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ABSTRACT

This study further develops the analog-dynamical method and applies it to medium-range weather fore-

casts. By regarding the forecast field as a small disturbance superimposed on historical analog fields, historical

analog errors can be used to estimate and correct forecast errors. This method is applied to 10-day forecasts

from the Global and Regional Assimilation and Prediction System (GRAPES). Both the distribution of

atmospheric circulation and the pattern of sea surface temperature (SST) are considered in choosing the

analog samples from a historical dataset for 2001–10 based on NCEP Final (FNL) data. The results dem-

onstrate that the analog-dynamical method greatly reduces forecast errors and extends the period of validity

of the global 500-hPa height field by 0.8 days, which is superior to results obtained using systematic correction.

The correction effect at 500 hPa is increasingly significant when the lead time increases. Although the analogs

are selected using 500-hPa height fields, the forecast skill at all vertical levels is improved. The average

increase of the anomaly correlation coefficient (ACC) is 0.07, and the root-mean-square error (RMSE) is

decreased by 10 gpm on average at a lead time of 10 days. The magnitude of errors for most forecast fields,

such as height, temperature, and kinetic energy is decreased considerably by inverse correction. The model

improvement is primarily a result of improvement for planetary-scale waves, while the correction for synoptic-

scale waves does not affect model forecast skill. As this method is easy to operate and transport to other

sophisticated models, it could be appropriate for operational use.

1. Introduction

The capabilities of numerical weather forecasting

have developed significantly as a result of the increasing

accumulation of observational data, advanced data as-

similation, and more sophisticated models. However,

forecast errors are still considerable and further im-

provements are required. Errors can be attributed to

two factors: inaccurate initial conditions and model de-

ficiencies. The errors in initial conditions have been

substantially reduced as a result of the development

of data assimilation and ensemble forecasting, making

model deficiencies a far more important factor (Kalnay

2002). Generally, model errors can be reduced by in-

creasing model resolution and improving physical pa-

rameterizations, but they cannot be eliminated as the

model develops. As a result, it is necessary to develop

empirical strategies to account for model errors as a sup-

plement to the general strategy.

The strategies and methodologies to correct model

errors can be classified into state-dependent corrections

and state-independent corrections (Danforth and

Kalnay 2008a). The latter are independent of models

and are frequently used, such as model output statistics

(Glahn and Lowry 1972) and nudging (Johansson and

Saha 1989; Kaas et al. 1999; Klinker and Sardeshmukh

1992; Saha 1992; Yang et al. 2008; Yang and Anderson

2000).

Mean-square forecast error can be divided into sys-

tematic and nonsystematic components, with systematic

components contributing about 20% (Dalcher and Kalnay

1987). Model deficiencies can lead to both systematic

and nonsystematic errors (Reynolds et al. 1994), while

some results have indicated that state-independent cor-

rection can only reduce systematic components (DelSole

and Hou 1999; DelSole et al. 2008; Saha 1992). This

suggests that state-dependent correction is needed to

reduce nonsystematic errors. One effective method is to

establish a statistical relationship between the tendency
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errors and model state (Leith 1978). DelSole and Hou

(1999) developed such a method for a nonlinear quasi-

geostrophic model and found that forecast skill was

improved. However, computations of the cross variance

have been found to be prohibitive for operational use

(Danforth et al. 2007). Using the singular-value decom-

position of coupled analysis correction and forecast state

anomalies, Danforth and Kalnay (2008b; Danforth et al.

2007) greatly reduced the computational expense, but the

global average improvement was minimal because the

correction was made locally in space and time. The com-

monality of these methods is the requirement of a sample

time series to estimate the error covariance; therefore, the

statistical relationship depends on the samples selected

and it is difficult to maintain consistent results.

For linear systems, it is effective to establish statistical

relationships to correct model errors, and using more

historical data yields better results. However, this is not

the case for nonlinear systems, which require more data

pertinence rather than simply a large quantity of data.

Alternatively, analog states in historical observation

datasets may have similar characteristics to the current

state, and can be taken into account to estimate and

correct state-dependent errors. As a phenomenon of

atmospheric nonlinear evolution, analogs have been

widely used in forecast and predictability studies. Lorenz

(1969) used naturally occurring analogs to ensure the

error growth would reflect predictability. His results

also indicated that the likelihood of encountering true

analogs is small, as confirmed by Van den Dool (1994).

Barnett and Preisendorfer (1978) avoided this problem

by using the analog climate state vector in the multi-

dimensional EOF space of multiple datasets. In short,

analog forecasting has been much developed and used

operationally in the National Centers for Environmen-

tal Prediction (NCEP; Livezey and Barnston 1988).

With regard to the traditional analog forecast, it is an

oversimplification to regard the current state as a repeat

of the historical states. Combining analog states with

a dynamical model is expected to be beneficial, so the so-

called analog-dynamical approach has been developed.

When the forecast state is regarded as a small distur-

bance superimposed on a historical analog field, statis-

tical techniques can be used in combination with a

dynamical forecast (Chou 1979). By estimating the cur-

rent tendency error with that of an analog state, a devia-

tion equation is obtained in the quasigeostrophic model

and an improved forecast performance is achieved (Qiu

and Chou 1989). On this basis, Huang et al. (1993) es-

tablished a coupled analog deviation model for monthly

and seasonal forecasts and achieved better results

compared with the statistical analog method. This

method has been applied to forecasts of the monthly

mean circulation in an operational T63L16 model, with

results superior to the control forecasts (Bao et al. 2004).

A similar methodology was proposed independently by

D’Andrea and Vautard (2000), who used a method sim-

ilar to four-dimensional variational assimilation to esti-

mate the initial tendency errors of analog samples.

However, the complexity involved in establishing an

adjoint model has limited its operational applications.

Ren and Chou (2007) and Ren et al. (2006) estimated

forecast error instead of tendency error using analog

techniques to avoid establishing an analog deviation

model. They obtained considerable predictive skill in

monthly means and extended-range forecasts, but their

method did not yield any improvements at the 10-day

time scale. Zheng et al. (2013) separated predictable

components and unpredictable random components

from the standpoint of error growth, and used this

method to correct errors in the predictable components

in extended-range forecasts, improving the forecast skill

to some extent.

In summary, researchers have extensively developed

the analog-dynamical method, which has improved the

forecast at time scales longer than medium range. This

improvement is due to the theoretical basis of the analog-

dynamical method in long-range forecasts: the analog

rhythm phenomenon, which is a nonuniform oscillation

of analog deviation disturbance caused by nonlinear

atmosphere–earth coupling and seasonal variation of

monthly mean circulation (Huang and Chou 1990).

External forcing and low-frequency flow patterns play

leading roles at long-range time scales and the analog

characteristics are evident. As for the medium-range

forecast within 10 days, the role of the initial field is crucial

and internal errors may grow nonlinearly. Therefore, it is

difficult to parameterize state-dependent errors to im-

prove forecast skill.

The purpose of the present study is to parameterize

these state-dependent errors and improve model per-

formance by reconsidering and developing the analog-

dynamical method in an operational weather forecast

system, on the basis of research of pioneer contributors.

The dynamic model and dataset used in this study are

introduced in the next section. The strategies and cor-

rection procedure are described in section 3. Section 4

lists the main verification statistics used to assess fore-

cast skill. The main results of experiments are presented

in section 5, and the results are summarized and dis-

cussed in the conclusions.

2. Dynamic model and data

The dynamic model used in this study is the Global/

Regional Assimilation and Prediction System (GRAPES),
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which was developed by the China Meteorological Ad-

ministration (CMA) in collaboration with several uni-

versities, and has been applied to operational forecasts.

GRAPES has the following main characteristics: a fully

compressible nonhydrostatic model core with a semi-

implicit and semi-Lagrangian time integration scheme;

a height-based terrain-following coordinate; longitude–

latitude grid points with Arakawa C staggered arrange-

ment for horizontal discretization; a Charney–Philips

scheme for vertical discretization; free surface of a rigid

body set as the top and bottom boundary conditions;

physical schemes including cumulus convection, micro-

physics, radiation, planet boundary layer process, and

earth surface processes; and code architecture modu-

larized and parallelized with high flexibility. Details of

this model have been reported by Chen et al. (2008) and

Zhang and Shen (2008).

The global version of the model is chosen for correc-

tion because the spatial resolution of the global model is

equal to that of the historical dataset. The horizontal re-

solution is set to 18 3 18 to avoid errors arising from in-

terpolation betweenmodel grids and reanalysis data grids.

The NCEP Final (FNL) Operational Global Analysis

data product is used as the initial field and the validator

for the forecast. It has a global coverage with horizontal

resolution of 18 3 18, 26 vertical layers, and a 6-h tem-

poral interval. Correspondingly,model outputs, including

temperature, geopotential height, zonal wind, meridional

wind, and humidity, are postprocessed at the same ver-

tical level and output interval. The NCEP real-time

global surface sea temperature (RTG_SST) analysis

dataset is used to drive global GRAPES with a 18 3 18
horizontal resolution.

3. Strategy and correction procedure

In general, numerical weather prediction is proposed

as an initial-value problem, and the evolution of model

atmosphere can be described as the solution to the fol-

lowing Cauchy problems:

›c

›t
5L(c) , (1)

c(x, t)jt5t
0
5G(x) , (2)

where c 2 R
n is the model atmosphere state vector; n is

the freedom degrees of the model; G(x) is the initial

status, while x is a vector in the spatial coordinates; and

L is the numerical model operator of c, indicating the

processes that the model can describe. The exact at-

mospheric state vector in R
n is expressed as u. The

model error operator can be described as E(u), which

indicates the processes of the model do not consider or

cannot be parameterized precisely, as a functional of u.

By introducing this term, an accurate atmospheric model

can be expressed as

›u

›t
5L(u)1E(u) , (3)

u(x, t)jt5t
0
5G(x) . (4)

The forecast error at a lead time of t is given by

P(u,c, t)5ujt5t
0
1t 2cjt5t

0
1t

5

ðt
0
1t

t
0

[L(u)1E(u)] dt2

ðt
0
1t

t
0

L(c) dt .

(5)

Assuming that the initial value error and computational

error are not considered, the forecast error depends on

E(u). When the model is accurate, E(u)5 0, and it can

derive to P(u,c, t)5 0.

It can be proven given some hypotheses (see the proof

in the appendix) that the functional P(u,c, t) can con-

stitute a continuous curved surface on R
n 3R

n, and the

following theorem can be established:

"«. 0, u0 2 R
n, c0 2 R

n, dd. 0, whenever

u 2 R
n,c 2 R

n, ku2u0k, d and kc2c0k, d,

such that kP(u,c, t)2P(u0,c0, t)k, « .

This is the continuity theorem of P(u,c, t) on R
n 3R

n

about u and c. The schematic illustrating the continuity

is shown in Fig. 1. Following this theorem, if there exists

n historical reference states ~u1, ~u2, . . . . . . , ~un in the d

neighborhood of u0, and the corresponding model state

vectors ~c1, ~c2, . . . . . . , ~cn are in the d neighborhood of

c0, such that the forecast errors satisfy the following

condition:

kP(~uk,
~ck, t)2P(u0,c0, t)k, « (k5 1, 2, . . . . . . n) .

(6)

This indicates that P(u0,c0, t) can be interpolated by

P(~uk, ~ck, t). In fact, u can be regarded as a small dis-

turbance superimposed on ~uk (i.e.,u5 ~uk 1Duk), where

~uk satisfies the exact atmospheric evolution:

›~uk

›t
5L(~uk)1E(~uk) , (7)
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~uk(x, t)jt5t
1
5 ~G(x) , (8)

where t1 is the initial time of ~uk. The corresponding

forecast error at the lead time of t is

P(~uk,
~ck, t)5 ~ukjt5t

1
1t 2

~ckjt5t
1
1t

5

ðt
1
1t

t
1

[L(~uk)1E(~uk)] dt2

ðt
1
1t

t
1

L(~ck) dt .

(9)

From this perspective, the estimation of forecast er-

rors can be converted to the interpolation of multivari-

ate functions. Any special point on the curved surface

can be interpolated by the points in the d neighborhood,

and their functional value differences would be less than

«. Thus, the current forecast error can be interpolated

with the corresponding hindcast errors of some selected

analog reference states. If n historical reference states

exist in the delta neighborhood, the special forecast er-

ror can be interpolated by the corresponding n forecast

errors. In extreme conditions, the control forecast cor-

responds to the neighborhood of d5 0 and no historical

reference state is used. When the neighborhood extends

to the entire R
n space, it corresponds to a systematic

correction and the ensemble mean error of all the his-

torical states in the space is obtained. Theoretically, in-

terpolation in the neighborhood of limited d provides

more accurate results compared with the two situations

above. This is the nature of the analog-dynamical method.

The comparison between the practical effect of analog-

dynamicalmethods, the control forecast and the systematic

correction will be shown in the results section. In prac-

tice, the experimental correction scheme is as follows in

the sections 3a–3c.

a. Step 1: Establishing the historical dataset

The FNLOperational Global Analysis data with a 6-h

temporal interval from 2001 to 2010 were collected to

establish the historical dataset, which is considered the

reference state here.

b. Step 2: Historical analog search

From the proof of the above theorem (see the ap-

pendix), we can conclude that the following conditions

should be satisfied to ensure the establishment of the

continuity theorem:

1) Analog of initial value [i.e., kG(x)2 ~G(x)k �
kG(x)k];

2) Analog of boundary, by which state vectors of the

current state and the reference state can have similar

time evolutions; and

3) Limited lead time, which ensures that ku2 ~uk and

kc2 ~ck will not grow larger over time.

The analog search should sufficiently consider the

above three criteria. For criterion 1, the 500-hPa height

field is selected as the analog variable for simplicity to

search similar initial fields. The criterion used is the

analog deviation (Li 1986), which is defined as

Cij 5
aRij 1bDij

a1b
, (10)

Rij 5
1

m
�
m

k51

jHij(k)2Eijj , (11)

Dij 5
1

m
�
m

k51

jHij(k)j , (12)

Hij(k)5Hi(k)2Hj(k) , (13)

Eij 5
1

m
�
m

k51

Hij(k) , (14)

where Rij is the pattern similar parameter, Dij is the

intensity similar parameter, and a and b are their con-

tribution coefficients, setting a5 2 and b5 1 in this

study to emphasize the effects of patterns in the height

field. Here Hi(k) is the height field of sample i, and m is

the total number of grids.

According to criterion 2, the search is limited to the

same season and time of day as the current state to avoid

the effects of seasonal and diurnal variations. For a global

model, the external forcing of sea surface temperature

FIG. 1. Schematic illustrating the continuity of forecast error.
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(SST) is important, so the historical reference states are

classified into three types by the Ni~no-3.4 index: El Ni~no

type, LaNi~na type, and normal type. The search scope of

the analog is limited to the corresponding type of the

current initial field.

Criterion 3 illustrates that the persistence of the at-

mospheric analog is finite and the current forecast state

will no longer be similar to the historical analog state

selected with increasing lead time. Therefore, the his-

torical analog states have to be updated again. The up-

date period is set at 5 days, which is the general period of

the large-scale flow regime. The forecast restarts after

each period.

Theoretically, the more analogs are used, the more

improvement can be made. According to the continuity

theorem, when « is fixed there is a d neighborhood for

any forecast state whose distance to the current state is

less than d, such that the corresponding distance of these

two forecast errors would be less than «. In practical

situations, it is difficult to ensure that all the selected

reference states are in this d neighborhood. As a result,

the quality of reference states determines the correction

effect. Because the historical datasets used are from

2001 to 2010 and the volume is not large enough, it is

difficult to ensure the quality of analogs when too many

samples are selected. Using analog deviation to describe

the analog quality, the values of the analog deviation of

each sample divided by the analog deviation of the most

similar samples of the case are shown in Fig. 2. As shown

in the figure, the analog quality decreases as the sample

order increases. When the analog sample order is lower

than four, most of the ratios are less than 1.1. Previous

research about monthly forecasts (Ren and Chou 2007)

has shown that four analogs offer effective correction, so

in this situation, we select four analog samples for each

case.

Based on the above principle, the procedures for

selecting analogs are as follows. First, the analog selec-

tion is restricted to the same season and time of day as

the current initial field. Second, because the Ni~no-3.4

index is calculated by month, the selection is limited to

months with the same SST type as the current state.

Third, the most similar sample is searched using the

analog deviation in each satisfied month. The selected

samples are then sorted by analog deviation and the first

four similar samples are selected. The reason for not

calculating the best analogs over the set is to avoid the

intensive distribution of the selected samples in some

continuous period. In that case, these samples would

have a similar correction effect. To enhance the repre-

sentativeness, the samples are selected by month.

c. Step 3: Forecast error correction

Both online correction and after-the-fact correction

can be considered. Because online correction may pro-

duce additional errors and influence the balance be-

tween different physical quantities, the after-the-fact

method is used here to avoid disrupting dynamic co-

ordination. The frequency of correction is limited to the

interval of historical reference states, and the forecast

error estimation frommultiple historical analog states is

corrected after the fact in the intervals.

These steps of the experimental scheme are illustrated

by the flow diagram in Fig. 3. First, parameters such as

the correction interval and analog update period are

defined. Based on the current initial field, some analog

samples are selected from the historical dataset. When

the current forecast is conducted, the corresponding

hindcasts are also performed and we can determine the

hindcast errors at each correction interval. The ensem-

ble mean of these errors is taken as the correction esti-

mation to be added to the current forecast output. This

correction is conducted after the fact and will not affect

the next forecast. When the time arrives for the analog

update period, the corrected forecast is taken as the

initial field to reselect analog samples in the historical

datasets to rerun the above procedures, until the current

forecast is finished. Additionally, because the assimila-

tion model is different from the forecast model, an ini-

tialization using a digital filter (Lynch and Huang 1992)

is performed before the current forecasts and historical

hindcasts are conducted to filter high-frequency gravity

FIG. 2. Variance in analog deviation ratio by sample order. Each

color represents a case, the y axis represents the analog sample

order of each case, and the x axis is the corresponding analog de-

viation of each sample divided by the analog deviation of the first

sample in the case.
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waves andmake the initial field adaptive to theGRAPES

model.

Following this strategy, 40 independent cases with

10-day integrations are randomly selected from summer

(June–August) and winter (December–February) of

2011. The effects of the analog correction are assessed in

the results section.

4. Verification statistics

The verification statistics used to assess the predictive

skill of 10-day integrations for control and correction

forecasts are presented below.

a. Anomaly correlation coefficient (ACC)

The ACC of latitude j is

ACC( j)5

�
N

j

i51

2
4Fij 2Cij 2

1

Nj

�
N

j

i51

(Fij 2Cij)

3
5
2
4Aij 2Cij 2

1

Nj

�
N

j

i51

(Aij 2Cij)

3
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

j

i51

2
4Fij 2Cij 2

1

Nj

�
N

j

i51

(Fij 2Cij)

3
5
2

�
N

j

i51

2
4Aij 2Cij 2

1

Nj

�
N

j

i51

(Aij 2Cij)

3
5
2

vuuut
, (15)

where Fij is the forecast value, Aij is the analysis value,

Cij is the climate-mean value, and Nj is the number of

grids at latitude j. Considering the weighted mean, the

global ACC is

ACC5

�
N

j51

ACC( j) cosuj

�
N

j51

cosuj

. (16)

The ACC reflects pattern correlation between fore-

casted and analyzed anomalies, which can be used to

assess the errors in position and strength of flow regimes.

b. Root-mean-square error (RMSE)

The RMSE of latitude j is

RMSE( j)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nj

�
N

j

i51

(Fij 2Aij)

vuut , (17)

FIG. 3. Flow diagram illustrating the correction procedure.
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where Fij is the forecast value, Aij is the analysis value,

and Nj is the number of grids at latitude j. Considering

the weighted mean, the global RMSE is

RMSE5

�
N

j51

RMSE(j) cosuj

�
N

j51

cosuj

. (18)

The RMSE reflects the mean degree of forecast de-

parture from the analysis field.

c. Kinetic energy

Kinetic energy is an effective diagnostic measure to

characterize atmospheric circulation. In this study, it is

used to assess the correction ability. The zonal-averaged

mean kinetic energy can be decomposed as follows

(Jung 2005):

K5KSMTM 1KSMTE 1KSETM 1KSETE , (19)

K5
1

2
([u3 u]1 [y3 y]) , (20)

KSMTM 5
1

2
([u]3 [u]1 [y]3 [y]) , (21)

KSMTE 5
1

2
([u]

0
3 [u]

0
1 [y]

0
3 [y]

0
) , (22)

KSETM 5
1

2
([u*3u*]1 [y*3 y*]) , (23)

KSETE 5
1

2
(u0*3 u0* 1 y0*3 y0*), (24)

where brackets denote a zonal mean, asterisks denote

departures from the zonal mean, overbars denote the

temporal mean, and primes denote departures from the

temporal mean. The variable KSMTM is the zonal long-

term mean term, which reflects the climatic zonal mean;

KSMTE is the transient zonal mean term, which reflects

the temporal variation of zonal mean flow; KSETM is

a stationary eddy term, which reflects the permanent

atmospheric action center and the impacts of ocean–

land distribution and topography; andKSETE is transient

eddy term, reflecting synoptic-scale systems.

5. Results

The mean results of 40 independent cases are pre-

sented in this section. The general correction effect is

discussed first using the verification statistics of theACC

and RMSE. Figure 4 shows the correction results of the

500-hPa height field by forecast time. The global result

shows that the correction has a positive effect at all lead

times and the period of validity is extended from 6.7 to

7.5 days. The improvement is significant beyond 5 days

as the control model has a relatively high predictive

ability within 5 days, with the maximum improvement

reaching 0.06 at the 10th day. The shaded bands indicate

that the variance in ACC by cases becomes larger with

the increase of lead time. Because the initialization is

conducted using a digital filter, as mentioned above, and

interpolation is conducted because of the inconsistency

of horizontal grids between the forecast output and FNL

data, the ACC starts at less than 1. The results in the

extratropical Northern Hemisphere (NH), extratropical

Southern Hemisphere (SH), and tropics are also shown

to explore the correction effect independently. The NH

(208–808N) result reveals that the correction effect ap-

pears at all lead times and increases with the lead time.

In the SH (208–808S), the uniform underlying surface

makes the skill of the control forecasts relatively high,

and the correction effect is not as obvious as in the NH,

especially during the first 5 days. The most evident im-

provement appears in the tropics (208S–208N), and the

corresponding period of validity is extended by ap-

proximately 1.25 days. The reason for this may be that

the forecast errors in the tropics are more associated

with subgrid-scale parameterization, which exhibit sys-

tematic characteristics that can be captured by the cor-

rection. To clearly demonstrate the correction effect and

variation among different cases, Fig. 5 shows the global

mean relative improvements of ACC and corresponding

error bars with 95% confidence intervals. As shown in

the figure, relative improvements increase with the lead

time. Meanwhile, uncertainty also increases with lead

time, indicating that the correction is state dependent

and relies strongly on the initial field.

To explore the vertical structure of correction ability,

ACC and RMSE values are calculated in global height

fields at all levels, as shown in Fig. 6. Meanwhile, to

compare the analog-dynamical correction with the two

extreme conditions mentioned in section 3, a systematic

correction is conducted by adding the climate drift,

which is the ensemble mean of 5-day hindcast errors

from 2001 to 2010 considering seasonal changes. The pro-

cedures of systematic correction are as follows: the 6-h

hindcast error can be denoted as du6, which is the bias

of 6-h hindcast from analysis data, and the ensemble

mean of du6 is given by du6 5 ð1/NÞ�N
i51du6(i), where

N 5 years 3 days in a season 3 6-h intervals [i.e., for

summer (June–August), N5 103 (30 1 31 1 31) 3 4].

The 5-day mean hindcast errors with 6-h intervals

du6, du12, du18, . . . , du120 are calculated in the same way.
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These ensemble mean estimations are used to make

posteriori bias corrections to the 5-day control forecast.

The model is restarted after 5 days with corrected

forecast outputs, and the posteriori bias corrections are

repeated with the new estimates. For the current fore-

cast in winter, the procedures are the same, using the

hindcasts of December–February from 2001 to 2010.

The ACC results indicate that systematic correction

causes a positive improvement only at the upper and

lower levels with a lead time of 5 days. This may be as-

sociated with the parameterizations of the land surface,

boundary layer, and stratosphere, which exhibit sys-

tematic characteristics. In contrast, the analog-dynamical

forecast is improved at all levels. With the 10-day lead

time, positive improvement is uniformly distributed

among vertical levels in both corrections. The mean

ACC increase in the systematic correction is 0.03, while

that in the analog-dynamical forecast is 0.07. The max-

imum error reflected by the RMSE appears at 250 hPa.

This may be related to weak simulation of the in-

teraction between the tropopause and the stratosphere.

The correction has a less obvious effect on the RMSE at

the lead time of 5 days. The systematic correction makes

the RMSE increase, while the analog-dynamical fore-

cast has a positive effect at all levels, reducing it by

4 gpm on average. The correction effect becomes con-

siderable with a 10-day lead time. Correction of the

analog-dynamical forecast becomes significant as the

level increases, reaching a maximum at 12 gpm and

then decreasing, while a systematic correction effect

is still not evident.

To further investigate the forecast skill and correction

effect at different spatial scales, the forecast height field

at 500 hPa is zonally expanded into Fourier series.

The sum of the zero to third wave terms represents

planetary-scale systems, and synoptic-scale systems are

represented by the sum of fourth to ninth wave terms.

The correction results for a planetary scale are shown in

Figs. 7a,c. The ACC-indicated improvement in analog-

dynamical results compared to the control result is re-

markable, extending the period of validity from 7.5 to

8.6 days and raising the ACC at the 10-day forecast

period by 0.1. A systematic correction effect is not evi-

dent, especially in the first 5 days, and the corresponding

FIG. 4.MeanACCof the global 500-hPa height field between the forecast and analysis data as a function of forecast

time for the control forecast (blue) and corrected forecast (red) in different regions: (a) global, (b) extratropical

Northern Hemisphere (208–808N), (c) extratropical Southern Hemisphere (208–808S), and (d) tropics (208S–208N).

The shaded bands indicate 95% confidence intervals.

APRIL 2014 YU ET AL . 1577



period of validity is 7.8 days. Analog-dynamical cor-

rections reduce the RMSE at all lead times as shown in

Fig. 7c, and are superior to the control forecast. Mean-

while, systematic correction yields no improvement. At

the synoptic scale, neither correction has an effect at any

lead time, as shown in Figs. 7b,d. This may be attributed

to two factors. First, analog selection cannot accurately

capture the synoptic-scale pattern and fails to capture

the evolution of synoptic-scale errors. Second, either

correction may introduce some noise, which has a simi-

lar scale to the synoptic systems, offsetting the positive

correction effect. In other words, the improvement of

analog-dynamical results is most often the result of cor-

rections in planetary waves.

The above results reveal general improvement in the

analog-dynamical method in terms of verification skill.

As RMSE only reflects the mean bias, we investigated

the bias distribution of the original model and compared

it with the analog-dynamical corrected result. Figure 8

presents the zonal averaged 10-day forecast errors of the

original forecast and the analog-dynamical forecast. The

temperature results reveal that the original forecast is

too cold for the stratosphere and too warm for lower

levels at high latitudes in the SH. The height field in the

original forecast is overestimated at the Antarctic and

underestimated at high levels in the NH. Reverse pat-

tern relationships appear between the original forecast

and the correction. The correction rightly offsets high

biases so that zonal-averaged errors are strongly weak-

ened. It also indicates that both temperature and height

fields are overcorrected in some regions, especially at

high latitudes in the NH.

The horizontal distributions of forecast bias are shown

in Figs. 9 and 10. Figure 9 shows that the forecast bias of

height field has systematic features. Because the con-

vergence of the spherical polar coordinates may cause

instability in the calculation, the accuracy of the control

forecast is weak and the height field is too high in the

Antarctic. The forecast bias in the NH is affected by the

land–ocean distribution, and high value areas are mainly

distributed across the continent. This may be associated

with the complex topography and defective land surface

FIG. 5. Mean relative improvement of the ACC of global

500-hPa height field between the forecast and analysis data as a

function of forecast time. The error bars represent 95% confidence

intervals.

FIG. 6. Vertical distribution of the (a) ACC and (b) RMSE of global height field between forecast and analysis data

for the control forecast (blue), systematic correction (black), and analog-dynamical forecast (red) at the forecast time

of 5 (solid) and 10 (dashed) days, with shaded bands indicating 95% confidence intervals.
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parameterization. Overestimations are concentrated

over Asia and North America at 850 hPa, and these re-

gions are inversely underestimated at 500 hPa, matching

the cold bias shown in Fig. 8. Less forecast bias appears

for the tropics, where the magnitude of the height field is

low and the ocean cover is large. The forecast bias re-

veals wave train characteristics at midlatitudes in both

hemispheres, and is more evident in the SH with a zonal

wavenumber of 5. Interestingly, the patterns of the wave

train at 500 and 850 hPa are similar, indicating that

the forecast errors on synoptic scales have a barotropic

structure. This may be caused by the low temperature

gradient due to the uniform sea surface. The correction

exactly identifies the main area of errors and offsets

biases, especially over the Antarctic and continents in

the NH. However, overcorrection occurs in some areas

at high and midlatitudes. The wave train still has a low

magnitude and inversed phase, which is consistent with

the weak correction effect on synoptic scales, as shown

in Fig. 7.

Figure 10 illustrates the horizontal distributions of

temperature forecast bias. An underestimation appears

in the NH over the continent at both 500 and 850 hPa,

with a maximum in North America, indicating that this

is a systematic model error. The error may be caused by

problems in the interaction between clouds and radia-

tion of the model, resulting in error of the radiation

budget. The magnitude of error at 850 hPa is greater

than that at 500 hPa; this difference may arise from the

land surface and boundary layer parameterizations,

which are the most difficult schemes in the model. The

model may also lack coordination between the land

surface and boundary layer parameterizations, which

could be overcome or lessened by careful diagnosis and

debugging. In the SH, the forecast bias is not as evident

at low and midlatitudes because the underlying surface

of the ocean makes the temperature predicable over

a longer period. An overall warm estimation appears at

high latitudes of 500 and 850 hPa, especially over the

Antarctic. The correction can exactly identify and offset

the distribution characteristics of the warm bias. After

the correction, the original errors are greatly decreased,

as seen over continents in the NH. The corrected field

has a narrow error range, with the maximum less than

FIG. 7. ACCandRMSEof 500-hPa height field between forecast and analysis data depending on the spatial scale as

a function of lead time for the control forecast (blue), analog-dynamical forecast (red), and systematic correction

(black) for (a),(c) planetary-scale waves and (b),(d) synoptic-scale waves, with shaded bands indicating 95% con-

fidence intervals.
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4K at 850 hPa. However, the warm bias in the Antarctic

is undercorrected, leaving a weak warm bias at both 500

and 850 hPa.

In addition to these thermodynamic quantities, im-

provements in the flow field need to be diagnosed. Ki-

netic energy is used here to characterize this effect.

Figure 11 presents the forecast errors of kinetic energy

for 6–10 days, along with the structure of corresponding

reanalysis results from FNL data. Themean total kinetic

energy is decomposed into four parts as described

above, and each part is clearly shown. Notably, KSMTM

dominates the area of the subtropical jet streams. The

largest errors appear in the upper-level jet area, with

underestimations up to 80m2 s22. They are inversely

offset, with the error range reduced by half. KSETM re-

flects the contribution of stationary waves and is most

remarkable in mid- and upper levels of the atmosphere,

corresponding to the atmospheric active centers. Ac-

cording to the results of the control model, it is obvious

that this underestimation is concentrated in high value

areas. These errors are reduced to some extent, but

some underestimation still appears, up to 25m2 s22. The

transient terms include KSMTE and KSETE. The former

reflects the temporal variations in zonal mean flow, such

as the seasonal transform and index cycle, which is evi-

dent in the mid- and high latitudes. KSMTE has a small

magnitude because it is a slowly changing variable in

10-day forecasts. As a result, the original errors and

correction are both small, and the range is decreased by

half.KSETE represents transient eddies and is the term of

most concern. As a measure of the performance of

baroclinic instability, its distribution is concentrated in

midlatitude areas. The distribution of KSETE errors is

similar to the distribution of the values themselves, and

the maximum underestimation is 90m2 s22. Correction

can effectively reduce the error to a certain extent, up to

20m2 s22. Above all, the control forecast underestimates

the kinetic energy, and correction can improve the forecast

FIG. 8. Zonally averaged 10-day forecast errors for (left) global temperature field and height field of the controlmodel, (middle) correction

quantity by the analog-dynamical method, and (right) forecast errors after correction.

1580 MONTHLY WEATHER REV IEW VOLUME 142



skill to some extent. However, the kinetic energy error is

undercorrected and also underestimated after correc-

tion, at about half of the original magnitude.

6. Conclusions and discussion

Model deficiencies can be attributed to the model grid

resolution not being sufficiently fine and the parame-

terizations not exactly describing subgrid-scale physical

processes (e.g., those related to deficiencies in the dy-

namical framework, the land surface, and boundary

layer parameterizations, etc., as discussed in the results

section). The general approach to reducing systematic

errors is to develop a model with more elaborate pa-

rameterizations and denser grid resolution. However,

no matter how fine the model becomes, considerable

systematic errors will still appear. Therefore, new fore-

cast strategies are needed to correct for model errors by

incorporating historical data, which include vast samples

and may provide some information about model errors.

However, because the atmosphere is a nonlinear system,

it may not be efficient to use a large amount of historical

data to establish statistical relationships between model

errors and state variables. Analogs may be a useful al-

ternative method.

This article presented an analog-dynamical method,

based on the work of pioneer contributors and in-

vestigators, to correct a medium-range weather forecast

system. The method is easy to operate and transport to

other sophisticated models, so it may be appropriate for

operational use, which is the objective of this work. The

ensemble mean of hindcast errors from the historical

analog samples is used to estimate current forecast er-

ror. The proof for continuity of forecast error provides

theoretical support for this method. Based on the results

of 40 randomly selected cases, we can conclude that the

correction improves forecast skill and that the effect is

increasingly significant with increased lead time. We also

FIG. 9. Mean 10-day forecast errors for the global height field of (left) 500 hPa and (right) 850 hPa for (top) control

model, (middle) correction by the analog-dynamical method, and (bottom) forecast errors after correction.
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confirmed that the improvement is superior to control

and systematic corrections, and is mostly caused by cor-

rections on planetary scales. Meanwhile, the improve-

ment is stable at different altitudes. The biases of errors

for pressure and temperature are greatly weakened with

inverse correction, and kinetic energy is also modified

to some extent. These findings demonstrate that the

analog-dynamical method can capture the main char-

acteristics of error pattern. The errormagnitude of slowly

changing variables, such as thermodynamic quantity, is

appropriately estimated in these corrections. However,

for rapidly changing variables such as kinetic energy, the

estimation of error magnitude is narrowed, especially at

energy of transient eddies.

Despite its improvements, the model still has some

limitations. First, the method may introduce some ad-

ditional errors. This is because the analog-dynamical

correction is essentially an interpolation in R
n space,

and the interpolation error is considerable when model

errors are reduced to a certain degree. In this sense,

interpolation errors strongly rely on the quality of se-

lected analog samples, which is why careful selection of

analog samples is required: we used only four samples

for each case. Second, we empirically determined the

amount of analog samples for each case and analog

criteria. These will vary by model and dataset, so the

optimal scheme should be confirmed by conducting

numerical experiments. Third, FNL data are regarded

here as the evolution of the real atmosphere, and used to

validate the forecast and establish historical reference

states, which will make theGRAPES behave like the FNL

data. The findings presented here would be more con-

vincing if an independent dataset was used for verification.

The analog update period is set at 5 days, which is the

general period of the large-scale flow regime. Because

analogs will diverge from each other more quickly on

smaller spatial scales, the effects of shorter periods should

also be verified. For comparison, the same scheme with

update periods of 6, 12, 24, 60, and 120 h was used, and

the average results of six cases are shown in Fig. 12. The

FIG. 10. As in Fig. 9, but for the temperature field.
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FIG. 11. Mean forecast errors around the four parts of the 6–10-day forecast kinetic energy for the (middle) control model and (right)

analog-dynamical correction quantity. (left) The corresponding mean values from the FNL reanalysis data are also shown.
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results demonstrate that the shortening of the update

period presents no advantage, and the 6-h period

worsens the effect for all waves. The reason for this may

be that the forecast error is low at 6 h, and the positive

effect of the correction may have the comparative

magnitude of the noise it introduces. Only when the

correction effect surpasses the noise will improvement

be possible. The forecast skill is not sensitive to vari-

ations in the update period at 24, 60, and 120 h. None

of the periods obviously improve the synoptic-scale

waves, and all the corrections have a similar effect

as the control forecast, except that the 6-h period

causes the results to decline. For planetary-scale waves,

most corrections can improve the forecast skill, and

FIG. 12. Comparison of different analog update periods for the ACC and RMSE of the global 500-hPa height field

between the forecast and analysis data depending on the spatial scale: (a),(b) all waves; (c),(d) planetary-scale waves;

and (e),(f) synoptic-scale waves.
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120 h yields a slight advantage over others. In short, 5

days is an optimal update period that not only yields

the most improvement, but also saves computa-

tion time.

The systematic correction used for comparison in this

study is conducted by adding the ensemble mean hind-

cast errors from 2001 to 2010 considering seasonal

changes, which is referred to as Systematic-A hereafter.

To reduce the uncertainties in the difference between

analog-dynamical correction and systematic correction,

we conducted another method of systematic correction

using the mean bias from the same month of previous

year (Systematic-B hereafter). The ACC of global

500-hPa height field at the lead time of 5 days is calcu-

lated for each method (Systematic-A, Systematic-B,

and analog-dynamical correction) and each case. For the

convenience of comparing, the ACC of Systematic-A is

subtracted from the ACC of Systematic-B and analog-

dynamical correction, as shown in Fig. 13. The result

indicates that the correction effect of Systematic-B is

similar with that of Systematic-A. The analog-dynamical

method is superior to both the two systematic correc-

tions for almost all of the cases, especially for the cases

in winter.

We can conclude that the analog-dynamical method

demonstrates active performance in reducing biases

in low-frequency systems. Future research should

focus on improvements for time-varying planetary

waves and Rossby waves, which may be associated

with the nonlinear growth of internal errors. Online

analog-dynamical correction is considered to reduce

cumulative nonlinear growth of state-dependent bias,

and will be investigated and presented in a future

paper.
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APPENDIX

Proof of the Continuity Theorem Regarding
Forecast Error

For any exact atmosphere state vector u 2 R
n and

model atmosphere state vector c 2 R
n, the forecast er-

ror P at a lead time of t is given by

P(u,c, t)5u
��
t
2c

��
t

5

ðt
0
[L(u)1E(u)] dt2

ðt
0
L(c) dt ,

where L is a model operator and E is a model error

operator. Thus P is a nonlinear operator about u and c,

satisfying P :Rn 3R
n/R

n.

The following discussion will prove the continuity of

P(u,c, t) on u and c, that is, "«. 0,u0 2 R
n,c0 2

R
n,dd. 0, whenever u 2 R

n, c 2 R
n, ku2u0k, d,

kc2c0k, d, such that kP(u,c, t)2P(u0,c0, t)k, «.

To prove the theorem, two hypotheses are proposed.

Hypothesis 1: L(u) and E(u) are continuous about

u; that is, "«. 0,u0 2 R
n,dd. 0, whenever u 2 R

n,

ku2u0k, d, such that kL(u)2L(u0)k, « and

kE(u)2E(u0)k , «.

Hypothesis 2: u(t) and c(t) are quasi periodical and

uniform continuous about t; that is, "d . 0, t1, t2 2 R,

k 2 N, da . 0, whenever kT, jt1 2 t2j,kT1a, where

T is the quasi period of u(t) and c(t), such that

ku(t1)2u(t2)k, d and kc(t1)2c(t2)k, d.

Next, the rationality of these two hypotheses is dis-

cussed. First, in a numerical model, L is the time ten-

dency of model variables and should be continuous to

maintain the stability of a time-varying system; this

means that the disturbance of model variables should

not result in the drastic oscillation of tendency. Second,

the sum of L and E can be viewed as the exact model

tendency that is discretized from atmospheric equations

FIG. 13. Variance in the difference of ACC (red line: analog-

dynamical forecastminus systematic-A forecast; blue line: systematic-B

forecast minus systematic-A forecast) of 5-day forecast global

500-hPa height field by different cases. The x axis represents the 40

cases selected. The indexes of 0–19 are from winter (December–

February) of 2011, and the indexes of 20–39 are from summer (June–

August) of 2011.
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and should satisfy the continuity strictly. From these two

points, E is also continuous about u. Thus, hypothesis 1

is satisfied. With regard to hypothesis 2, the uniform

continuity ofu(t) andc(t) about t is evident because real

atmospheric evolution is a continuous process; the pe-

riodical hypothesis is rigorous in that atmosphere evolu-

tion is not exactly periodical. Fortunately, the historical

analog state is known and the time T between the current

initial state and analog state can be regarded as a quasi

period. In this sense, the quasi-periodical hypothesis is

reasonable. Because c(t) is integrated from the same

initial field with u(t), when the lead time t is not too

large, c(t) has approximate evolution and quasi period

with u(t). Then the proof of continuity theorem is as

follows.

Proof

"«. 0, t0, t1 2 R and dd. 0,a. 0, k 2 N, whenever

kT, jt0 2 t1j, kT1a, according to hypothesis 3 we

can get ku1 2u0k, d and kc1 2c0k, d. Based on hy-

potheses 1 and 2 and integral transformation, we

can get

kP(u1,c1, t)2P(u0,c0, t)k5
�����
�����
ðt

1
1t

t
1

[L(u)1E(u)2L(c)]dt2
ðt

0
1t

t
0

[L(u)1E(u)2L(c)] dt
�����
�����

5

�����
�����
ðt
0
fL[u(t11 s)]1E[u(t11 s)]2L[c(t11 s)]gds2

ðt
0
fL[u(t01 s)]1E[u(t01 s)]

2L[c(t01 s)]gds
�����
�����#

ðt
0
jjL[u(t11 s)]2L[u(t01 s)]jj ds1

ðt
0
jjE[u(t11 s)]

2E[u(t01 s)]jj ds1
ðt
0
jjL[c(t01 s)]2L[c(t11 s)]jj ds, 3«t .

Let «*[ 3«t. Because « is random and t is fixed, we can

conclude that «* is randomly small. Therefore, the

continuity is proven.
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