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ABSTRACT

The explosive growth during the early stages and the sustained transmission in the later phases of the coron-
avirus disease 2019 (COVID-19) pandemic may be closely linked to superspreading events (SSEs), yet in-depth
research into their specific mechanisms and quantitative effects remains limited. This study, based on data
from 4,519 COVID-19 cases across eight regions in China, reconstructed transmission chains and quantified
key parameters such as the basic reproduction number (R,) and dispersion parameter (k), revealing a high
degree of heterogeneity in COVID-19 transmission. The results showed that the majority of COVID-19 cases
were mild, with female cases in some regions being significantly older than males. Epidemic curves were highly
similar in geographically proximal areas, with the longest transmission chain reaching nine generations. The
transmission parameters revealed a serial interval of 1.27-4.71 days, R, ranging from 0.87 to 2.65, and k values
between 0.50-2.04, demonstrating that super-spreaders serve as critical drivers of epidemic spread. We found
that 1.35 % of cases identified as super-spreaders directly responsible for 40.09 % of secondary cases.
Occupationally, students and catering staff were identified as high-risk groups for super-spreading.
Geographically, household or community transmission served as the main driver of SSEs in six regions, while
school-based transmission dominated in one region. These findings provide crucial scientific evidence for
advancing our understanding of COVID-19 transmission dynamics and informing precision prevention
strategies.

© 2025 Chinese Medical Association Publishing House Co. Ltd. Published by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

From the 2003 severe acute respiratory syndromes outbreak to
coronavirus disease 2019 (COVID-19) in late 2019, fast-spreading dis-
eases have caused major global health crises, economic problems, and
social instability. Most disease models assume infections spread
evenly—where every infected individual is equally likely to infect
others [1]. However, studies conducted since 2003 reveal a different
pattern [2-4]. In actual outbreaks, disease transmission isn’t evenly
distributed—a small number of individuals infect significantly more
people than others. Sometimes this uneven spread leads to “super-
spreading events (SSEs)” [5]. In these cases, just a few infected people
(called “super-spreaders”) end up passing the disease to many others.
While these people make up only a small fraction of all cases, they
cause most of the new infections. A super-spreader is typically defined
as an infected individual who transmits the virus to an unusually high
number of secondary cases, significantly exceeding the average trans-
mission number expected based on the basic reproduction number
(Rp) [6]. For instance, an estimated 20 % of COVID-19 cases may have
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been responsible for up to 80 % of transmissions [7,8]. SSEs are
strongly associated with explosive early-stage epidemic growth and
sustained transmission in later phases, presenting significant chal-
lenges to containment efforts [9]. Therefore, identifying and control-
ling super-spreaders and SSEs is critical for effective epidemic
response, as it enables the disruption of transmission chains and miti-
gation of the outbreak’s impact.

The transmission dynamics of COVID-19 can be quantitatively char-
acterized by two key epidemiological parameters: the Ry and the disper-
sion parameter (k). Ro refers to the average number of secondary
infections generated by a typical primary infection case in a fully suscep-
tible population, without any external interventions, over the course of
its infectious period [10]. It is a theoretical value that measures the
inherent transmission capacity of a pathogen and is primarily used for
risk assessment in the early stages of an outbreak. R, (also known as
the time-varying reproduction number) refers to the average number
of secondary infections that a typical infection case is expected to gener-
ate during its remaining infectious period at time t, taking into account
the existing immunity in the population (due to prior infections or vac-
cinations) and the various interventions being implemented (such as
social distancing, mask mandates, etc.) [11]. It is a dynamically chang-
ing indicator thatreflects the real-time development of the outbreak and
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HIGHLIGHTS

Scientific question

Superspreading events are considered to be closely asso-
ciated with the explosive growth in early stages and sus-
tained transmission in later phases of coronavirus
disease 2019 (COVID-19) pandemic. However, their specific
mechanisms and quantitative effects remain to be eluci-
dated.

Evidence before this study

Previous studies have highlighted significant transmission
heterogeneity in COVID-19, with super-spreaders substan-
tially amplifying outbreaks. However, systematic analysis
of super-spreader profiles and local transmission chains
in mainland China remains limited.

New findings

Our study found that 1.35 % of cases were identified as
super-spreaders directly responsible for 40.09 % of sec-
ondary cases. Occupationally, students and catering staff
were identified as high-risk groups for super-spreading.
Geographically, household or community transmission
served as the main driver of superspreading events in six
regions. Regional variations were observed in key trans-
mission parameters: basic reproduction number Ry (0.87-
2.65), dispersion coefficient k (0.50-2.04), and serial inter-
val (1.27-4.71 days), demonstrating spatial heterogeneity
in epidemic transmission dynamics.

Significance of the study

By systematically identifying super-spreaders as pivotal
outbreak drivers and their associated risk factors, this
study provides critical evidence for developing precision
public health strategies tailored to local transmission
dynamics.

the effectiveness of control measures. In the early stages of an outbreak,
when population immunity is close to zero and no effective interven-
tions are implemented, the R, can be approximately equal to the R,.
An R, > 1 indicates that the outbreak will grow, while an Ry < 1 sug-
gests that the outbreak will gradually subside. The variation in the num-
ber of secondary cases generated by each primary case is characterized
using a negative binomial distribution. Within this framework, the kisa
value that needs to be estimated from data. A lower k value indicates
greater heterogeneity in transmission (i.e., a higher degree of overdis-
persion), meaning that a larger proportion of transmission events are
driven by a small number of individuals [5,12,13]. A 2020 study in Chi-
na’s Hong Kong Special Administrative Region estimated an overall
reproductive number R of 0.58 and a k of 0.43, highlighting substantial
variation in individual infectiousness [13]. Similarly, research from Sin-
gapore in 2020 reported an even lower k value (0.11), further underscor-
ing the pivotal role of SSEs in driving transmission [14,15]. Data from
multi-center studies globally indicate that when R is maintained at 2—
3, k values generally fall within alow range of 0.10 [15]. Recent research
based on genomic data from multiple European countries also supports
this finding, estimating k values between 0.1 and 0.5 [16]. These find-
ings collectively suggest that COVID-19 prevention and control strate-
gies need to consider not only the average transmission rate but also
the impact of transmission heterogeneity, particularly the early identifi-
cation and intervention of SSEs.

Current research on COVID-19 transmission heavily relies on the
susceptible-exposed-infectious-removed (SEIR) model. However, it is
important to note that the classical SEIR framework assumes no trans-

mission during the exposed (E) phase, which may not fully capture the
transmission dynamics of severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2), as evidence suggests the occurrence of pre-
symptomatic transmission. Consequently, some studies employ modi-
fied SEIR models (allowing transmission in the late stages of the
exposed period) or, alternatively, use the susceptible-infectious-
removed (SIR) model as a simplified approximation to simulate overall
transmission trends. Nevertheless, these models typically assume
homogeneous mixing within the population and fixed parameters,
inevitably overlooking critical mechanistic details such as individual
contact history and the complex topology of transmission chains. Most
critically, their core framework fails to reflect the extreme heterogene-
ity in individual-level infectiousness-particularly SSEs-which is a
defining characteristic of SARS-CoV-2 transmission [17]. The system-
atic contact tracing strategy implemented in China’s COVID-19 epi-
demic prevention and control efforts has provided unique data
support for transmission dynamics research. By constructing a compre-
hensive transmission chain database, we can more accurately quantify
key transmission parameters. This study, based on epidemiological
investigation data from COVID-19 outbreaks in eight regions of China
in 2022, systematically reconstructed the transmission chain and
achieved precise estimates of parameters such as the Ry and the k.
The research not only deeply revealed the spatiotemporal distribution
characteristics of COVID-19 transmission heterogeneity but also
clearly pointed out the crucial determinant role of super-spreaders in
epidemic outbreaks and transmission. By quantifying transmission
dynamics parameters, we have provided empirical evidence for opti-
mizing prevention and control strategies for major infectious diseases.

2. Materials and methods
2.1. Study regions

This study selected eight representative regions with COVID-19
outbreaks as research objects. These regions all established complete
epidemiological investigation and contact tracing systems during the
COVID-19 epidemic in 2022, providing a reliable data foundation
for reconstructing transmission chains. The study regions included:
1) Tianjin Municipality (Tianjin); 2) Anyang of Henan Province (Any-
ang); 3) Hangzhou of Zhejiang Province (Hangzhou); 4) Shaanxi Pro-
vince (Shaanxi), given that the outbreaks in Xi’an City, Hanzhong City,
and Baoji City within the province shared a common source and
belonged to the same transmission chain, they were analyzed together;
5) Haining City in Zhejiang Province (Haining); 6) Taiyuan City in
Shanxi Province (Taiyuan); 7) Beijing Municipality (Beijing); 8)
Zhengzhou City in Henan Province (Zhengzhou).

2.2. Data collection

The COVID-19 epidemic data used in this study were sourced from
epidemic reports published on the official websites of the National
Health Commission [18] and the Health Commissions of correspond-
ing provinces and cities [19-24]. The cumulative number of cases
and the time ranges for each study region are as follows: Tianjin
(430 cases, January 8 to February 7, 2022), Anyang (468 cases, Jan-
uary 8 to January 29, 2022), Hangzhou (114 cases, January 26 to
February 3, 2022), Shaanxi (398 cases, March 5 to March 28, 2022),
Haining (172 cases, April 3 to April 13, 2022), Taiyuan (351 cases,
April 3 to April 27, 2022), Beijing (2231 cases, April 22 to June 29,
2022), and Zhengzhou (355 cases, May 1 to May 22, 2022).

2.3. Statistical analysis
Detailed definitions of epidemic curve patterns [25], transmission

chain classifications [26], and super-spreader [26-28] criteria are pro-
vided in the Supplementary Data.
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Data were organized and statistically analyzed using R software
(version 4.2.3). The calculations of the R, and k values utilized the
EpiEstim package (version 2.2.4), MASS package (version 7.3.58.1),
and boot package (version 1.3.31). First, we estimated R, using the
parametric method in the EpiEstim package. The estimation was per-
formed with a 7-day sliding window, parameterized using the mean
and standard deviation of the serial interval (SI). Based on the theoret-
ical principle that R, = Ry holds during the initial outbreak phase
when population immunity is negligible and intervention measures
are not yet implemented, we estimated R, by calculating the mean
value of R, from the first three time points in the reconstructed trans-
mission dynamics timeline. Second, the k value was estimated using a
negative binomial regression model, assessing transmission hetero-
geneity by comparing the actual case distribution with the fitted neg-
ative binomial distribution curve. For both Ry and k values, 95 %

397

confidence intervals (CI) were calculated using the bootstrap method
(with R = 1,000 replications).

3. Results
3.1. Characteristics of COVID-19 cases

The demographic and infection information of the cases is shown in
Fig. 1A, with detailed statistical analysis results provided in Tables S1—
S2. Among the 1,933 cases with available gender information (from six
regions), there were 884 males (45.73 %) and 1,049 females
(54.27 %), with no statistically significant difference in gender distri-
bution (t = —0.637, P = 0.538). The age range of cases was 1 to
95 years. Comparisons of gender and age between regions revealed
that the average age of female cases in Anyang and Taiyuan was signif-
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Fig. 1. COVID-19 in eight regions in China. A) Demographic and infection information of infected cases. Gray areas and gray bars indicate that relevant
information is unavailable. B) Epidemic curves of infected cases. Abbreviations: COVID-19, coronavirus disease 2019; IQR, interquartile range.
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icantly higher than that of males (P = 0.017 and P = 0.046, respec-
tively), while there were no statistically significant differences in
gender-age comparisons in other regions (P > 0.05). Among the
2,779 cases with clear clinical classifications, confirmed cases
accounted for 81.29 % (2,259/2,779), with mild cases comprising
65.25 % (1,474/2,259) of the confirmed cases. Comparative analyses
of classification case numbers and severity levels by gender across six
regions found no statistical differences (,1/2 = 4.659, P = 0.097;
7* = 2.003, P = 0.367).

Based on the reporting dates, we conducted a stratified analysis of
local and imported cases (Fig. 1B), revealing distinct transmission pat-
terns across regions: Hangzhou and Haining exhibited typical point-
source exposure patterns, with epidemic durations of 9-11 days. The
epidemic curves showed a unimodal shape characterized by rapid rise
and decline, suggesting transient SSEs initiated by a single infection
source. Anyang and Zhengzhou demonstrated continuous common-
source exposure, with epidemic curves maintaining plateau phases
for 7 and 9 days respectively, indicating prolonged SSEs. Tianjin and
Beijing displayed mixed exposure patterns, with bimodal curves sepa-
rated by 15-20 day intervals, reflecting initial common-source trans-
mission followed by multigenerational SSEs. Shaanxi and Taiyuan
exhibited index case-initiated transmission chains, with Taiyuan show-
ing progressively shortened interpeak intervals, suggesting cumulative
effects of multigenerational SSEs.

3.2. Reconstruction of transmission chains

To gain a deeper understanding and quantify the heterogeneous
characteristics presented by these transmission patterns, we con-
structed detailed and comprehensive transmission chains for the
COVID-19 outbreaks in these eight regions using exhaustive and valid
exposure history information. These chains were classified into simple
transmission chains (Fig. S1) and ordinary transmission chains (Fig. 2),
with detailed chain characteristics outlined in Table S3.

In Tianjin, 128 of 430 cases had clear contact history, forming 26
chains (18 simple, 8 ordinary) with a max of three generations. Of
these cases, 28.13 % (36/128) led to second-generation cases. One
super-spreader (Tianjin Case 2) was identified in a school and directly
infected 15 people. The other super-spreader (Tianjin Case 13)
infected 19 people through a gathering. In Anyang, 464 of 468 cases
formed 2 chains (1 simple, 1 ordinary) reaching six generations.
Among these cases, 12.07 % (56/464) led to second-generation cases.
Two super-spreaders (Anyang Case 7 and 48) together directly
infected 278 people in a school environment. The other two super-
spreaders (Anyang Case 8 and 151) directly infected 58 people
through household or community transmission. In Hangzhou, 100 of
114 cases formed 11 chains (7 simple, 4 ordinary) up to five genera-
tions. Of these cases, 22.00 % (22/100) led to second-generation cases.
One super-spreader (Hangzhou Case 1), an employee of a catering
company, directly infected 19 people. The other super-spreader (Hang-
zhou Case 29), a salesperson, infected 29 people through market or
community transmission. In Shaanxi, 334 of 398 cases formed 43
chains (31 simple, 12 ordinary) up to seven generations. Among these
cases, 29.94 % (100/334) led to second-generation cases. Notably,
super-spreaders (Shaanxi Case 10, 38, and 62, as restaurant staff, trig-
gered household cluster transmission through occupational exposure,
forming highly concentrated transmission clusters. In Haining, 20 of
172 cases formed 3 chains (1 simple, 2 ordinary) up to three genera-
tions, with no super-spreaders. Among these cases, 30.00 % (6/20)
led to second-generation cases. In Taiyuan, 179 of 351 cases formed
35 chains (26 simple, 9 ordinary) up to 5 generations. Among these
cases, 29.05 % (52/179) led to second-generation cases. Two super-
spreaders (Taiyuan Case 2 and 130), couriers, directly infected 24 peo-
ple through community transmission. The other super-spreader
(Taiyuan Case 7) infected 10 people through various transmission

routes. In Beijing, 431 of 2,231 cases formed 66 chains (54 simple,
12 ordinary) up to eight generations. Among these cases, 28.07 %
(121/431) led to second-generation cases. Two super-spreaders (Bei-
jing Case 5 and 8) together directly caused 48 secondary infections
in a school environment. One super-spreader (Beijing Case 27)
infected 12 people due to shared meals. The other four super-
spreaders (Beijing Case 28, 82, 99, and 728) infected 112 people
through various routes. In Zhengzhou, 346 of 355 cases formed 20
chains (9 simple, 11 ordinary) up to nine generations. Among these
cases, 38.15 % (132/346) led to second-generation cases. Two
super-spreaders (Zhengzhou Case 86 and 162) together directly
infected 25 people in a school environment. The other three super-
spreaders (Zhengzhou Case 44, 192, and 298) infected 38 people
through household or community transmission.

Through systematic analysis of transmission chains, we identified
significant heterogeneous characteristics in the spread of COVID-19.
Ordinary transmission chains (n = 59) involved a total of 1,583 cases,
with an average size of 26.83 cases per chain. Simple transmission
chains (n = 147) involved 419 cases, with an average size of 2.85
cases per chain. A total of 27 super-spreaders were identified, whose
transmission chains involved 1,728 cases, with an average size of 64
cases per chain.

3.3. Ry and k values of COVID-19

To quantitatively assess the transmission dynamics of COVID-19,
we systematically calculated three key epidemiological parameters
based on transmission chain data from various regions: SI, R,, and k
(Fig. 3). The results showed that Anyang had the largest mean SI of
4.71 (95 % CI: 4.39-5.02) days, indicating a relatively slower trans-
mission speed in Anyang with longer infectious chains between cases.
Haining had the smallest mean SI of 1.27 (95 % CI: 1.00-1.55) days,
suggesting a faster transmission speed in Haining with shorter infec-
tious chains, leading to a rapid increase in case numbers within a short
period. The mean SI for other regions fell between these two values.
Shaanxi had the highest Ry of 2.65 (95 % CI: 2.34-2.88), indicating
a relatively higher transmission potential in Shaanxi, making the epi-
demic more prone to spread. Haining had the lowest Ry of 0.87
(95 % CI: 0.69-1.01), implying that in the absence of external inter-
ventions, the epidemic might gradually die out as each infected indi-
vidual, on average, infects fewer than one person. The R, for other
regions was between these two values. The k values for Tianjin, Any-
ang, and Shaanxi were <1, with the negative binomial distribution
exhibiting a longer tail. This indicates high heterogeneity in transmis-
sion in these three regions, where a small number of infected individ-
uals triggered a large number of secondary infections, evidencing a
pronounced “super-spreader” effect. The timing of transmission in
these regions showed marked clustering, suggesting that outbreaks
could occur rapidly within a short period, driven by a few key individ-
uals. The k values for Hangzhou, Haining, Taiyuan, Beijing, and
Zhengzhou ranged between 1 and 5, indicating moderate transmission
heterogeneity in these areas. The spread of the epidemic in these
regions was relatively dispersed but still exhibited some clustering.
Although there was no obvious “super-spreader” effect like that in
Tianjin, Anyang, and Shaanxi, the transmission was not entirely
uniform.

3.4. Super-spreaders are key drivers of COVID-19 outbreaks and spread

Among the eight regions studied, confirmed COVID-19 cases pri-
marily exhibited mild clinical manifestations. Cases in Taiyuan and
Anyang showed gender and age differences, with female cases having
a significantly higher average age than male cases. Spatial transmis-
sion patterns revealed that neighboring regions with close geographi-
cal proximity exhibited highly similar epidemic curves. The longest
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Fig. 2. Ordinary transmission chains of coronavirus disease 2019 (COVID-19) in eight regions. Nodes represent cases, numbers in circles indicate case report serial
number, numbers in boxes indicate the number of cases, arrows indicate transmission relationships between cases, and purple squares represent super-spreaders.
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transmission chain extended up to nine generations. Notably, 1.35 %
(27/2,002) of cases identified as super-spreaders directly responsible
for 40.09 % (720/1,796) of secondary cases. Across seven regions, a
total of 27 infected individuals with superspreading characteristics
were identified. Among the 15 super-spreaders with complete gender
information, there were 7 males (46.67 %) and 8 females (53.33 %).
In terms of occupational composition, students and catering staff were
more likely to become super-spreaders. SSEs in six regions were pri-
marily driven by household or community transmission, while one
region was predominantly associated with school-based transmission.
The range of SI across regions was 1.27-4.71 days, the R, ranged
between 0.87-2.65, and the k spanned from 0.50 to 2.04. These find-
ings indicate that super-spreaders are crucial drivers of COVID-19 out-
breaks and spread. Their transmission characteristics are manifested as
highly clustered spatio-temporal distribution, elevated risk associated
with specific occupations and venues, and pronounced centrality
within transmission networks (Fig. 4).

4. Discussion

This study systematically analyzed the transmission chain charac-
teristics of 4,519 COVID-19 cases in eight regions of China, revealing
the central role of super-spreaders in epidemic transmission and quan-
tifying the heterogeneous features of COVID-19 transmission across
multiple regions in China for the first time. The findings not only con-
firm the significant heterogeneity in COVID-19 transmission but also
provide important scientific evidence for a deeper understanding of
its transmission mechanisms and the formulation of precise prevention
and control strategies.

Compared to the classic homogeneous transmission model pro-
posed by Anderson [1,29], our study validated the significant hetero-
geneity (k = 0.50-2.04) in COVID-19 transmission through empirical
data, supporting the super-spreading theory proposed by Lloyd-Smith
et al. [5]. Compared to D.C. Adam et al.’s [13] study on the China's
Hong Kong epidemic (k = 0.45), our study found lower k values in
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Fig. 4. Conceptual diagram of coronavirus disease 2019 (COVID-19) transmission dynamics and super-spreader characteristics in China. Abbreviations: conf,
confirmed COVID-19; asx, asymptomatic COVID-19; undet, undetected COVID-19.

some regions of China’s mainland, indicating more significant trans-
mission heterogeneity. This may reflect the influence of factors such
as higher population density and differences in social contact patterns
in cities of China’s mainland. Furthermore, the cross-regional compar-
ison in this study revealed spatial heterogeneity in transmission
parameters. By combining R, and k values, a transmission risk classifi-
cation can be proposed, providing a basis for formulating regionally
differentiated prevention and control strategies. When Ry > 1.5 and
k < 1.0, it indicates high transmission potential and strong depen-
dence on superspreading for COVID-19 (e.g., Anyang and Shaanxi in
this study), which is considered high-risk. When Ry = 1.0-1.5 and
k = 1.0-5.0, it indicates moderate transmission potential and hetero-
geneity for COVID-19 (e.g., Taiyuan and Hangzhou), which is consid-
ered medium-risk. When Ry, < 1.0 or k > 5.0, it indicates a self-
extinguishing trend or uniform transmission for COVID-19 (e.g., Hain-
ing), which is considered low-risk.

In the process of deeply exploring the characteristics of super-
spreaders, this study revealed the significant status of students and
catering staff as high-risk groups. Therefore, it is recommended to
implement regular screening strategies for these specific populations
to detect potential infections early. At the same time, communities
or households, and schools were identified as high-risk environments
for frequent SSEs, which is consistent with the conclusions of previous
studies, emphasizing the urgency of strengthening prevention and con-
trol measures in these places. Considering the increased infection risk
among co-habitants due to long-term close contact and social interac-
tion [29,30], accurately identifying super-spreaders and their environ-
ments is invaluable for effectively deploying preventive measures and

minimizing the spread of infections. For regions with different risk
levels, this study proposes differentiated prevention and control strate-
gies: In high-risk areas where epidemic transmission is mainly driven
by super-spreaders, measures such as precise transmission chain inter-
ruption, targeted venue shutdown, and enhanced traceability capabil-
ities should be taken to quickly control the spread of the epidemic; In
medium-risk areas facing the complex situation of coexisting super-
spreading and community transmission, dynamically adjusting venue
control strategies and strengthening supervision of key populations
become key to controlling the epidemic; In low-risk areas, where the
transmission pattern approaches a Poisson distribution, strategies such
as routine monitoring and protection of key populations are sufficient
to cope with the situation, but high vigilance must still be maintained
to prevent a resurgence of the epidemic.

This study has several limitations that should be considered when
interpreting the results. First, the epidemiological data were collected
from outbreaks in eight regions of China during the year 2022. Conse-
quently, our estimates of the R, and k primarily reflect the transmission
characteristics of the Omicron variants predominant at that time. The
generalizability of our findings to earlier or future variants with differ-
ent virological properties (e.g., transmissibility, incubation period)
may be limited. Second, while the eight regions provide diverse case
studies, they may not be fully representative of the entire country or
other international contexts. Geographic, demographic, and behav-
ioral differences could influence transmission patterns. Future studies
incorporating data from a wider range of locations are needed to val-
idate the universality of our conclusions. Third, and crucially, our anal-
ysis could not fully account for the heterogeneity of non-
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pharmaceutical interventions across regions and over time. Although a
major strength of our dataset is its detailed transmission chains, infor-
mation on the precise timing and intensity of localized public health
measures (e.g., school closures, workplace restrictions, gathering size
limits, mobility changes) was not systematically integrated into our
quantitative models. We strongly recommend that future research
merge detailed transmission chain data with granular policy data to
explicitly test this hypothesis and disentangle the effects of virus biol-
ogy from the effects of public health policy. Fourth, our findings on
SSEs locations must be interpreted in the context of shifting public
health policies during the study period. As interventions intensified-
particularly with widespread lockdowns-transmission modes shifted
from diverse public venues (e.g., early periods) toward household set-
tings (e.g., later periods). This may bias our venue-specific observa-
tions, potentially overestimating household transmission and
underestimating the role of public venues that were restricted. Despite
these limitations, the high-resolution contact tracing data from which
our transmission chains were reconstructed provides a unique and
invaluable resource for quantifying heterogeneity, offering a more
realistic perspective than traditional modeling approaches.
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