971.

Hu, Y. and Stamnes, K.: An accurate parameterization of cloud ra-
diative properties suitable for climate models, J. Climate, 6, 728–
742, 1993.

Hu, Y., Winker, D., Yang, P., Baum, B., L. Poole, and L. Vann: Iden-
tification of cloud phase from PICASSO-CENA lidar depolariza-
tion: A multiple scattering sensitivity study, J. Quant. Spectros.
Radiat. Trans., 70, 569–579, 2001.

Hu, Y., Liu, Z., Winker, D., Vaughan, M., Noel, V., Bissonnette, L.,
Roy, G., and McGill, M.: A simple relation between lidar multi-
ple scattering and depolarization for water clouds, Opt. Lett., 31,
1809–1811, 2006.

Meskhidze, N. and Nenes, A.: Photoplankton and cloudness in the
southern ocean, Science, 314, 1919, 2006.

Miles, N. J., Verlinde, J., and Clothiaux, E. E.: Cloud droplet size
distributions in low-level stratiform clouds, J. Atmos. Sci., 57,
295–311, 2000.

Minnis, P., Kratz, D. P., Coakley Jr., J. A., et al.: Cloud Opti-
cal Property Retrieval (Subsystem 4.3), Clouds and the Earth’s
Radiant Energy System (CERES) Algorithm Theoretical Basis

Atmos. Chem. Phys., 7, 3353–3359, 2007 www.atmos-chem-phys.net/7/3353/2007/



Y. Hu et al.: Statistics of liquid water content and effective number 3359

Document, Volume III: Cloud Analyses and Radiance Inversions
(Subsystem 4), NASA RP 1376 Vol. 3, edited by: CERES Sci-
ence Team, December, 135–176, 1995.

Minnis, P., Garber, D. P., Young, D. F., Arduini, R. F., and Takano,
Y.: Parameterization of reflectance and effective emittance for
satellite remote sensing of cloud properties, J. Atmos. Sci., 55,
3313–3339, 1998.

Minnis, P., Geier, E., Wielicki, B., et al.: Overview of CERES
cloud properties from VIRS and MODIS, Proc. AMS 12th Conf.
Atmos. Radiation, Madison, WI, July 10–14, CD-ROM, J2.3.,
2006.

Shaw, G.: Aerosols as climate regulators: a climate-biosphere link-
age, Atmos. Environ., 21, 985–986, 1983.

www.atmos-chem-phys.net/7/3353/2007/ Atmos. Chem. Phys., 7, 3353–3359, 2007


