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Abstract—Low cloud microphysical properties, including liq-
uid water content (LWC), cloud effective radius (CER), and
cloud optical thickness (COT), are fundamental to climate mod-
eling and weather prediction. However, existing remote sensing
techniques often rely on a priori data and passive instru-
ment observations, which limit the accuracy and consistency of
retrievals, particularly in complex cloud regimes. In this study, we
present an innovative radar-based algorithm that retrieves LWC,
CER, and COT directly from CloudSat millimeter-wavelength
cloud profiling radar (CPR) observations. Unlike conventional
approaches, our method derives physically consistent cloud
properties with minimal reliance on ancillary data, thereby
overcoming the inherent limitations of current algorithms. We
demonstrate the efficacy of this method through detailed compar-
isons with established cloud products from CloudSat, MODIS,
and AMSR2 sensors. The results show improved accuracy in
LWC retrievals and a more consistent vertical distribution of
CER and COT, particularly in challenging low marine boundary
layer clouds. This novel algorithm offers a significant advance-
ment in cloud remote sensing, facilitating more reliable cloud
property retrievals for enhanced climate model simulations. The
method is fully applicable for CloudSat’s 18-year record and the
latest space radar mission of EarthCare, offering an essential
tool to better capture the vertical complexity of clouds and to
advance global cloud data quality for climate research.

Index Terms—Cloud radar, low clouds, mass absorption atten-
uation, microphysical properties.

I. INTRODUCTION

LOW-LEVEL clouds (LLCs), forming around 2–3-km
altitude, are predominantly composed of liquid water

Received 5 March 2025; revised 9 September 2025 and 7 November 2025;
accepted 29 November 2025. Date of publication 5 December 2025; date
of current version 18 December 2025. This work was supported by the
National Natural Science Foundation of China under Grant 42275076 and
Grant 42427804, in part by the Youth Special Funds for the Heavy Rain and
Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan
Province under Grant SCQXKJQN202508, and in part by the Fundamental
and Interdisciplinary Disciplines Breakthrough Plan of the Ministry of Edu-
cation of China under Grant JYB2025XDXM910. (Corresponding author:
Jinming Ge.)

Jiajing Du is with the Key Laboratory for Semi-Arid Climate Change of
the Ministry of Education and College of Atmospheric Sciences, Lanzhou
University, Lanzhou 730000, China, and also with the Institute of Plateau
Meteorology, China Meteorological Administration, Chengdu 610213, China.

Jinming Ge, Jianping Huang, Yize Li, Chi Zhang, Bochun Liu, Xiaojie
Li, Yucheng Qiu, and Yuhang Zhu are with the Key Laboratory for Semi-
Arid Climate Change of the Ministry of Education and the College of
Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China (e-mail:
gejm@lzu.edu.cn).

Xiaoyu Hu is with Chongqing Research Institute of Big Data, Chongqing
400041, China, and also with the School of Mathematical Sciences, Peking
University, Beijing 100871, China.

Digital Object Identifier 10.1109/TGRS.2025.3640651

droplets and are extensively distributed across the Earth’s
surface. Due to their abundance of small droplets, LLCs
are highly effective at reflecting incoming solar radiation
and influencing precipitation patterns. Consequently, they play
a critical role in regulating the planet’s radiation budget
and hydrological cycle [1]. The microphysical properties of
LLC, including liquid water content (LWC), cloud effective
radius (CER), and cloud optical thickness (COT), are pivotal
in governing their radiative and precipitation processes. For
instance, higher LWC and larger droplets enhance precipitation
potential, while smaller CER leads to more reflective clouds
that may suppress rainfall [2], [3], [4]. As climate changes,
variations in these microphysical properties may induce feed-
backs that either amplify or mitigate warming through further
interactions with solar and terrestrial radiation. However, accu-
rately representing LLC properties in models remains one of
the largest sources of uncertainty, contributing significantly
to the spread in climate sensitivity estimates [5], [6], [7],
[8]. Enhanced observations are essential to address these
uncertainties by enabling better assessments and constraints
on cloud characteristics, thereby advancing our understanding
of cloud microphysics and improving their representation in
numerical models.

Currently, a variety of passive and active remote sensing
instruments provide comprehensive data on cloud physical
properties [9]. Passive sensors, such as visible and infrared
imagers, or microwave radiometers [10], [11], [12], measure
reflectance or emittance in channels sensitive to cloud features,
offering broad spatial coverage with high temporal frequency.
However, they struggle to capture the vertical structure of
clouds, as their signals primarily originate from the cloud
layer closer to the instruments. This limitation introduces
significant errors, particularly when detecting multilayer or
optically thick clouds. In contrast, active sensors like lidar and
radar emit electromagnetic waves and measure backscattered
signals, enabling them to retrieve high-resolution vertical
profiles of cloud layers. Nevertheless, their performance can
be compromised by signal attenuation within the cloud layer
and environmental interferences, which may also affect the
detection accuracy active instrument [13], [14], [15], [16].
Sensors onboard satellite are particularly effective in obtaining
global cloud physical properties [17], [18]. Especially the
W-band (94 GHz) cloud profiling radar (CPR) on CloudSat,
which is highly sensitive to small cloud droplets and ice
crystals, has made significant advancements in cloud physics
and dynamics by providing unprecedented vertical cloud pro-
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files on a global scale [19], [20], [21], [22], [23]. Although
CloudSat operations ceased at the end of 2023, the extensive
data collected over its 18-year mission remain invaluable for
cloud physics investigations and for integrating active and
passive observations using machine learning methods.

Despite these advancements, discrepancies persist between
cloud properties retrieved using different techniques due to
their reliance on varying physical principles. For instance, the
current CPR algorithm derives cloud properties from forward
modeling by assuming a lognormal distribution for cloud
droplet size [24], [25], [26]. However, this assumption does
not always reflect the true variability of the particle size
distribution within the cloud, inducing potential inaccuracies in
retrievals. Larger particles can bias radar measurements, skew-
ing the CER estimates, while signal attenuation of the radar
further exacerbates retrieval uncertainties. Integration of radar
data with visible optical depth from MODIS has improved the
accuracy of cloud products like the radar–visible optical depth
(RVOD) Cloud Water Content (2B-CWC-RVOD, hereafter
RVOD) [25]. However, the RVOD’s dependency on MODIS
data limits its temporal and spatial availability, particularly
since CloudSat deviated from the A-Train constellation in
2018, preventing synchronization with MODIS observations.

Comparisons with aircraft in situ samplings, other satellite-
based passive remote sensing instruments and ground-based
cloud radar observations reveal that the difference between
various cloud products can be more than 100% with CloudSat
products showing significant bias [27], [28], [29], [30], espe-
cially in the presence of large particles associated with high
reflectivity [31], [32]. These differences present challenges for
accurately capturing cloud 3-D structures, calculating radiative
flux, and developing consistent parameterizations to improve
understanding of cloud-radiation interactions and their climate
implications. Therefore, developing novel retrieval algorithms
that address these limitations remains critical for maximizing
the utility of CloudSat data for improving cloud characteristic
retrieval and reducing uncertainties in climate projections.

The Southern Ocean (SO), one of the most remote and
cloud-dominated regions on Earth, presents significant chal-
lenges due to persistent biases in the representation of LLCs
and their radiative effects in climate models. These biases
contribute to considerable uncertainties in global climate
predictions, underscoring the critical need for improved obser-
vational data and retrieval methods [9], [33], [34], [35], [36].
In this study, we enhanced our previously developed self-
consistent mass absorption algorithm, originally designed for
ground-based Ka-band cloud radar, to adapt it for CloudSat
observations. This goal is to generate high-quality retrievals
of cloud microphysical properties over the SO area.

By constructing a radar detection principles-based scheme
in the Rayleigh scattering regime, our approach eliminates the
need to assume a specific droplet size distribution and ensures
the retrievals are free of reliance on other passive instruments.
We retrieve LWC, CER, and COT by leveraging the intrinsic
relationships among these variables. Section III of this arti-
cle details the development and application of the retrieval
method. Section IV provides a comprehensive evaluation of
the algorithm, including comparisons with CloudSat official

products and other passive satellite-derived datasets, where the
details of the instruments used in this study are introduced in
Section II. Finally, Section V summarizes the main findings,
discusses the implications for climate research, and highlights
the improvement of this method for the consistency and
accuracy of LLC property retrievals.

II. INSTRUMENT AND DATASET

CloudSat is a key component of the National
Aeronautics and Space Administration (NASA)’s A-
Train satellite constellation, launched in 2006, and
is equipped with the CPR operating at a frequency
of 94 GHz (W-band). The CPR receives signals
backscattered by hydrometeors with cross-track resolution of
1.4 km and along-track resolution of 1.7 km, and a
vertical resolution of 0.24 km. Each profile consists of 125
samples, and the minimum detectable reflectivity factor is
approximately −30 dBZ, providing high-resolution profiles of
cloud properties. CloudSat offers a variety of cloud features in
different data products. The 2B-GEOPROF product identifies
cloud echoes as “cloud mask.” The 2B-CLDCLASS-LIDAR
product, which combines radar and lidar data, provides
detailed information about cloud boundaries (e.g., cloud base
and top), and classifies clouds by phase (e.g., liquid, ice, and
mixed phase) [37]. In addition, CloudSat offers comprehensive
cloud microphysical properties through its Radar-Only (RO)
and RVOD cloud water content products. These products
allow for the retrieval of key cloud characteristics, such as
LWC, LWP, and CER. The CER can be converted from
the geometric mean radius rg provided by RVOD product
utilizing the interconnection between physical variables under
the assumption that the DSD satisfies a lognormal distribution
with the geometric standard deviation σlog is fixed at 0.38
[26].

The MODIS and AMSR2 onboard the Aqua and Global
Change Observation Mission 1st-Water (GCOM-W1) satellite,
operating in the A-Train satellite, capture solar reflectance
in 36 spectral channels ranging from visible to the infrared
wavelengths (0.4–14.4 µm), and 16 channels with seven fre-
quencies varying from 6.9 to 89 GHz, respectively [38], [39].
MODIS channels at 1.6, 2.1, and 3.7 µm, along with the
AMSR2 channel near 23 GHz, are sensitive to water vapor,
enabling the retrieval of key cloud properties such as LWP,
COT, and CER [32], [40], [41]. Notably, while MODIS is
limited to solar radiation, the MWR in the microwave channels
provides continuous cloud observations throughout the day
with uncertainty in LWP retrievals typically within about
5–8 g·m−2 [42].

In this study, since the most recent comprehensive data
products prior to the CloudSat’s orbit change are from 2017,
and our method relies solely on radar wavelength and cloud
droplet phase, both independent of temporal and spatial varia-
tions, we selected one-year of CloudSat CPR observations over
the SO region (40◦S∼65◦S) [33], [34] in 2017 to retrieve cloud
microphysical properties. The feasibility of applying space-
borne radar-based cloud property retrievals is assessed by
comparing with corresponding cloud products from MODIS-
1KM-AUX and AMSR2-AUX. These products, produced by
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CloudSat Data Processing Center (DPC), are collocated with
CPR in spatial and temporal with CPR footprint, ensuring
consistent resolution and effective comparison between cloud
products from different instruments.

III. RETRIEVAL METHOD

In this study, we propose a novel method for retrieving
cloud microphysical properties that significantly improves the
accuracy and consistency of LWC, CRE, and COT, address-
ing limitations of previous empirical-based methods. Prior
approaches often relied on simplified empirical formulas that
assumed specific DSDs, resulting in large uncertainties in the
retrievals of these cloud properties. In contrast, our method
avoids the assumptions and instead incorporates the intrinsic
relationship between radar reflectivity and cloud droplet size
while accounting for the attenuation of radar signals due to
LWC mass absorption.

According to the radar detection principle, the intrinsic radar
reflectivity factor Ze is proportional to the sixth power of the
cloud droplet radius that characterizes the particles’ backscat-
tering intensity of the radar power, while the radar-measured
reflectivity Zm is obtained after the radar power attenuated by
cloud water content. This attenuation is incorporated into our
model through a physical relationship expressed as follows:

Ze (hi) = Zm(hi) e0.46
R hi

ht
k(s)ds (1)

where radar reflectivity Ze(hi) at a given height is corrected
from attenuation based on cloud LWC, and k is the one-way
attenuation coefficient in units of dB/km. The attenuation is
contributed to by both gas (i.e., oxygen and water vapor)
and cloud droplet absorption. Considering that the attenu-
ation of gas can be neglected compared to cloud droplets
and the attenuation caused by cloud droplets satisfies the
Rayleigh approximation, the attenuation caused by cloud
droplet absorption is only considered in this study (i.e.,
k = kc) and kc is proportional to the cloud LWC, that is
kc = 0.4343(6π)/(λρ0)Im(−(m2−1)/(m2 +2))LWC = K∗LWC,
where ρ0 is the density of water with the value of 1 g/m3.
The K∗ in units of (dB/km)/(g/m3) is determined by the radar
wavelength and the imaginary part of the refractive index,
depending on the temperature and phase, but independent of
the cloud DSD. This correction ensures that the retrievals are
not biased by assumptions about the DSD. By converting
(1) into a Bernoulli differential equation as shown in the
Appendix, we derived a more accurate expression for LWC
that is free from empirical coefficients and prior assumptions
with reference to the LWC retrieval method applicable to
ground-based radar [43]. Unlike previous studies, we modified
the integration direction of the Bernoulli equation from the
cloud top to the cloud base to account for the spaceborne
radar’s top-down detection, as shown in (2). Namely, the
LWC expression in this study is gained by combining the
equations calculated by integrating the Bernoulli differential
equation from the cloud top to the cloud base and at a certain
height within the cloud. The complete process of integration
is illustrated in the Appendix

LWC (hi) =
Zb

m (hi)
�
exp (0.46bK∗LWP) − 1

�
I (hthl) +

�
exp (0.46bK∗LWP) − 1

�
I (hihl)

I (hi, hl) =

Z hl

hi

0.46bK∗Zb
m (s) ds (2)

where hl and ht indicate the radar gate at the cloud base and
top, respectively. The optimal parameters (i.e., b and LWP)
in (2) can be obtained by minimizing the error between the
reconstructed and measured reflectivity through applying the
trust region reflective (TRR) method.

Given that the CER is defined as the ratio of the third to
the second moment of DSD and that the LWC and Z are pro-
portional to the third and sixth moment of DSD, respectively,
we construct a retrieval expression for CER based on these
fundamental physical relationships under the assumption of
lognormal cloud DSD [44] as shown by

CER (hi) = r
4
9
m

�
πρw

48
Ze (hi)

LWC (hi)

� 5
27

(3)

where the parameter rm is the median radius with optimal
constant value of 13.1 µm selected by performing sensitivity
analysis on different parameters (i.e., rm and logarithmic
spectral width σx) [44] under the premise that the cloud
DSD satisfies a lognormal distribution, and the uncertainty of
retrieval results caused by the parameter rm variation is only
11% [44]. In addition, COT is the integral of the extinction
caused by the cloud droplets, and can be expressed as a
function of LWC and CER [44]

COT =

Z hl

ht

COT (h) dh =

Z hl

ht

3
2

LWC (h)
CER (h)

dh. (4)

This approach lies in its ability to derive essential cloud
properties without relying on empirical coefficients or passive
instruments. By integrating the physical and mathematical
definitions of multiple cloud microphysical parameters into
the radar equation, we construct an interactive and coordi-
nated adaptive inversion scheme that considers both particle
backscattering and cloud water mass absorption during radar
wave transmission. This scheme ensures that the retrieval
of cloud properties is dynamically linked to the variations
of cloud physical features, and can not only improve the
accuracy of microphysical property retrievals, but also reduce
uncertainty by minimizing reliance on preassumed particle dis-
tributions. Ultimately, this method provides a more robust and
physically grounded framework for cloud property retrieval
from spaceborne radar observations, making it a significant
advancement over traditional techniques.

IV. RESULTS AND DISCUSSION

The process begins with the identification of cloud bound-
aries, which are determined by combining cloud base and top
heights [indicated by black and purple dots in Fig. 1(a)] with
a cloud mask value greater than 20 [see Fig. 1(b)]. This is
followed by the selection of liquid water clouds based on
cloud phase classification from the 2B-CLDCLASS-LIDAR
product as displayed in Fig. 1(c). Once the cloud boundaries
are defined, the cloud microphysical properties, such as LWC,
CER, and COT, are retrieved by applying the radar-measured
reflectivity factor of liquid water clouds within the identified
boundaries, as shown in Fig. 1(d)–(f), respectively.

Authorized licensed use limited to: Lanzhou University. Downloaded on December 30,2025 at 03:48:51 UTC from IEEE Xplore.  Restrictions apply. 



4114309 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

Fig. 1. Case of a single-layer cloud over the SO region. (a) Latitude–height
profiles of the reflectivity and the best estimated cloud base and top marked
by the black and purple dots, respectively; Time–height profiles of (b) cloud
mask, (c) cloud phase, (d) retrieved LWC, (e) retrieved CER, and (f) retrieved
COT represented by gray solid line.

Fig. 2. Comparison of the retrieved LWC with (a) RO and (b) RVOD product
provided by CloudSat. The “MB” and “RMSE” in the text box at the upper
left corner of each subgraph represent the MB and the RMSE between the
retrieved results and the CloudSat product.

Fig. 3. Distribution of cloud LWC provided by (a) and (b) RO, (c) and
(d) RVOD, and (e) and (f) our method with latitude (left column) and longitude
(left column), respectively.

The results show that the retrieved LWC values are generally
below 0.2 g/m3, with peak LWC concentrations near the cloud
base. This is accompanied by large cloud particles, indicated
by CER values exceeding 20 µm, reflecting the presence of
larger droplets at lower altitudes. These findings align with
the known behavior of LWC, which typically decreases with
altitude as larger precipitation particles fall toward the surface.
This validates our method’s ability to accurately capture the
vertical distribution of cloud properties and supports its use
in cloud microphysics retrievals from spaceborne radar data
[45].

A. Comparison and Evaluation of LWC Retrieval Accuracy

The comparison between the LWC retrieved by our method
(denoted as LWCRet, hereafter) and the LWC provided by RO

Fig. 4. Profiles of LWC retrieved by our method (green solid line), 2B-RO
product (purple solid line), and 2B-RVOD product (orange solid line). The
solid dots and shaded region are the mean and standard deviation of LWC
within each normalized height bin of 0.1, where the normalized height is the
ratio of the distance from the cloud base at any height within the cloud to
the cloud thickness.

(hereafter LWCRO) and the RVOD (hereafter LWCRVOD) prod-
uct are shown in Fig. 2(a) and (b). The retrieval uncertainties
are quantified using the mean bias (MB) and root mean square
error (RMSE) between our retrieval results and the CloudSat
products. The results reveal that LWCRet (0.12 ± 0.09 g·m−3)
exhibits smaller MB (−0.056 versus −0.32 g·m−3) and RMSE
(0.18 versus 0.41 g·m−3) compared to LWCRO, and is more
consistent with LWCRVOD. In addition, the data point for
LWCRet are more concentrated near the diagonal (i.e., the
dotted line in the figure), indicating that the retrieved LWC
values with uncertainty of 0.18 g·m−3 are closer to those from
the CloudSat RVOD products. The spatial distribution of LWC
obtained via different methods, respectively. As depicted in
Fig. 3, the LWCRO, LWCRVOD and LWCRet are predominantly
concentrated between 40◦S to 45◦S, and the variations in
LWCRet and LWCRVOD with longitude shows a high frequency
occurrence around 110◦W and 160◦W, which aligns with
previous findings by Lin et al. [35], who observed higher cloud
water content near 40◦S and 160◦W. The LWC distribution
from LWCRet closely resembles that of LWCRVOD, but with a
smaller range. Moreover, the cloud LWC from all the different
approaches consistently decreases with normalized altitude
within the cloud layer, as shown in Fig. 4. Notably, the LWCRet
not only follows the same trend as LWCRVOD, but also shows
a narrower distribution compared with both LWCRVOD and
LWCRO within each altitude range. This suggests that LWCRet
with its smaller standard deviation, provides a more uniform
estimate of LWC at different heights within the cloud layer,
further confirming the robustness and precision of our retrieval
method.

The high-quality LWP derived from passive remote sens-
ing instruments of AMSR2 and MODIS is compared with
the results retrieved from our method, as well as the offi-
cial products from CloudSat, shown in Fig. 5. A total of
20 077 profiles, where both active and passive instruments
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Fig. 5. Comparison of the retrieved LWP with (a) RO and (b) RVOD product
provided by CloudSat and the LWP provided by (c) AMSR2 and (d) MODIS.
The “MB” and “RMSE” in the text box at the upper left corner of each
subgraph represent the MB and the RMSE between the retrieved results and
the product.

(i.e., CloudSat, AMSR2, and MODIS) were simultaneously
valid during the selected period, were analyzed for statistical
evaluation. The retrieved LWP (denoted as LWPRet), with a
mean value of 0.088 kg·m2, closely matches the LWP from
the RVOD product (hereafter LWPRVOD) and shows greater
consistency with AMSR2 (hereafter LWPAMSR) compared
with other products (i.e., LWPRO, LWPMODIS). Specifically,
the values are as follows: LWPRet = 0.088 kg·m−2,
LWPRVOD = 0.19 kg·m−2, LWPRO = 0.54 kg·m−2, LWPAMSR =

0.10 kg·m−2, and LWPMODIS = 0.18 kg·m−2. These results
demonstrate that LWPRet aligns more closely with the
microwave radiometer-derived LWP, especially compared with
the overestimation of LWPMODIS, which is often influenced
by the solar zenith angle (Greenwald, 2009). Furthermore,
the MB between LWPRet and LWPMODIS (−0.09 kg·m2) is
comparable to the MB between LWPRVOD and LWPMODIS
(−0.11 kg·m−2), which results from the fusion of MODIS and
CPR data. This confirms that our algorithm can accurately
provide an independent retrieval of LWP with uncertainty of
0.19 kg·m−2, free from reliance on passive instruments like
MODIS, addressing the limitations of existing methods that
depend on such data sources.

B. Comparison and Evaluation of CER and COT Accuracy

Given that passive remote sensing instruments like MODIS
provide high-quality CER primarily at the cloud top, we com-
pare the CER retrieved using our proposed method in the cloud
top layer (hereafter CERT

Ret) with those from the CloudSat RO
product (hereafter CERT

RO) and the RVOD product (hereafter
CERT

RVOD) at the cloud top bin. As shown in Fig. 6(a)–(c),
in contrast to the cloud LWC comparison, where our method
yields smaller values than the RO product, CERT

Ret is higher
than CERT

RO, with an MB of 8.11 µm and RMSE of 8.69 µm.
Our retrieved CER is much closer to CERT

RVOD and CERT
MODIS,

with smaller MB (RMSE) of 3.04 µm (6.22 µm) and 1.1 µm

Fig. 6. Comparison of the retrieved CER at the cloud top with (a) RO,
(b) MODIS, and (c) RVOD product. And (d) profiles of retrieved CER (red
solid line) compared with the 2B-RO product (blue solid line) and 2B-RVOD
product (orange solid line).

Fig. 7. (a) Comparison of the retrieved COT with the MODIS product.
(b) Frequency distribution histogram of the bias between the retrieval and
product (blue shading area) and the CDFs of the COT fractional error (red
solid line).

(5.61 µm), respectively. These results suggest that our retrieval
method improves upon the RO product and closely aligns with
existing passive instruments.

Furthermore, the vertical profiles of CER, shown in
Fig. 6(d), compare the retrievals from our method (hereafter
CERRet), provided by RO (hereafter CERRO) and RVOD
(hereafter CERRVOD) products across each radar range gate.
The CERs from all three approaches exhibit a tendency to
increase and then decrease with height in the cloud layer,
which can be attributed to the aggregation of particles near the
cloud base as precipitation occurs below the cloud. Notably,
CERRet with uncertainty of 8.36 µm shows closer agreement
with CERRVOD at all heights within the cloud, suggesting that
the CER retrieved using our method not only aligns with
CERMODIS at the cloud top but also exhibits a consistent
vertical distribution, reinforcing the accuracy and robustness
of our method across different cloud heights.

Fig. 7 shows the comparison of the COT retrieved by our
method (hereafter COTRet) with the COT product provided by
MODIS (hereafter COTMODIS). The comparison is presented
through the bias frequency distribution and the cumulative
probability function (cdf) of the fraction error (i.e., the per-
centage of the ratio between bias and true value) by treating
COTMODIS as the true value. For 166 010 profiles where both
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Fig. 8. Retrieved bias influenced by maximum reflectivity and cloud thick-
ness. (a) Variation of absolute bias with maximum reflectivity. (b) Contour
distribution of absolute bias with respect to maximum reflectivity and cloud
thickness. The closer the color of the contour line is to a warmer color, the
greater the value.

CloudSat and MODIS observations were available, COTRet is
primarily concentrated below the diagonal, with the peak of
the bias frequency shifted to the left of zero with uncertainty
of 22.42, indicating that our retrieved COT is generally smaller
than COTMODIS. The MB and RMSE between the two datasets
are −11.33 and 22.42, respectively. This bias may be partly
attributed to the difference in observational approach of the
passive and active instruments, which sample different regions
of the clouds. In addition to the error arising from the
instrument itself, we also examine how the absolute bias varies
with the maximum radar reflectivity across the entire cloud
layer, as shown in Fig. 8(a). We found that the maximum
reflectivity increases with the absolute bias, particularly when
the reflectivity exceeds −15 dBZ, indicating that larger parti-
cles (associated with higher reflectivity) correspond to greater
bias. To further investigate the cloud types contributing to this
high deviation, we combined cloud geometric thickness and
maximum reflectivity. As displayed in Fig. 8(b), the larger
absolute biases (shown by red contours) are concentrated in the
upper right corner of the blue shading plot, which corresponds
to clouds with greater thickness and larger particles. This
suggests that the COT retrieved by our method tends to be
underestimated for thicker clouds with larger droplets, as
compared with MODIS.

It is important to note that COTMODIS is derived under the
assumption that CERT

MODIS varies linearly or remains constant
throughout the cloud layer. However, this assumption may
not hold true for thicker clouds with larger particles, leading
to discrepancies between the assumed and actual vertical
distribution of droplet sizes. To validate this hypothesis, we

Fig. 9. Profiles of CER for (a) type 1, (b) type 2, and (c) type 3 versus the
normalized height above cloud base (i.e., the ratio of each bin height from the
cloud base to the cloud thickness) using the RO (blue), RVOD (orange) and
the algorithm in this study (red). The mean and standard deviation of CER
in each height bin are represented by a dot and a solid line, respectively.

Fig. 10. Comparison of (a) COT retrieved by our method with the RVOD
and (b) COT retrieved by using the CER at the cloud top with the MODIS
product.

classified all profiles into three categories according to the
bias between COTRet and COTMODIS: 1) bias>5 (hereafter
type 1); 2) −5 ≤ bias ≤ 5 (hereafter type 2); and 3) bias
< −5 (hereafter type 3). Then we compared the profiles of the
CERRet with those of the CloudSat product in each category,
as shown in the three columns of Fig. 9. Interestingly, for
the third category (where the COT bias is less than −5),
CERRet is closer to the CERRVOD than in the other cat-
egories, suggesting that the smaller COTRet in this group
can be attributed to differences in CER vertical distribution
assumptions. Moreover, COT retrieved by our method shows
high agreement with COT from the RVOD product [see
Fig. 10(a)]. This confirms that the underestimation of COT
retrieval is primarily due to the assumption of the CER vertical
distribution in the MODIS product. Therefore, we further
utilize only the CERT

Ret and assume that the CER in the cloud
layer varies with height, analogous to the MODIS retrieval
algorithm, and obtain the COT according to the adiabatic
theory as COTT

Ret = (9LWPRet)/(5CERT
Ret). In accordance with

the results shown in Fig. 10(b), the recalculated COTT
Ret are

distributed near the diagonal with a smaller MB in comparison
to and COTMODIS (i.e., −8.99 versus −11.33). In other words,
when CERT

Ret is assumed to vary linearly with height, similar
to the MODIS retrieval algorithm; the retrieved COT aligns
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well with passive instrument products. It is firmly confirmed
that the method proposed in this study, which includes a more
detailed CER vertical structure, improves the accuracy of the
COT retrieval, strengthening the importance of accounting for
the full vertical distribution of cloud properties.

V. CONCLUSION AND DISCUSSION

In this study, we introduce innovative algorithms for retriev-
ing cloud microphysical properties, specifically cloud LWC,
CER, and COT from satellite-borne millimeter-wavelength
CPR. These algorithms are grounded in radar detection prin-
ciples and the intrinsic relationships between cloud properties,
overcoming the constraints of traditional methods that rely on
a priori data and synchronization across multiple instruments.
Our approach leverages both the backscattering intensity and
attenuation of radar waves, enabling more robust retrievals
without dependence on passive instrument data, which often
limit the accuracy and coverage of existing algorithms.

We assess the precision and efficacy of our method by
applying it to data from the SO region, where low marine
boundary layer clouds are prevalent, and compare the results
with existing cloud property products from CloudSat and other
passive remote sensing instruments. Our retrievals exhibit high
accuracy, with cloud LWC, CER, and COT showing excellent
agreement with independent reference products, such as the
RVOD, AMSR2, and MODIS. The longitudinal, latitudinal,
and vertical distributions of cloud LWC obtained by our
method align closely with those from the RVOD product,
demonstrating its ability to capture spatial patterns accurately.
In addition, the retrieved cloud LWP is in close agreement with
AMSR2, highlighting the potential of our method to deliver
continuous cloud products throughout the day and night, which
passive remote sensing instruments cannot achieve due to their
limitations.

A key advantage of our method is its ability to retrieve CER
with a high degree of accuracy. Not only do the retrieved CER
values closely mirror the MODIS product at the cloud top,
but they also exhibit a vertical distribution more consistent
with the RVOD product compared with the RO product. This
indicates that our approach captures the variability of cloud
microphysical properties more effectively throughout the entire
cloud layer. However, it is worth noting that the COT values
retrieved by our method tend to be lower than those from
MODIS. Through statistical analysis and comparison of the
vertical distribution of CER within various COT bias cate-
gories, we identify that this underestimation is primarily due
to the vertical structure of the CER retrieved by our method,
which deviates from the assumptions made in the MODIS
retrieval algorithm. This finding underscores the novelty of our
algorithm, which provides more physically grounded vertical
structures of cloud microphysical properties, leading to more
accurate cloud property retrievals.

This study makes a significant advancement in cloud
retrieval algorithms by overcoming the inherent limitations of
existing methods, which often rely heavily on passive instru-
ments or empirical data. By applying a top-down detection
performance model to satellite remote sensing, our approach
integrates both ground- and space-based radar measurements,

offering a comprehensive and physically consistent framework
for retrieving cloud properties. This algorithm marks a major
step forward in cloud remote sensing by reducing dependence
on passive instruments and preassumed cloud models, thereby
improving the reliability of cloud property retrievals. Not
only does this enhance the accuracy of cloud microphysical
retrievals, but it also lays the foundation for more reliable
cloud property representations in climate models. The contin-
ued application of this method to the 18 years of CloudSat
data, as well as current spaceborne radar missions such as
EarthCARE, holds the potential to significantly improve global
cloud datasets. This could better capture the complex vertical
structures of cloud properties and provide a more physically
consistent representation of clouds in future climate simula-
tions.

APPENDIX

According to (1), the relationship between the unattenuated
and measured reflectivity can be rewritten as

aZb
e (hi) = aZb

m(hi) e0.46b
R hi

ht
kc(s)ds. (A1)

Considering that kc = K∗LWC and LWC = aZb
e = b, (A1)

can be transformed into

aZb
e (hi) = aZb

m(hi) e0.46bK∗
R hi

ht
aZb

e (s)ds. (A2)

Assuming that

x= 0.46K∗
Z ri

r0

aZb
e (s) ds (A3)

and
v = ebx. (A4)

Based on (A3)–(A4), the following differential equations
can be obtained:

dx = 0.46K∗aZb
e (r) dr

dv = bvdx. (A5)

Thus the Ze can be expressed as

aZb
e (r) =

1
0.46K∗

dx
dr

=
1

0.46K∗
dv

bvdr
. (A6)

By combining (A2) and (A6), we can obtain the formulas
as

1
0.46K∗

dv
bvdr

= aZb
mv. (A7)

Namely, from the (A7), the Bernoulli differential equation
is established as

dv
v2 = 0.46abK∗Zb

mdr

v = ebx

x = 0.46K∗
Z r

r0

aZb
e (s) ds. (A8)

By integrating (A8) from ht to hi and hl, respectively, the
relationship between LWC(hi), Zm(hi) and LWC(hl) can be
established as

LWC (hi) =
Zb

m (hi) LWC (hl)
Zb

m (hl)+LWC (hl) I (hi, hl)
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I (hi, hl) =

Z hl.

hi

046bK∗Zb
m (s) ds. (A9)

Referring to the details of the retrieval method for ground-
based radar [43], the LWC(hl) can be further expressed as

LWC (hl) =
Zb

m (hl)
I (ht, hl)

�
exp (0.46bK∗LWP) − 1

�
. (A10)

By substituting (A10) into (A9), one can see that the LWC
at any range between ht and hl [i.e., LWC(hi)] can be expressed
in (2).
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