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Abstract Southeastern Australia (SEA) is no stranger to bushfires, but the 2019–2020 season was
unprecedented in both size and intensity, accompanied with record‐breaking high temperature and rainfall
deficit. Future projections warn that Australia's fire season will face more frequent droughts and heat waves if
emissions are not significantly reduced. Although studies have indicated 2019 extreme positive Indian Ocean
Dipole’s (pIOD) important contribution to this mega bushfire, our research study highlights IOD's climatic
effect on SEA varied and intensified in recent decades. Due to anthropogenic climate change, the likelihood of
pIOD‐induced severe bushfires danger has risen by 16%–32%. Coupled Model Intercomparison Project Phase 6
projections reveal that SEA will inevitably face an increasing crisis with bushfire in a warmer future. Under the
plausible high‐emission scenario SSP370, pIOD‐induced mega bushfires comparable to the 2019–2020 event
increase at nearly 1.8 times the rate of medium‐emission SSP245, whereas the upper‐bound SSP585 scenario
projects over twice SSP245's increase.

Plain Language Summary Bushfires are not uncommon in Australia due to its extensive grasslands
and large semi‐arid landscapes, but the 2019–2020 season in southeastern Australia (SEA) has been proved to be
unprecedented in both scale and intensity due to unusually hot and dry conditions, which was driven by a climate
event called the positive Indian Ocean Dipole (pIOD). Our study reveals that IOD's climatic effect on SEA is not
stable and enhanced in recent decades. The likelihood of severe bushfires danger driven by pIOD has increased
by about 16%–32% due to anthropogenic climate change. Projections using Coupled Model Intercomparison
Project Phase 6 shows that the effects of pIOD will likely become stronger, leading to even more extreme fire‐
prone conditions by the late 21st century. Under the plausible high‐emission scenario SSP370, pIOD‐induced
mega bushfires comparable to the 2019–2020 event increase at nearly 1.8 times the rate of medium‐emission
SSP245, whereas the upper‐bound SSP585 scenario projects over twice SSP245's increase. Our findings
highlight the urgent need to develop effective strategies and plans to mitigate the glowing threat of bushfires
over Australia.

1. Introduction
Bushfires are not uncommon in Australia due to the extensive grasslands and the large semi‐arid landscape, which
have a substantial impact on environmental, social, and economy, but the 2019–2020 season in southeastern
Australia (SEA) was unprecedented in its scale and intensity, attracting considerable national and international
attention (Boer et al., 2020; Nolan et al., 2020). These deadly bushfires that began in September 2019 were
burning for nearly four months and turned eastern Australia into a charred apocalyptic nightmare. By mid‐
February 2020, more than 186,000 Km2 of land were burned in thousands of fires, resulting in at least 34 fa-
talities. An estimated billion animals—800,000 in New SouthWales alone—were killed. Nearly 3,000 homes and
several thousand buildings were destroyed nationwide. The total damages of these bushfires were estimated at
$100 billion or more, making it Australia's costliest natural disaster in history (https://disasterphilanthropy.org/
disaster/2019‐australian‐wildfires). This catastrophic event highlights the critical need to better understand the
climatic drivers contributing to extreme fire seasons.

Prior to the 2019–2020 mega fires, Australia had experienced a prolonged period of hot and dry conditions over
the past two years, and 2019 was the hottest and driest year on record for the country. These repeated warm days,
little or no rain, combined with some periods of windy weather contributed to the unusual volatility of the 2019–
2020 fire season (Deb et al., 2020). Studies have indicated that several interacting climatic factors contributed to
the severity of the 2019–2020 fire season; the most notable triggers include a record‐breaking positive Indian
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Ocean Dipole (pIOD), alongside the Central Pacific El Niño (CP‐El Niño) and anthropogenic climate change
(Abram et al., 2021; Di Virgilio et al., 2020; Van Oldenborgh et al., 2021; Wang & Cai, 2020). The IOD's impact
on Australian precipitation and temperature is dynamically grounded in the Matsuno‐Gill atmospheric response
(Ashok et al., 2003). pIOD phases—characterized by warmer‐than‐average sea surface temperatures (SSTs) in the
western Indian Ocean and cooler‐than‐average conditions in the eastern Indian Ocean—can induce anomalous
subsidence over SEA and significantly impact the Australian climate (Cai et al., 2009). A pIOD phase often leads
to reduced rainfall and warmer temperatures across eastern Australia, creating drought conditions. This drought
significantly increases landscape flammability by dry vegetation, thereby providing substantial fuel for wildfires
and thus increasing their vulnerability and spread (Cai et al., 2009, 2011; Dowdy et al., 2009; Ummenhofer
et al., 2009).

However, we notice that the relationship between strong pIOD events and extreme fire weather in SEA is not
invariably consistent. A strong pIOD does not always result in extreme heat and dryness with high fire potential in
SEA. A notable example is 1961, which experienced the third strongest IOD since 1900, did not record a sig-
nificant rainfall deficit or associated extreme fire impacts in SEA. This historical discrepancy raises critical
questions about the stability of the pIOD's preconditioning influence on SEA drought and bushfire risk over time.
Specifically, it prompts investigation into whether the teleconnection between pIOD and SEA climate/fire risk
has undergone significant variations in recent decades, potentially modulated by anthropogenic climate change.
To address the above questions, this study will investigate the varying pIOD's impact on SEA drought and fire risk
in the historical and future contexts, which is essential for developing effective strategies and plans to mitigate the
threat of bushfires in Australia.

2. Materials and Methods
2.1. Observational Materials

Modis active fire data (Collection 6, standard and near real time archives, available on https://firms.modaps.
eosdis.nasa.gov/download/; Giglio et al., 2016) was used to provide a visual representation of the unprecedented
scale of the 2019–2020 Australian mega‐fires. Meteorological data, including daily maximum and minimum air
temperature (Tmax and Tmin) and precipitation were obtained from the Australian Gridded Climate Data set
(AGCDv2; Evans et al., 2020), which is a high‐quality, publicly available, and widely used data set produced by
the Bureau of Meteorology (BOM, available at https://thredds.nci.org.au/thredds/catalog/catalogs/zv2/agcd/
agcd.html). In addition, the NOAA's Precipitation Reconstruction (PREC; Chen et al., 2002) and outgoing
longwave radiation (OLR) data from NCEP‐NCAR Reanalysis 1 (Kalnay et al., 1996) from 1948 to 2020 were
also incorporated. To fit the annual mean variables and estimate return periods, we employed the generalized
extreme value (GEV) distribution in this study, which is appropriate for fitting the tails of data distributions (Coles
et al., 2001).

To quantify the IOD events, which are known to significantly influence Australian climate variability and drought
conditions (Cai et al., 2009), the Dipole Mode Index (DMI) was used. It was defined as the SST anomalies
(SSTA) difference between the West Tropical Indian Ocean (WTIO, 50°–70°E, 10°S–10°N) and the Southeast
Tropical Indian Ocean (SETIO, 90°–110°E) (Saji et al., 1999). The observed DMI was derived from the most
recent version of the Extended Reconstruction of SST (ERSSTv5; Huang et al., 2017), providing a reliable index
of IOD variability for the study period.

2.2. Computation of Keetch‐Byram Drought Index

The Keetch‐Byram drought index (KBDI; Keetch & Byram, 1968) was selected as the primary drought metric for
this study due to its established utility in assessing fire risk, especially in the context of fuel aridity, which is
known to be a critical driver of wildfire behavior. The KBDI represents the soil moisture deficit relative to soil
capacity, providing a straightforward measure of the drying of surface fuels and their flammability. This index has
been widely used in Australia (e.g., Plucinski et al., 2023) and globally (e.g., Gannon & Steinberg, 2021) for fire
management as well as drought monitoring. It is calculated using a simple water balance calculation based on the
BOM meteorological data for the period from 1900 to 2020. KBDI values range from 0 mm, indicating saturated
soil, to 800 mm for extremely dry conditions. The calculation is shown in Equations 1 and 2:
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DFt =
[800 − KBDIt− 1] [0.968 × e0.0875TMAXt+1.5552 − 0.83]

1 + 10.88e− 0.00174R
× 10− 3 (1)

KBDIt = KBDIt− 1 , if Pt = 0mm and TMAXt ≤ 6.78°C

KBDIt = KBDIt− 1 + DFt, if Pt = 0mm and TMAXt > 6.78°C

KBDIt = KBDIt− 1 + DFt, if Pt > 0mm and∑Pt ≤ 5.1mm

KBDIt = KBDIt− 1 − 39.37∑Pt + DFt, if Pt > 0mm and∑Pt > 5.1mm
(2)

Where DF is the drought factor and represents the drought increment on a
given day (Janis et al., 2002), TMAXt and Pt are daily maximum tem-
perature (°C) and precipitation (mm), respectively, R is the average an-
nual rainfall in the region (mm), and KBDIt − 1 is the Keetch‐Byram
drought index for time t− 1 (the day before) (Janis et al., 2002; Salehnia
et al., 2018). The KBDI is initialized after several consecutive rainy days
reaching soil saturation, typically at 150 mm of cumulative preci-
pitation in our study area, following the suggestions by Keetch and
Byram (1968).

2.3. Model Simulations and Analysis

We utilized daily historical simulations (1900–2014) and future projections (2015–2100) from the Coupled
Model Intercomparison Project Phase 6 (CMIP6; Eyring et al., 2016) under various shared socioeconomic
pathways (SSPs, including SSP245, SSP370 and SSP585) in this study (see Table 1 for the model list and in-
formation). The selection of CMIP6 models was carefully considered, acknowledging the varying performance
characteristics demonstrated in the literature, with a focus on studies specific to the Australian climate (Di
Virgilio et al., 2022; Grose et al., 2020, 2023). Model selection included consideration of both overall perfor-
mance in simulating Australian climate variables and the diversity of climate change signals generated by each
model. All simulations were bilinearly regridded into 0.5° resolution and matched well with the observed dis-
tribution via a Kolmogorov‐Smirnov test (p < 0.05).

To quantitatively assess the contributions of anthropogenic influence on Australia's 2019–2020 mega‐bushfires,
the probability ratio (PR; Fischer & Knutti, 2015) was calculated using the definition of PR = PALL/PNAT. Here,
PNAT denotes the probability of exceeding the defined threshold under natural‐forcing scenarios and PALL rep-
resents the equivalent under the all‐forcings scenarios. Bootstrapping was performed 1,000 times to estimate the
PR uncertainty of PR through resampling (Du et al., 2021; Wang et al., 2019; Yuan and Hu, 2018).

3. Results
3.1. Weather Conditions of 2019–2020 Bushfires

The bushfires sparked in September 2019, but the story really began back in 2017 (Wang & Cai, 2020). This
prolonged drought set the stage for an especially severe bushfire season in SEA, including the eastern parts of the
NewWales and Victoria, which suffered the greatest impact (Figure 1a). In addition to 2019 being the driest year
on record since 1900, it was also Australia's warmest year (Figures 1b–1e). In 2019, the annual mean temperature
was 1.52°C above the average. Especially from spring to early summer (September–January), most of eastern
Australia was endured severe hot weather, with temperature anomalies up to 4°C (Figures 2a and 2b). Unlike the
nationwide trend of increasing annual temperatures, the temperature in SEA from September to January has
fluctuated on an interdecadal timescale, with a sharp increase observed over the past 70 years. The highest daily
maximum temperature (TX) and the average for 7 consecutive days (Tx7x) in this region ranked third and fourth
since 1900, respectively. During September 2019 to January 2020, the number of heatwave days (daily maximum
temperature is greater than 35°C) reached 18, the most in 120 years of record‐keeping. Throughout the same
period, SEA experienced the direst spring to early summer on record. Under the joint effects of high temperatures
and extreme precipitation deficits, the mean KBDI value from September 2019 to January 2020 reached the

Table 1
List of CMIP6 Models Used in This Study

Models his hisnat ssp245 ssp370 ssp585

ACCESS‐ESM1‐5 3 3 3 3 3

ACCESS‐CM2 3 3 3 3 3

CanESM5 10 10 10 10 10

CNRM‐CM6‐1 1 1 1 1 1

FGOALS‐g3 3 3 3 3 3

GFDL‐ CM4 1 1 1 0 1

GFDL‐ESM4 1 1 1 1 1

IPSL‐CM6A‐LR 5 6 5 5 5

MIROC6 50 50 50 50 50

MRI‐ESM2‐0 5 5 5 5 5

NorESM2‐LM 1 3 1 1 1

11 83 86 83 82 83

Note. Numbers indicate the number of ensemble members for each experi-
ment group in each model. The bold numbers in the last row represent the
total number of experiments used.
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highest level ever recorded, indicating the highest fire potential and risk in SEA. Correspondingly, an anomalous
high‐pressure system characterized the atmospheric circulation around Australia, subjecting eastern Australia to
anomalous sinking motions (Figure 3), thereby fostering persistent dry and hot weather conductive to fire ac-
tivities. This anomalously anticyclonic circulation has been evidenced to be triggered by the pIOD–related cold
SSTAs west of the Indonesian archipelago, consistent with the Matsuno‐Gill theory (Ashok et al., 2003; Zhang
et al., 2021).

3.2. Inter‐Decadal Climatic Effect of IOD Increasing the Risk of Bushfires

Previous studies have indicated that pIOD events contribute to rainfall deficit and higher temperatures, thereby
exacerbating dry conditions and increasing wildfire risk over SEA, particularly during the austral spring that is the
mature time of the IOD (Cai et al., 2009), as indicated in Figure 4b. Our detrended correlation analysis between
September–January precipitation, temperature and KBDI over SEA, and the simultaneous DMI corroborates this

Figure 1. Modis active fire data (Collection 6, standard and near real time archives, available on https://firms.modaps.eosdis.
nasa.gov/download/) during 1 September 2019–31 January 2020. The most severe fires were heavily concentrated in the
temperate forests of southeastern Australia. The polygon region in blue is the studying area in this paper.
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relationship. Specifically for the precipitation, there is a strong inverse correlation with the coefficient of − 0.30
(pvalue <0.01) for the entire 1900–2019 period (Figure 4a). However, we notice that this relationship is not stable
and varies on inter‐decadal time scale (Figure 5a). Using a 21‐year sliding window with a 1‐year interval (Sun
et al., 2016), the anticorrelation becomes nonsignificant for the period 1928–1996 (corr.= − 0.03, pvalue= 0.80).
Before 1928 and after 1996, the correlations were statistically significant, with coefficients of − 0.70 and − 0.57,
respectively. Importantly, the temporal dynamics of this IOD‐precipitation relationship closely parallel the
decadal variability observed in the IOD‐NINO3.4 correlation (Figure 5d), suggesting a potential link between the
changing IOD‐El Niño relationship and the IOD's influence on SEA precipitation. The correlation patterns be-
tween September–January DMI and Australia precipitation in different subperiods highlight the interdacadal
effects of IOD on SEA (Figures 6a–6c). Regressed precipitation data from NOAA's Precipitation Reconstruction
(PREC, Figures 6d–6f) and outgoing longwave radiation (OLR, Figures 6g–6i) against September–January DMI
support the conclusion that the impact of IOD on SEA's climate has enhanced in recent decades. Notably, this

Figure 2. Spatial and temporal distribution of temperature, precipitation, and KBDI over southeastern Australia. Panel
(a) maximum daily temperature (Tmax) anomaly (units:°C), (c) precipitation anomaly (units: mm), and (e) KBDI anomaly
(units: mm) during 1 September 2019–31 January 2020; (b) the corresponding time series over southeast Australia in terms of
the September–January mean temperature anomaly (in black, units:°C), the mean Tmax anomaly (in blue; units:°C), the
maximum average Tmax for 7 consecutive days (TX7x, in green; units:°C), and the heatwave days (in red, units: day) since
1900. (d) Same as (b) but for the annual mean (in black; units: mm/month) and September–January mean (in blue; units: mm/
month) precipitation anomaly over southeast Australia. (f) Time series of September–January mean KBDI averaged over
southeast Australia. All anomalies are calculated with respect to the 1981–2010 base period. Here, heatwave days are defined
as the days that is greater than 35°C during September to January in next year. The polygon region in blue is the studying area
in this paper.
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enhanced impact demonstrates strong physical coherence—the observed precipitation anomalies (Figures 6d–6f)
align with theoretical expectations of Gill‐Matsuno responses to tropical SST forcing (Ashok et al., 2003)—
affirming the physical basis of the IOD‐KBDI causal chain. This enhanced effect, combined with the extreme
pIOD event in 2019, significantly contributed to the 2019–2020 mega bushfire in SEA.

The relationship between DMI and temperature also shows interdecadal variability, which aligns with fluctua-
tions in the amplitude of the DMI (Figures 5b and 5e). During the early 20th century and the last three decades, the
anomalously high temperatures scorched SEA in pIOD years with large amplitudes. Regarding the KBDI which is
influenced by both daily precipitation and maximum temperature, similar results to precipitation were observed.
The relationship between KBDI and DMI was weak from 1928 to 1990, but significant correlation appeared
before 1928 (corr. = 0.70, pvalue <<0.01) and after 1991 (corr. = 0.72, pvalue <<0.01), slightly differing from
precipitation due to temperature's influence. Thus, we categorize 1928–1990 as a low‐relationship period (termed
as L) and 1991–2019 as a high‐relationship period (termed as H).

Comparing the probability density functions from the L‐ and H‐period shows varying climate responses to IOD
events across different subperiods (Figures 5g–5i). Since 1991, the GEV fit shows that the likelihood of extreme
precipitation deficit over SEA like 2019–20 during pIOD years has increased from about 11.2% during the L‐
period to 21.6%. Such extreme dryness is a rare occurrence during a negative IOD (nIOD) event, with proba-
bility of 7.6% during the L‐period, which has not occurred during the H‐period. When comparing the climatic
effects of pIOD and nIOD events, the likelihood of an extreme precipitation deficit in SEA—similar to that
occurring from September to January in 2019–2020—has increased nearly fourfold over the past three decades
(H‐period) compared to L‐period.

The effect of IOD on the KBDI aligns with its impact on precipitation. There is a significant shift in the KBDI
toward much higher bushfire risk in pIOD years during the H‐period (Figure 6i), with the likelihood of pIOD‐
induced extreme bushfire potential over SEA like 2019–2020 mega fire increasing from 4.3% during the
L‐period to 15.4% during the H‐period. Such conditions rarely happen in nIOD years, with a 0.2% probability
during the L‐period and no occurrence in the past three decades (H‐period). Overall, the probability of SEA
experiencing extreme fire potential increased by pIODs (compared with that by nIOD) has raised by about 170%
since 1991 compared to the period 1927–1990.

What causes the different effects of pIOD on SEA climate? Composite SSTA in September–January for the
positive IOD events in different subperiods were further investigated (Figure 7). A key difference is that there
were significantly warmer SSTs in the equatorial central and eastern Pacific before 1928 and after 1900. Notably,
eight out of nine pIOD years are accompanied with El Niño events (defined as the September–January mean
NINO34 index greater than 1s.d.) during both 1900–1927 and 1991–2019 (Figure S1). The only exception is the
year of 2019 which was also a moderate Central Pacific El Niño (Ren et al., 2019). However, only three out of
seven pIODs coincided with warmer SSTs in the equatorial central and eastern Pacific during 1928–1990. For

Figure 3. Seasonal mean circulation anomalies field during 1 September 2019–31 January 2020. (a) sea level pressure (SLP,
unite: hPa); (b) geopotential height (H500, unit: gpm); (c) the outgoing longwave radiation (OLR, unit: W·m− 2); (d) the
vertical velocity (unit: pascal·s− 1). All anomalies are calculated with respect to the 1981–2010 base period.
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instance, the year 1961, with the third strongest IOD since 1900, occurred in the context of the SST anomalies in
the tropical Indian Ocean and Pacific Ocean were dominated by cooler‐than‐average conditions (La Niña), which
tend to increase rainfall over eastern Australia and offset the drying effects of positive IOD. Furthermore, between
1927 and 1990, the correlation between IOD and rainfall or temperature over eastern Australia was quite weak
and insignificant, indicating that during this period, the influence of IOD on the Australian climate was limited.
Cai et al. (2009, 2011) also noted that severe bushfires in SEA are more likely when preceded by a pIOD in
conjunction with an El Niño. Further analyses confirm that the effect of IOD on precipitation typically strengthens
when IOD is closely associated with the NINO34 index, suggesting that SEA experiences much drier conditions
in spring‐early summer when pIOD occurs with El Niño (Figure 5d).

Figure 4. Relationship of Indian Ocean Dipole (IOD) and precipitation over Australia for the period of 1900–2019. (a) the
monthly evolution of correlation coefficient of the IOD and precipitation over Australia and (b) the corresponding Dipole
Mode Index seasonal evolutions in the positive IOD years. In panel (a), x axis is month of precipitation (PI) and y axis is the
month of IOBM leading the precipitation; the striped region have passed the significant level at 0.05.
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3.3. Projected Risk in a Warming Future Climate

Recent projections of fire weather suggest that SEA is likely to become hotter and drier, thereby facing increased
bushfire risk in future (Abram et al., 2021; Lucas et al., 2007). In this study, to quantitatively assess the influence
of greenhouse warming on IOD's effect on extreme bushfire weather in SEA, we use CMIP6 multi‐model
database driven by historical anthropogenic and natural forcings, along with future Shared Socioeconomic
Pathways (SSPs, including SSP245, SSP370 and SSP585), covering the period from 1900 to 2099 (see Table 1).
Figures 8a and 8b display the time series of the September–January KBDI for SEA during both historical and
future periods. In the historical period and first half of the 21st century, the increase in bushfire risk is not
particularly evident (Figure 8a). However, entering into the mid‐21st century, changes in bushfire risk become
more significant, particularly under SSP585. Although there is no abrupt difference between the historical all‐
forcing and nature only forcing throughout the historical period, a more rapid increase in KBDI compared to
the natural forcing is observed in recent decades (Figure 8b).

A further GEV fitting shows that pIOD‐induced severe bushfire events (above the 95th percentile) and extreme
events (above the 99th percentile) has increased by about 24% (±8%) and 13% (±13%) due to anthropogenic
climate change. In the future, the projected likelihood of severe and extreme bushfire events induced by IOD
depicts a significant increase, especially for very extreme bushfire events such as that occurring in 2019–2020 in
ESA (Figure 8d). The probability of extreme bushfire events related to nIOD events does not vary significantly
under different SSPs. However, the impact of pIOD on SEA bushfire risk under SSP370 and SSP585 is notably
enhanced compared to SSP245, with an overall shift of KBDI toward a much higher bushfire risk. During pIOD
years, the probability of severe bushfires (95th percentile) rises from 28% under SSP245 to 37% under SSP370
and 42% under SSP585. Similarly, extreme bushfire risk (99th percentile) increases from 13% (SSP245) to 20%
(SSP370) and 23% (SSP585). Notably, under the upper‐bound SSP585 scenario, very extreme mega‐fires
comparable to that of the 2019–2020 event become 91%–149% more likely relative to SSP245.

A statistically positive relationship exists between inter‐model variations in the IOD/ENSO correlation and inter‐
model variations in the IOD/KBDI correlation under historical‐all forcing, suggesting that the IOD's effect on
bushfire weather in SEA intensifies when the IOD/ENSO relationship strengthens. Under the influence of

Figure 5. Relations of Indian Ocean Dipole (IOD) and Australia's climate. (a) Evolution of the 11‐, 13‐, and 21‐year sliding
correlation coefficient (r) between September–January Dipole Mode Index (DMI) and a precipitation. Panels (b) and (c) are
same as (a), but for the mean temperature and KBDI over southeast Australia. Their confidence levels of 95% are shown as
the dashed gray, green, and pink lines. (d) Evolution of the 21‐year running correlation coefficients between DMI and
precipitation (in dark) and NINO34 (in red). (e) Evolution of the 21‐year running correlation coefficients between DMI and
temperature (in dark) and DMI amplitude (in red). (f) Scatters of September–December mean DMI against the KBDI
anomalies in the same period. (g)–(i) Probability density functions for (g) precipitation, (h) mean temperature and (i) KBDI
in southeastern Australia during positive or negative IOD years under for the High‐influence period (1991–2019, denoted as
(h) and Low‐influence period (1928–1990, denoted as L). The black dashed line is the observed value in 2019/2020.
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Figure 6. The distribution of precipitation and outgoing longwave radiation in different periods. The upper panels show the
correlation coefficient between the September–January Dipole Mode Index and Bureau of Meteorology observed
precipitation in the subperiods of (a) 1900–1927, (c) 1928–1990, and (c)1991–2019. (d) The precipitation (PRE, unit: mm/
day) fields regressed against September–January mean IOBM for low‐relationship period of 1948–1990 since the PREC
precipitation data set started from 1948, (e) the high‐relationship period of 1991–2019, and (f) their difference. (g–i) Same as
(d–f), but for outgoing longwave radiation (OLR, unit: W·m− 2).

Figure 7. Composite Sea surface temperature anomalies (SSTA, unit: °C) in September–January for the positive Indian
Ocean Dipole events in different periods. (a) and (c) are the high‐relationship periods of 1900–1927 and 1991–2019; (b) the
low‐relationship period of 1928–1990. The bottom panels are the difference between high‐ and low‐relationship periods. The
dots indicate the statistical significance exceeding the 95% confidence level.
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anthropogenic warming, the effect of IOD/ENSO relationship on IOD's climatic impact is expected to signifi-
cantly intensify in the future, with the correlation rising from 0.48 for 1900–2014 under historical‐ALL to 0.76 for
2050–2100 under SSP585.

4. Discussion and Conclusion
Our findings demonstrate that the climatic effects of pIOD have enhanced in recent decades, likely due to the
increasingly coupling between the IOD and ENSO, as well as more frequent concurrent of pIODs with El Niño
events. Quantitatively, our analysis using CMIP6 multi‐model ensembles predicts a substantial future increase in
wildfire potential: the probability of severe bushfire events (above the 95th percentile) driven by pIOD is pro-
jected to rise by approximately 50% (±8%), and the likelihood of very extreme events akin to the 2019–2020
mega‐fires could increase from 4% to 10% under SSP585 scenarios. Although SSP585 provides an upper‐
bound estimate, we emphasize SSP370 as the more plausible high‐emission benchmark. Under this scenario,
the probability of severe (extreme) pIOD‐driven bushfires is projected to reach 37% (20%) by 2100, a notable
increase from the 28% (13%) projected under SSP245. Although CMIP6 models were selected based on per-
formance in simulating Australian climate (Grose et al., 2020), inter‐model spread in precipitation extremes
contributes to uncertainty in projected fire risk (Figure 8d). We mitigated this via ensemble averaging and

Figure 8. KBDI performances in CMIP6 simulations. (a) Temporal variation of September–January KBDI anomalies. The
thin black line is the observations from Australia's Bureau of Meteorology, with the thick line showing its 11‐year running
mean. CMIP6 ensemble means are shown for: The thin orange (green) and blue (purple and red) solid lines are the CMIP6
ensemble mean from the historical‐ALL (historical‐NAT) and SSP245 (SSP370 and SSP585) projections. The shading
denotes the 95% confidence intervals of 11 models. The partial enlarged detail for the historical simulations is shown in (b).
(c) Probability density functions (PDFs, curves) for September–January southeastern Australia KBDI in different Indian
Ocean Dipole (IOD) events, from CMIP6 simulations under all (ALL, orange) and natural only (NAT, green) forcings, and
the Probability Ratio (PR, bars) of the 95th percentile, 99th percentile and 2019–20 mega fire thresholds in historical‐ALL
versus historical‐NAT simulations. (d) Projected PDFs but for SSP245, SSP370 and SSP585 scenarios. PR values (bars)
quantify the probability amplification of exceeding extreme thresholds in SSP585 versus SSP245. (e) The inter‐model
relationship between the correlation of IOD and ENSO (x‐axis) and the correlation of IOD and KBDI (y‐axis) from the
historical‐ALL. Panels (f) and (g) are same as (e), but for the second half of 21st century under SSP245 and SSP585
projections, respectively. The pairs of observations used are listed in the legend.
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bootstrapping, yet low‐likelihood extremes (e.g., >99th percentile KBDI) remain sensitive to the model structure.
Furthermore, the probability of extreme precipitation deficits during pIOD years has nearly doubled since 1991,
from 11.2% to 21.6%. These projections underscore a significant escalation in fire weather risk in the region.
Climate change is expected to make fire‐prone weather more prevalent in SEA. By the end of the 21st century,
bushfire risk over SEA associated with pIOD is projected to increase significantly.

Cai et al. (2013, 2014) highlighted that under greenhouse warming, the equatorial Indian Ocean is evolving
toward a climatologically stronger west‐minus‐east temperature gradient and intensified easterly winds, condi-
tions more conductive to producing more frequent extreme pIOD events in the future. With the projected dramatic
increase in extreme pIOD occurrences and their amplified climatic effects, strategic precautions must be taken to
mitigate the likely rise in devastating fire weather events across affected regions.

Moreover, the increasing frequency and severity bushfires contribute substantial carbon dioxide emissions to the
atmosphere, exacerbating the occurrence of extreme hot and dry conditions and further elevating bushfire risk in
SEA. This forms a positive feedback loop, where intensified fire activity and climate change mutually reinforce
one another, escalating the threat of more frequent and severe bushfire events.

Although this study provides insights into the mechanisms behind the enhancing linkage between pIOD events
and Australia bushfire risk, further research is crucial. Future work need to conduct a comprehensive investigation
into the potential causes of these enhanced climate effects associated with pIOD events. This includes exploring
how interdecadal climate modes such as the Pacific decadal oscillation and the Atlantic multidecadal oscillation,
as well as anthropogenic climate change, might modulate the climate impacts of IOD and its interaction with
ENSO. Understanding how these factors influence the strength and behavior of IOD is very crucial for refining its
role as a key predictive factor in Austrialia's seasonal fire forecast. For instance, during periods where pIOD
effects are significantly enhanced, IODwill be emphasized as a primary predictor. Conversely, under condition of
weaker climate influence or specific interdecadal configurations, its contribution could be down‐weighted or even
omitted. This adaptive strategy aims to identify the optimal combination of climate predictors across various
warming backgrounds and interdecadal regimes, thereby improving the accuracy and reliability of seasonal fire
risk forecasts.

Data Availability Statement
Meteorological variables, including daily maximum and minimum air temperatures (Tmax and Tmin), were ob-
tained from the Australian Gridded Climate Data set (AGCDv2; https://thredds.nci.org.au/thredds/catalog/cat-
alogs/zv2/agcd/agcd.html). Modis active fire data (Collection 6) was downloaded from https://firms.modaps.
eosdis.nasa.gov/download/. The NOAA Precipitation Reconstruction (PREC) are available from https://www.
psl.noaa.gov/data/gridded/data.prec.html. The outgoing longwave radiation (OLR) data from the NCEP‐NCAR
Reanalysis 1 was downloaded from https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html. The Extended
Reconstruction of SST (ERSSTv5) data set was sourced from the website https://climatedataguide.ucar.edu/
climate‐data/sst‐data‐noaa‐extended‐reconstruction‐ssts‐version‐5‐ersstv5. The CMIP6 products can be accessed
at https://esgf‐node.llnl.gov/search/cmip6/.
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