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ABSTRACT: On the basis of the datasets obtained for the monthly turbulent heat flux (1984–2009) from the Objectively
Analyzed Air–Sea Heat Flux (OAFlux), the radiation flux from the International Satellite Cloud Climatology Project (ISCCP),
the variability characteristics of the net heat flux (Qnet) over the Kuroshio System (KS) and its relationship with the climate in
China were studied. The results reveal that except for a steady enhancement in the period 1984–2009, the boreal winter Qnet
over the KS is characterized by obvious interannual variation of the period quasi-5 year as well as decadal variability shifting
from negative to positive anomalies in the mid-1990s. In the wintertime, the increasing KS Qnet is primarily responsible for
the intensification of the East Asia winter monsoon (EAWM) via a deepening of the Aleutian low and an enhancement of the
Siberia high and has a correlation coefficient of 0.72 with a 1-month delay. The enhanced-EAWM induces colder winters in
Northeast China and higher Qnet over the KS by carrying significantly greater amounts of cold air mass. During the low Qnet
winter, the EAWM is weakened, and the southwesterly wind that contains abundant water vapour enhances and pushes toward
southern China, thereby bringing heavier rainfall. The anomalous Qnet over the KS in the wintertime lasts until the following
spring with a weaker relative intensity. In the spring after the low KS Qnet winter, the anomalous easterly wind transfers colder
air masses from the Sea of Japan to the North China and Yellow–Huaihe regions and then cools these regions. The warmer
and wetter southwesterlies along the northwestern flank of the anomalous anticyclone east of Taiwan Island meet these colder
easterlies accompanied by an anomalous upward motion, thereby inducing an anomalous northwest–southeast precipitation
band in the central and eastern region of China, especially in the Yangtze-Huaihe region.
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1. Introduction

The Kuroshio System (KS) comprises the Kuroshio
current and Kuroshio extension (KE) and is one of the
strong western boundary currents in the North Pacific. It
transports enormous volumes of warm saline water from
the tropics to the mid-latitudes, thereby redistributing
differential heat accumulated from solar radiation fluxes
and influencing the overlying circulation (e.g. Wallace
and Gutzler, 1981; Tomita et al., 2007; Kelly et al., 2010;
Kwon et al., 2010). China is located west of the KS,
and its climate may be influenced via the atmospheric
responses to the variations of the KS variables, such as
path, transport velocity, sea surface temperature (SST),
and heat fluxes. Joyce et al. (2009) suggested that the
shift in the latitudes of the KE path can cause substantial
changes in SST, which may influence synoptic atmo-
spheric variability with little delay. Tokinaga et al. (2006)
revealed that SST gradients over the KE induce strong
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wind convergences and then cause local cloud thickening.
Wang et al. (1980) indicated that the KS activity is closely
related to East Asia atmospheric circulation patterns with
an enhanced East Asia Trough circulation during negative
SST anomalies over the KS region. These anomalous SST
patterns over the KS may result in precipitation anomalies
in different regions of China, e.g. the Yangtze River region,
North China, and the Huang-huai Plain (e.g. Weng et al.,
1996; Zhang et al., 1999; Li and Ding, 2002; Ni et al.,
2004), and also impact the air temperature in China (Zhao
et al., 2007).

The atmosphere interacts with the ocean through air–sea
fluxes, not SST, although SST is a key variable that affects
air–sea heat exchange processes (Yu and Weller, 2007).
Relative to the SST, the heat flux variations, especially the
total net heat flux (Qnet), at the air–sea interface contain
richer information. The air and sea exchange heat at their
interface via a number of processes, including solar radi-
ation (SW), longwave radiation (LW), sensible heat flux
(SHF) by conduction and convection, and latent heat flux
(LHF) by evaporation of sea surface water (Yu and Weller,
2007). The turbulent flux (sum of the SHF and LHF) is the
major cause of ocean heat loss in the variability of sea–air
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exchanges in the boreal winter followed by radiative
cooling because of net outgoing LW; the SW is small, but
it is the major contributor to the heat gain in oceans in
winter. Recently, a paper in Nature by Gulev et al. (2013)
argued for the importance of surface turbulent fluxes in the
Atlantic and stated that it would be important to extend the
analysis to the radiative components of air–sea exchanges
to complete the surface heat balance, which is crucial as
a driving factor (Booth et al., 2012). Therefore, this study
emphasizes the Qnet variation along the KS region and its
climate effect in China. Previous studies have indicated
that the heat flux variations over the KS have the potential
to influence the atmospheric circulation via variations in
storm tracks (Chang et al., 2002; Hoskins and Hodges,
2002; Nakamura et al., 2004; Bengtsson et al., 2006).
In their 1990 publication, Hoskins and Valdes (1990)
demonstrated that the heat flux over the KS develops
a cyclonic cumulus convection, thereby promoting the
organization of a precipitation band (see also Minobe
et al., 2008). Zhou et al. (2011) investigated the influence
of the winter turbulent heat flux over the East China Sea, a
part of the KS, on the climate in China. Kwon et al. (2010)
indicated in a review of available studies (e.g. Chang et al.,
2002; Nakamura et al., 2004; Wu et al., 2005; Bengtsson
et al., 2006; Tokinaga et al., 2009) that the variations of
surface heat and moisture fluxes originate mainly from
anomalous ocean processes and in turn dampen SST
variations and drive the overlying atmospheric circulation,
including storm tracks. Liu et al. (2006) implied that the
Qnet anomalies over the KS east of Taiwan Island warm
the overlying atmosphere and promote a low-pressure
anomaly at 500 hPa over the North Pacific by the Flexi-
ble Global Climate Model. Although substantial studies
have been conducted on the relationship between the
KS heat fluxes and atmospheric circulation processes,
the mechanisms linking the characteristics of the KS to
atmospheric circulation are still unclear, in part because
of the confounding effects of the Pacific-North America
(PNA)-like remote response to interannual variations of
the El Niño-Southern Oscillation (ENSO) (Huang et al.,
1998; Kelly et al., 2010; Kwon et al., 2010). Therefore,
it is required to research the KS variation and its corre-
sponding atmospheric response in detail based on Qnet,
which is a direct and comprehensive indicator of the
ocean–atmosphere heat exchanges. The first goal of this
study is to investigate the Qnet variation feature over the
KS region in boreal winter for the period 1984–2009, and
the second goal is to explore its impact on the climate in
China and its possible process. Conducting such a study
is critical and meaningful to deepen the understanding of
the mechanisms of air–sea interactions over the KS and
might improve regional climate predictions in China.

The datasets and methods used in this study are described
in Section 2. Section 3 presents the characteristics of the
winter Qnet over the KS (Section 3.1.) and its corre-
lation with the climate in China in the winter (Section
3.2.) and in the following spring (Section 3.3.). Discussion
is given in Section 4 followed by the conclusion in
Section 5.

2. Data and method

The 1∘ × 1∘ heat fluxes between oceans and the atmo-
sphere consist of SW, LW, LH, and SH (Kubota et al.,
2002). Qnet is computed as Qnet=SW−LW−LH− SH.
Here, the turbulent heat fluxes have been derived from
the Objectively Analyzed Air–Sea Heat Flux (OAFlux)
project at the Woods Hole Oceanographic Institution
(WHOI) by combining satellite observations with in-situ
measurements and the outputs of surface meteorological
fields from numerical weather prediction (NWP) reanal-
ysis models (Yu and Weller, 2007; Yu et al., 2008). To
compute the Qnet, surface SW, and LW were obtained
from the International Satellite Cloud Climatology
Project (ISCCP; Zhang et al., 2004). The two datasets
(OAFlux+ ISCCP) are part of the most recent global heat
flux products, and their derived Qnet provides the best
comparison at measurement sites and is most physically
representative among the four products [OAFlux+ ISCCP,
40-year Re-Analysis (ERA-40), the National Centers for
Environmental Prediction reanalysis-1 (NCEP1) and
reanalysis-2 (NCEP2)] (Yu et al., 2007). The monthly
surface turbulent heat fluxes are from January 1958 to
December 2011, whereas the monthly surface radiation
is from July 1983 to December 2009. Thus, this study is
based on the monthly mean datasets for the overlapping
period of 1984–2009. Note that the signs of the Qnet
will be deliberately reversed and the positive values will
indicate the heat losses from the ocean to the atmosphere
in this study. The monthly mean datasets of temperature,
geopotential height, sea level pressure (SLP), wind veloc-
ity, and specific humidity were obtained from the National
Center for Environmental Protection/National Center for
Atmospheric Research (NCEP/NCAR) (Kalnay et al.,
1996). We also used the monthly mean surface air temper-
ature (SAT) and precipitation of the 160 stations in China
provided by the China Meteorological Administration.

In this study, we mainly applied the empirical orthogonal
function (EOF), singular spectrum analysis (SSA), wavelet
analysis, and composite analysis. Among them, the SSA
was developed to reconstruct the geophysical time series
and was mathematically similar to the EOF. It can extract
as much reliable information as possible from a short
and chaotic time series without inputs of the physical
characteristics of the system and can then separate the
low-frequency from the high-frequency (Vautard et al.,
1992).

3. Results

The KS Qnet has obvious seasonal variation (e.g. Kubota
et al., 2002; Wallace and Hobbs, 2006; Bond and Cronin,
2008; Kwon et al., 2010) that is strongest in winter and is
dominated mainly by latent heat fluxes because of episodic
outbreaks of cold dry air of continental origin (Xue et al.,
1995; Ninomiya, 2006; Konda et al., 2010). Therefore,
this study focuses on the Qnet variations over the KS dur-
ing the wintertime (defined here as November–February)
during which the oceans lose large amounts of heat to the
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Figure 1. Distribution of (a) the climatological winter Qnet and (b) its
variation in the North Pacific based on the period of 1984–2009. Contour

intervals (CIs) are 100 W m−2 in (a) and 10 W m−2 in (b).

overlying atmosphere, which accounts for approximately
65% of the total air–ocean heat exchanges.

3.1. The low-frequency trend and interannual variability
of the Qnet intensity

Figure 1 shows the climatological winter mean Qnet
distribution in the North Pacific, which indicates that the
largest upward Qnet is located around the KS, as revealed
by numerous studies (e.g. Cayan, 1992; Frankignoul
and Kestenare, 2002; Wallace and Hobbs, 2006). Many
indices describe the KS Qnet by averaging the Qnet over a
certain rectangular-shaped area, which is not particularly
optimum because the select region might not be the most
representative for the KS. Therefore, we applied the EOF
analysis (North et al., 1982a) to obtain the dominant mode
of the KS Qnet. The area we selected extends from 110∘E
to 180 and 20∘N to 55∘N. As shown in Figure 1(b), the
variance of the Qnet is large over the KS and gradually
becomes smaller over its surrounding area; therefore,
the data field is normalized in the EOF analysis to avoid
the possible influence of inhomogenous variance on the
results in our target area.

Figure 2(a) represents the spatial distribution of the
first eigenvector of the normalized Qnet for the period
1984–2009, which accounts for 53% of the total vari-
ance and is well separated from the other eigenvalues
as per the criterion of North et al. (1982b). It is signif-
icant that the centre of this mode is located east of the
Japan Islands, which is close to the area used in previous
studies for defining the intensity indices of the KS. The
corresponding principal component (PC) time series with
a steady increasing trend is shown in Figure 2(b) (the
solid black line). Moreover, we also averaged the Qnet
over the region enclosed by the 300 W m−2 contour of the
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Figure 2. (a) The first EOF mode of the winter mean Qnet for the years
1984–2009. (b) The corresponding normalized PC time series for the
first EOF mode (the solid line) and the normalized area-averaged Qnet
(the dashed line) with the correlation coefficient of 0.98. The variance

explained is 52.6%.

climatological winter mean Qnet (Figure 1(a)) to describe
the KS Qnet intensity (Figure 2(b), the red dashed line).
The above selected area covers the whole KS and is
more representative than a description of the region as a
simple rectangular-shape, as has been used in previous
studies (Li et al., 2011; Zhou et al., 2011). Note that the
derived PC1 and the area-averaged Qnet in Figure 2(b)
are both normalized for ease of comparison. The corre-
lation coefficient between the PC1 and the area-averaged
Qnet intensity index is 0.98, which is far above the 99%
confidence level based on Student’s t-test. Therefore,
the leading EOF of the Qnet over the region (110∘E-180,
20∘N-55∘N) provides an accurate depiction of the variation
of the KS Qnet intensity. Using the same analysis on the
turbulent heat flux, which is the major contributor to the
Qnet, its first EOF pattern (not shown) is highly similar to
the Qnet, and their corresponding normalized time series
almost overlap with the correlation coefficient of 0.96.

Figure 3 shows the reconstructions of the winter Qnet
intensity time series over the KS by applying a SSA. In
terms of the reconstructed Qnet time series, the first time
principle component (T-PC1) explains 48% of the total
variance depicting the low-frequency trend (Figure 3(b),
red line). The linear trend of the normalized Qnet PC1
(Figure 3(b), dashed line) is significantly ascending and
greater than the 99% confidence level based on Student’s
t-test. Moreover, it is estimated that the averaged Qnet
over the region enclosed by the 300 W m−2 of the cli-
matological winter increases by 2.6 W m−2 per year. The
evident ascending trend of the Qnet over the KS from 1984
to 2009 is consistent with previous findings (Zhang et al.,

© 2014 Royal Meteorological Society Int. J. Climatol. 35: 1180–1191 (2015)
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Figure 3. (a) Explained variance of the first eight modes based on SSA. (b) SSA reconstructed low-frequency trend (T-PC1, thick solid line) of the
original PC1 time series (thin solid line) plus a linear trend (dashed line). (c) The residual time series of PC1 (solid line with star markers); the
reconstructed time series of PC1 based on the sum of T-PC2 to T-PC4 (solid line with square markers) and (d) it’s corresponding wavelet power

spectrum by Wavelet Analysis (thick solid contours represent the 95% confidence level based on Student’s t-test).

2010; Li et al., 2011; Zhou et al., 2011). In addition, the
low-frequency temporal changes appear to show a sine
curve-like variability during the period 1984–2009 with a
decadal weakening around the mid-1980s, then recovering
from negative to positive anomalies around the mid-1990s.
The SSA residual time series, which is computed as the
difference of the raw time series and reconstructed
low-frequency time series, mainly denotes interannual
variations of the KS Qnet (Figure 3(c), solid line with star
markers). The cumulative explained variance of T-PC2,
T-PC3, and T-PC4 (denoted as T-PC2-4 hereafter) is up
to 32% (Figure 3(c), solid line with square markers). A
wavelet analysis on the T-PC2-4 is shown in Figure 3(d),
and most of the power is concentrated in periodicities
of 4–5 years throughout the study period. Therefore, the
winter KS Qnet not only has an increasing trend but is also
characterized by the interannual variations in the period
of quasi-5 year as well as the decadal variability. How
the atmospheric circulation responds to the above Qnet
variability over the KS and what impacts on the climate
in China responds to these atmospheric changes will be
explored in Sections 3.2. and 3.3., respectively.

3.2. Simultaneous relationship of the winter KS Qnet
variation and China climate

Kwon et al. (2010), in a review of available studies (e.g.
Qiu, 2000; Chang et al., 2002; Nakamura et al., 2004;
Bengtsson et al., 2006; Tokinaga et al., 2006), revealed
that the variation of surface heat and moisture fluxes
are dominated mainly by anomalous ocean processes

and in turn dampen SST variations and drive overlying
atmospheric circulation, including storm tracks (e.g.
Bond and Cronin, 2008; Joyce et al., 2009; Kwon et al.,
2010), thereby influencing the regional climate in East
Asia. Along with the obvious interannual and decadal
variabilities of the winter KS Qnet for the period
1984–2009, we are interested in the atmospheric response
to these air–sea exchange changes and the corresponding
climate anomalies in China.

To explore the possible relationship of the regional cli-
mate in China and the winter KS Qnet variations, we per-
formed a composite analysis on the normalized PC1 time
series as a KS Qnet intensity index. The high and low
index cases selected are the winters in which the absolute
normalized values of the PC1 are larger than 0.5. On the
basis of this criterion, the nine selected high index win-
ters are 1985, 1995, 1998, 1999, 2000, 2002, 2004, 2005,
and 2007, and the ten low index winters are 1984, 1986,
1987, 1988, 1989, 1990, 1991, 1992, 1997, and 2006. The
remaining 6 years belong to the normal winters.

Figure 4(a) shows the composite difference of the
SLP between the low and normal KS Qnet winters.
There is a strong high pressure anomaly covering from
eastern China to the whole western Northern Pacific,
with a northwest-southeast centre around the KS region
(30∘N-50∘N, 120∘E-180). West and northeast to this high
pressure anomaly, there are two weak low anomalies
over Central Asia and the Aleutian region, respectively.
A similar structure is shown in the geopotential height
at 500 hPa with a larger negative area in Asia, as indi-
cated in Figure 4(b). There is also a southwest–northeast

© 2014 Royal Meteorological Society Int. J. Climatol. 35: 1180–1191 (2015)
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Figure 4. Composite differences of (left) SLP (CI= 1 hPa) and (right) 500 hPa geopotential height (CI= 5 gpm) between (upper) the low and normal
KS Qnet winters and (below) the high and normal KS Qnet winters. The shading indicates the 95% confidence level based on Student’s t-test.

dipole structure in the subtropical North Pacific with an
anomalous high pressure centre around the KS and a
reverse centre over the Aleutian region. Correspondingly,
Figure 4(c) and (d) show the composite difference of the
SLP and geopotential height at 500 hPa between the high
and normal KS Qnet winters. In contrast, there is a signifi-
cantly negative centre of SLP over the western and central
North Pacific and a strong positive centre around Lake
Baikal for high KS Qnet winters. This northwest-southeast
dipole is more obvious at 500 hPa, covering the whole
subtropical North Pacific and Siberia, and corresponds to
a deepening Aleutian low and an enhancing Siberia high.
Figure 5 presents the composites for the zonal winds in
the upper troposphere (300 hPa) and vapour transportation
in the lower troposphere (850 hPa) for low and high KS
Qnet winters. During the low KS Qnet winters, there is
an anomalously negative band extending from eastern
China to southern Japan (Figure 5(a)), implying that the
East Asian subtropical westerly jet is weakening. In the
low-level troposphere, the cold and dry northwesterly is
weaker, at the same time, an anomalous anti-cyclone exists
over the South China Sea (figure of wind at 850 hPa is not
shown) that transfers large amounts of water vapour to
southern China, thereby inducing abnormal convergence
over these regions (Figure 5(b)) (Wang and Feng, 2011).
While the Qnet is in the high phase, an anomalous westerly
band appears between 30∘N and 50∘N with a centre rang-
ing from east Japan to the central Pacific, indicating that
the subtropical westerly jet is accelerating (Figure 5(c)).
Contrary to Figure 5(b), a significant anomalous cyclone

for the low-level water vapour transportation occurs dur-
ing the high Qnet winters but is confined in the South
China Sea. Then the anomalous water vapour from the
westerly and easterly flow converges mostly occur in the
sea and only a small part over the coastal zone of southern
China (Figure 5(d)).

Figure 6 shows the corresponding composites for air
temperature and its advection at 850 hPa in low and high
KS Qnet winters. As indicated in Figure 6(a), the air
temperature change is small and insignificant, which
indicates that the low Qnet over the KS has little influence
on the winter temperature in China. It should be noted that
variations of air temperature cannot be fully explained
by temperature advection during the low Qnet winters,
because the corresponding cold advection over the Inner
Mongolia province, however, is slightly damped, and the
warm advection enhances over southern China because
of the anomalous warm advection (warm shading in
Figure 6(b)). The anomalous air temperature at 850 hPa in
the high KS Qnet winters shows significant cooling from
Northeast China across northern Japan to the central North
Pacific (Figure 6(c)). There also exists an anomalously
negative temperature advection at 850 hPa east of Lake
Baikal with the centre around the Japan Islands and KS,
meaning that the cold advection is enhanced in these
regions (Figure 6(d)). The composite map of station-based
SAT in China between the high and low phase of the KS
Qnet confirms that the winter is colder in Northern China
during the high phase of the KS Qnet (Figure 7(a)) with
respect to its low phase.

© 2014 Royal Meteorological Society Int. J. Climatol. 35: 1180–1191 (2015)
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Along with the atmospheric circulation showing dif-
ferent patterns in the high and low winter Qnet over
KS, the water vapour flux changes significantly as
well, as indicated in Figure 5(b) and (d), and induces a
precipitation anomaly. From the composite difference of
the station-based precipitation (Figure 7(c)) between the
high and low phase of the KS Qnet winters, the rainfall in
the high KS Qnet winters is much less over most of China,
except in the western region, and especially in South
China and the Yellow-Huaihe area with respect to the low
phase, which is consistent with the above difference of the
water vapour flux divergence.

3.3. Lagged influence of the winter KS Qnet variation
on regional climate in China

It has been documented that the SST and turbulent heat
flux variations over the KS may affect the regional climate
condition of the following spring or even summer (e.g.
Zhang et al., 2007; Zhou et al., 2011; Wang et al., 2012).
To determine a more direct thermal variable than SST link-
ing the ocean and atmosphere, it is well worth exploring
the lagged effects of the winter KS Qnet on the climate in
China to evaluate the potential predictability of climate in
China in the spring based on the KS Qnet in the preceding
winter.

Figure 7(b) presents the composite difference of the
station-based SAT in the following spring between the

high and low KS Qnet years. Compared to the colder
winters over most of northern China in the high phase of
KS Qnet (See Figure 7(a)), the air temperature tends to be
relatively warm in the following spring over most parts of
China, especially in North China and the Yangtze-Huaihe
region, with respect to the low phase of the KS Qnet.
Figure 8(a) and (c) are the composite differences of air
temperature and its corresponding advection at 1000 hPa
between the high and low KS Qnet phase in the following
spring, respectively. The results present similar intensifi-
cations of the warming at 1000 hPa in the eastern region of
China, especially in the region between the Yellow River
and Yangtze River, whereas the temperature is colder in
the vicinity of the KS region (Figure 8(a)). This anomalous
temperature dipole is caused by the opposite temperature
advections with positive anomalies over the central and
eastern region of China and negative anomalies along KS
in the following spring (Figure 8(c)).

Figure 7(d) shows the composite differences in station-
based precipitation in the following spring between the
high and low KS Qnet years. Different from the anoma-
lous pattern of precipitation in the simultaneous winters
(see Figure 7(c)), the precipitation in the low KS Qnet
phase appears as a northwest-southeast band with more
precipitation in the central and eastern regions of China,
especially in the Yangtze-Huaihe region, compared to the
high KS Qnet phase. To explore the possible reason for
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Figure 8. Composite differences of (a) 1000 hPa air temperature (CI= 0.2∘C) and (c) it’s advection (CI= 0.5× 10–5∘C s−1) in the following spring
and 850 hPa vapour flux (vector, g cm−1·hpa·s) and the corresponding divergence (colour shading, 10–8 g cm−2·hpa·s) (b) in simultaneous winter and
(d) in the following spring between the high and low KS Qnet years. The grey shading in the left panels indicates the 95% confidence level based on

Student’s t-test.

the above anomalous precipitation, the composite differ-
ences of the water vapour flux between the high and low
KS Qnet years in the simultaneous winter (Figure 8(b))
and the following spring (Figure 8(d)) are analyzed. The
prominent features are an anomalous cyclone south of
the Japan Islands and anomalous northeasterly vapour
flux along the northwestern flank in the following spring
(Figure 8(d)), which is different from that in the previ-
ous winter. Correspondingly, the anomalous water vapour
fluxes diverge over eastern China and converge over south-
ern China, which explain well the difference of precipita-
tion pattern between the high and low Qnet winters in the
following spring. To further explore what caused the above
difference, we combined the differences of the 850 hPa
vapour flux between the low and normal KS Qnet win-
ters (Figure 9(a)) and the high and normal KS Qnet win-
ters (Figure 9(c)), respectively. Clearly, there is an anoma-
lous anticyclone south of Taiwan Island in the low KS
Qnet phase (Figure 9(a)) that enhances the southwest-
erly wind and transfers much more vapour to the Yangtze
River basin, even reaching the Yangtze-Huaihe region.
Moreover, the anomalous cold easterlies from the Sea
of Japan influence northern China and join with warmer
southwesterlies around the region 30∘N-40∘N. Then, the

anomalous water vapour from southwesterly and easterly
converges around the Yangtze region. Figure 9(b) shows
the different composites of the vertical circulation associ-
ated with the meridional-mean zonal wind in the region
30∘N-40∘N between the low and normal KS Qnet phase
in the following spring. Obviously, the upward motion
appears in the region from 110∘E to 120∘E, which corre-
sponds well with more precipitation in the eastern region of
China between the Yellow River and Yangtze River. Addi-
tionally, the anomalous easterlies throughout the whole
troposphere appear over the KS region (125∘E-145∘E).
Contrary to the low KS Qnet phase, the water vapour
transportation and its divergence (Figure 9(c)), and ver-
tical atmospheric circulation (Figure 9(d)) barely change
with the weak anomalous cyclone south of Japan, and the
anomalous easterly winds are only in the lower tropo-
sphere and the anomalous westerlies in the upper tropo-
sphere in the high KS Qnet phase.

4. Discussion

From the composite differences of the SLP and 500 hPa
geopotential height (see Figure 4) in the high KS Qnet
phase, there is a noticeable northwest-southeast dipole
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with a low pressure anomaly over the Aleutian region and
a high pressure over Siberia, implying both an enhanced
Aleutian low and Siberia high. This corresponding rela-
tion is also found in the papers of Liu and Wu (2004) and
Yulaeva et al. (2001) with the coupled simulations. They
revealed that the atmospheric circulation forced by the KS
heat flux tends to be associated with low pressure in the
North Pacific (warm-low response downstream) and high
pressure in Siberia (cold-high response upstream). Based
on the singular value decomposition (SVD) analysis of
the 500 hPa geopotential height and Qnet around the KS
region using the observation combined with a coupled
model, Liu et al. (2006) also demonstrated that since the
increasing of the upward Qnet over the KS region, the
ocean loses more heat to warm the overlying atmosphere,
and there are low pressure anomalies in the North Pacific.
It is known that the East Asia winter monsoon (EAWM)
is characterized by a cold Siberia high and warm Aleutian
low with a strong northwesterly wind between them (Ding,
1994; Huang et al., 2003, 2007, 2012; Chan and Li, 2004;
Chang et al., 2006; Wang et al., 2009a, 2009b; Wang and
Chen, 2010). Therefore, the increasing upward Qnet devel-
ops the EAWM by influencing the Siberia high upstream
and the Aleutian low downstream. In turn, the enhanced
EAWM further influences the Qnet over the KS mainly
via the turbulent heat flux. This is because during the cold
season, the local heat fluxes in the western boundary cur-
rents are strongly dependent on wind direction (Zolina and
Gulev, 2003; Konda et al., 2010), and the prevailing cold,
dry continental airflow associated with EAWM induces

a sharp increase of heat and moisture release, which has
been proven by Taguchi et al. (2009) using a pair of atmo-
spheric regional model hindcast experiments. Whereas in
the low KS Qnet phase, the positive pressure anomalies
around the KS feature a weakened mid-tropospheric East
Asia trough, which indicates weakened EAWM circula-
tion (Huang et al., 2012; Chen et al., 2013). To verify the
relationship of the EAWM and winter Qnet over the KS,
the EAWM strength index developed by Wang et al.
(2009a) is adopted here. We analyzed the normalized
winter monthly (Nov., Dec., Jan., and Feb.) 500 hPa
geopotential height over East Asia and the western North
Pacific through the EOF method. Note that the sample is
104 months. The first spatial mode was found to reflect
the strength of the East Asia trough (Figure 10(a)), and the
corresponding normalized PC1 was defined as the EAWM
strength index (Figure 10(b), the solid line) (Wang et al.,
2009a; Wang and Chen, 2010). Clearly, the winter mean
Qnet over KS has a strong relationship with the EAWM at
the interannual timescale, and their detrended correlation
coefficient reaches 0.85, which is far above the 99% con-
fidence level (Figure 10(b)). In addition, on the decadal
timescale, the winter mean EAWM index also experienced
a decadal weakening around the mid-1980s (Nakamura
et al., 2002; Wang et al., 2009b), then recovered from its
weak epoch and re-amplified in the mid-1990s a decadal
re-amplification after the mid-1990s (Wang and Chen,
2014), which is consistent with the decadal variability
of the winter Qnet for the period of 1984–2009. More-
over, the correlation coefficient of the 9-year low-pass
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components of the detrended Qnet and EAWM indices
reaches 0.80 and greater than 95% confidence level for
the period 1984–2007 (Figure 10(c)). To further explore
the detailed relationship of the KS Qnet and EAWM,
the lead-lag correlation was examined and is shown in
Figure 10(b); it indicates that during the wintertime, the
Qnet intensity led by 1 month to obtain a maximum cor-
relation (r = 0.72) with the EAWM strength. That is, the
positive Qnet anomaly over the KS forced the overlying
atmospheric circulation with a deepening Aleutian low
and an enhanced Siberia high and then enhanced the
EAWM strength with a nearly 1-month delay. During the
stronger EAWM winters, the northwesterly wind enhances
and cools the near-surface air overlying the KS region,

which in turn increases the upward heat flux and cools
the SST accordingly. As for the decadal timescale, the
Qnet for a longer period extending to 1977 is also exam-
ined based on the dataset from the NCEP/NCAR (figure
is not shown). Consistent result is found that the Qnet
over the KS is not only closely associated with EAWM
on interannual timescale (r = 0.82), but also on decadal
timescale (r = 0.68). Overall, the KS Qnet variations influ-
ence the climate in China in the upstream primarily by
influencing the EAWM via the anomalous low pressure
response downstream (Aleutian low) and high pressure
response upstream (Siberia high) in the boreal wintertime.
Furthermore, this mechanism is able to reasonably explain
the climate variation in China as well. In the high phase
of the KS Qnet winters, most of northern China, espe-
cially Northeast China, is dominated by the stronger cold
temperature advection caused by the enhanced EAWM in
the simultaneous winter (Figure 6(d)). Air temperature at
850 hPa (Figure 6(c)), station-based SAT (Figure 7(a)) and
SAT from the Climatic Research Unit (CRU) (figure is
not shown) confirm the colder winters in the high phase
of KS Qnet years. Moreover, the enhanced northwest-
erly wind governs the whole Chinese mainland for the
stronger EAWM winters and forces the southeasterly wind
back to the ocean (see Figure 5(d)), thereby reducing the
precipitation in the east and south regions of China (see
Figure 7(d)).

An anomalously high Qnet over the KS implies more
heat loss from the ocean to the overlying atmosphere and
then dampens the local SST anomaly directly (Frankig-
noul and Kestenare, 2002; Frankignoul et al., 2004). The
increasing Qnet is always accompanied by the deepened
Aleutian low (Yulaeva et al., 2001; Liu and Wu, 2004;
Liu et al., 2006), which drives larger amounts of cold
water from high latitudes along its western flank and cools
the SSTs over the KS as well. This Qnet–SST negative
feedback partially controls the persistence and amplitude
of the SST anomalies, which causes the Qnet not to
vanish but to decay in the following spring to influence
the atmospheric circulation. Therefore, in the following
springtime, the Qnet for the high (low) phase still shows an
anomalously positive (negative) pattern, but the intensity
is weaker (figure is not shown). In springtime when the
transition from EAWM to East Asian summer monsoon
(EASM) occurs, the northwesterly wind retreats northward
and only controls the region over Northeast China, the
southwesterly wind enhances and influences the region
south of the Yangtze River, and the Huang–Yangtze plain
between them is dominated by a weak anti-cyclone (figure
is not shown). If the Qnet is smaller in the preceding winter,
then southern China is controlled by anomalously strong
warm southwesterlies because of the anomalous anticy-
clone south of the Taiwan Island, whereas northern China
is influenced by the anomalous cold and wet easterlies
from the Sea of Japan in the subsequent spring. Therefore,
northern China, especially north of the Yangtze River,
appears to have a prominent anomalous cold advection and
is colder than normal. In addition, the stronger warm and
wet southwesterly wind joins with the anomalously cold
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easterlies from the Sea of Japan over the Yellow-Yangtze
region (30∘N-40∘N, 100∘E-120∘E), accompanied by the
obviously anomalous upward motions, which favours
more rainfall in these regions.

5. Conclusion

In this study, the variation of the Qnet over the KS in boreal
winter from 1984 to 2009 and its impact on the climate
in China are investigated. Results show that the KS Qnet
undergoes a steady enhancement in the period 1984–2009.
In addition, KS Qnet is characterized by obvious interan-
nual variability with quasi-5 year oscillation cycle, as well
as decadal variability shifting from positive to negative
around the mid-1980s, then recovered from its weak epoch
and re-amplified in the mid-1990s.

The winter Qnet variations over the KS play different
roles on the climate in China by impacting the atmospheric
circulation in the simultaneous winter and the following
spring. During the wintertime when East Asia is under
the control of strong northwesterly winds, the KS Qnet
variation impacts the climate in China mainly via EAWM
by motivating a low pressure response downstream and
a high pressure response upstream. The high Qnet over
the KS is always accompanied with enhanced EAWM
which indicates colder winters in Northeast China, while
in the low Qnet winters, the weakened EAWM with the
enhanced anti-cyclone over the South China Sea induces
more rain over southern China. In the following spring,
the persistent but weaker Qnet anomaly over KS primarily
impacts the climate in the central and eastern region of
China, which happens to be located west of the KS. For
example, if the Qnet over the KS is in the low phase, the
following spring tends to colder and wetter than normal.
Therefore, this study deepens the insights into the rela-
tionship between the KS Qnet and climate in China to a
certain extent and will be helpful in improving regional
climate predictions in China in the springtime.
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