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A B S T R A C T

Global escalation of infectious disease outbreak risks necessitates advanced predictive models. Despite meth
odological advances, errors in initial states and parameters of epidemiological dynamic models remain a key 
limitation to prediction reliability. To address this limitation, we propose an optimized data assimilation 
framework for combined state-parameter optimization based on Ensemble Kalman Filter. We design space 
transformations and adaptive covariance inflation driven by epidemic development and prediction errors, 
achieving a more stable update process and rapid response to epidemic changes. Through synthetic experiments 
and real-world case studies, the proposed scheme significantly reduces initial state and parameter errors, leading 
to a substantial improvement in prediction accuracy during the early stages of an epidemic. Compared with 
predictions without data assimilation, the average prediction error rate decreased by more than 50 % for 1-day 
predictions and by approximately 15 % for 7-day predictions. The prediction accuracy rate for the peak day of 
the epidemic and the peak number of infected cases reached more than 70 % in advance by 3 days. Critically, 
simple dynamical model integrated with our data assimilation framework outperform complex models without 
data assimilation. This study establishes data assimilation as an essential tool for epidemic forecasting and 
provides an extensible framework adaptable to multiple infectious diseases, offering critical support for public 
health decision making.

1. Introduction

Globalization and climate change have made infectious diseases 
emerge as a considerable public health threat. For instance, the novel 
coronavirus disease 2019 (COVID-19) has spread globally rapidly in 
recent years, resulting in more than 700 million infections and more 
than 7 million deaths. This number is continuing to increase according 
to the World Health Organization [1]. Additionally, climate change has 
created a more favorable environment for mosquitoes, increasing the 
risk of dengue fever. In 2024, Brazil experienced the worst dengue 
outbreak in its history. Devastating effects of infectious diseases on 
human health and socio-economic systems underscores the urgent need 
for timely and accurate forecasting [2,3]. All countries should establish a 
reliable and accurate infectious disease forecasting system for a better 
response to future public health crises.

At present, dynamic modeling and statistical modeling are the 

primary methods used for predicting infectious diseases. The compart
mental model is the predominant framework for the dynamic modeling 
[4], and it has become the most commonly used tool for infectious 
diseases prediction and simulation [5–7]. It often divides the population 
into distinct states and describes their transition procedures by a 
comprehensive understanding of transmission mechanisms. Addition
ally, the rise of machine learning and deep learning has led to the 
widespread use of data-driven statistical models for predicting infectious 
diseases [8,9]. However, despite the availability of many infectious 
disease predicting models, accurately predicting the future trajectory of 
infectious diseases remains a significant challenge [10,11].

As we know, the description of transfer processes in compartmental 
models do not precisely align with real-world situations. This 
misalignment leads to incomplete dynamic modeling of epidemic 
spread, leaving certain physical processes unrepresented. Therefore, 
developing more complex dynamic models offers a natural approach to 
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reducing errors in infectious disease forecasting. By incorporating a 
wider range of states and transmission processes, complex dynamic 
models can more accurately reflect real-world conditions, as far as 
expecting to improve the accuracy of predictions [2,12,13]. However, 
complex dynamic models introduce additional states and parameters, 
posing significant challenges in accurately estimating initial conditions. 
Since infectious disease dynamics are typically described by differential 
equations, precise initial values and parameters are essential for 
generating reliable predictions [14]. In reality, it is difficult to obtain 
accurate information about all states required for dynamic modeling. 
Government statistics usually contain only observable states, such as 
infections, recoveries, and deaths. Unobservable states, such as suscep
tible and exposed, are often unknown. Under such imprecise and 
incomplete observation, model parameters are also difficult to estimate 
accurately, especially in the early stages of epidemics [15]. Therefore, 
reducing errors in initial states and parameters is critical to improving 
the predictive performance and practical utility of epidemic models.

Data assimilation serves as a key approach to reducing initial value 
errors in dynamic models. It has long been regarded as one of the core 
methodologies in numerical weather prediction within meteorology 
[16]. By combining observations with model predictions, the data 
assimilation technique produces optimal estimates of model states. As 
early as 2012, a humidity-driven SIRS model was combined with the 
Ensemble Adjusted Kalman Filter (EAKF) for real-time forecasting of 
seasonal influenza outbreaks [17]. Subsequent studies compared 
various particle filters and ensemble filters in the context of influenza 
epidemics, demonstrating the effectiveness of Ensemble Kalman Filter 
(EnKF) methods in infectious disease modeling [18]. During the COVID- 
19 pandemic, data assimilation gained increased attention due to the 
urgent need for accurate epidemic forecasts. Many studies designed data 
assimilation algorithms to refine the states in COVID-19 prediction 
models [19–21]. Based on augmented state vector techniques, data 
assimilation enables simultaneous estimation of both model states and 
parameters [22]. Accordingly, a number of studies have applied such 
joint state-parameter estimation frameworks in COVID-19 dynamic 
modeling [23–25]. Combined optimization of states and parameters 
based on dynamic processes is a more reasonable and concise frame
work. However, applying data assimilation in epidemiology remains 
challenging due to the inherent nonlinearity and non-stationarity of 
epidemic processes. Covariance inflation and variable constraints are 
essential to maintain filter stability and avoid divergence in such set
tings. Commonly used covariance inflation techniques include corre
lated random walks [25,26] and fixed inflation factors applied 
separately to states and parameters [27]. To keep parameter estimates 
stable and within plausible ranges, parameter constraint techniques 
have also been developed in earth system modeling [28]. Building on 
these foundations, this study incorporates a state and parameter trans
formation scheme and an adaptive parameter covariance inflation 
strategy into the EnKF framework to enhance numerical stability and 
dynamic responsiveness in epidemic forecasting. Systematic simulation 
experiments and real-world case studies demonstrate how these en
hancements significantly improve the predictive performance of infec
tious disease dynamics models.

2. Data and methodology

2.1. Infectious disease dynamic prediction model

The dynamic model of infectious disease employed by this study 
categorizes the population into five states: susceptible (S), exposed (E), 
infected (I), recovered (R), and dead (D). Assuming a total population of 
N, and N = S+ E+ I+ R+ D, then the following equations of dynamic 
model are satisfied: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= −
βS(I + θE)

N
,

dE
dt

=
βS(I + θE)

N
− αE,

dI
dt

= αE − γI − δI,

dR
dt

= γI,

dD
dt

= δI.

(1) 

Here, the parameter β is interpreted as the probability that the sus
ceptible people contact with infected individuals results in exposure to 
the virus. θ is the relative infectiousness of exposed individuals 
compared to infectious individuals. The parameter α is the conversion 
rate of exposed individuals to infected ones. The parameter γ denotes the 
recovery rate of infected individuals to recovered ones, and δ is the 
mortality rate from infected to dead individuals. Furthermore, we 
modify the current model to form dynamic prediction models of varying 
complexity to simulate different degrees of model error (Table 1). We 
label the SEIRD model that currently considers the infectivity of exposed 
individuals as SEIRD_e. The model that does not consider the infectivity 
of exposed individuals (θ = 0) is labeled as SEIRD. After removing the 
death compartment, the SEIR model that considers the infectivity of 
exposed individuals is labeled as SEIR_e, and the model that does not 
consider the infectivity of exposed individuals is labeled as SEIR. Finally, 
after further removing the exposed compartment, we obtain the simplest 
prediction model SIR.

2.2. EnKF for combined state and parameter estimation

2.2.1. EnKF
By using the augmented state vector technique [22], we add the 

parameters of the infectious disease dynamic model to the state space 
and estimate the best combination of states and parameters. The main 
steps of the presented EnKF by this study can be divided into two parts: 
the prediction step and the analysis step. First, in the prediction step, 
each ensemble member predicts the states for the next step according to 
the epidemiological dynamic model: 

xf
t = M

(
xa

t− 1, θ
a
t− 1
)
+ εt , (2) 

where xf
t ∈ Rm×n is the ensemble of predicted state vector at time t, m is 

the number of ensemble samples, and n is the number of states. xa
t− 1 ∈

Rm×n is the ensemble of analyzed value for the state vector at time t − 1. 
θa

t− 1 ∈ Rm×l is the ensemble of analyzed value for the parameter vector at 
time t − 1, and l is the number of parameters.

Second, in the analysis step, we calculate the ensemble mean of 
predicted states xt

f and parameters θt . Then, the prediction error 
covariance of the states Px

t and parameters Pθ
t is obtained as follows: 

Table 1 
Information on infectious disease dynamics models of varying complexity.

Model 
name

Infectivity of 
exposed 
individuals

Parameters Observable 
states

Unobservable 
states

SEIRD_e Yes β,θ,α, γ,δ I, R, D S, E
SEIRD No β,α, γ, δ I, R, D S, E
SEIR_e Yes β,θ,α, γ I, R S, E
SEIR No β,α, γ I, R S, E
SIR – β, γ I, R S

Z. Hao et al.                                                                                                                                                                                                                                     One Health 21 (2025) 101266 

2 



(
xt

f

θt

)

=

⎛

⎜
⎜
⎜
⎜
⎝

1
m
∑m

i
xf(i)

t

1
m
∑m

i
θi

t

⎞

⎟
⎟
⎟
⎟
⎠
, (3) 

(
Px

t

Pθ
t

)

=

⎛

⎜
⎜
⎜
⎜
⎝

1
m − 1

∑m

i=1

(
xf(i)

t − xt
f
)(

xf(i)
t − xt

f
)T

1
m − 1

∑m

i=1

(
θi

t − θt
)(

θi
t − θt

)T

⎞

⎟
⎟
⎟
⎟
⎠
. (4) 

Since the parameters have no predicted values, here we let θt = θa
t− 1. 

The parameters are updated only in the assimilation, and they remain 
unchanged in the prediction step. Next, update the state and parameters 
of ensemble members by calculating the Kalman gain matrix Kt: 

(
xa(i)

t

θa(i)
t

)

=

⎛

⎜
⎝

xf(i)
t + Kx

t

(
yi

t − Hxf(i)
t

)

θi
t + Kθ

t

(
yi

t − Hxf(i)
t

)

⎞

⎟
⎠, (5) 

Kx
t = PtHT (HPtHT + R

)− 1
, (6) 

where yt is the observed value of the epidemic at time t, H is observation 
operator, R is the observation error covariance matrix, xa

t is the analyzed 
value of states, and θa

t is the analyzed value of parameters. Specifically, 
for the observable state, the observation operator H is the identity ma
trix. For unobservable state, the Kalman gain matrix Kx

t is computed as 
follows: 

Kx
t =

cov
(
xun

t , xo
t
)

var
(
xo

t
)
+ R

, (7) 

where xun
t is the model prediction for the unobservable state, and xo

t is 
the model prediction for the observable state. The Kalman gain matrix 
used for parameter updating is calculated on the same principle as for 
unobservable variables: 

Kθ
t =

cov
(
θt , xo

t

)

var
(
xo

t
)
+ R

. (8) 

The updated analysis value is the best estimate of the state at the 
current time step and serves as the initial value for the next time step’s 
prediction.

2.2.2. State and parameter space transformation
To enforce physical constraints in the epidemiological dynamic 

model (non-negativity of state variables and [0, 1] bounds for param
eters), we implement state and parameter space transformation. During 
the update process of data assimilation, we apply the logarithmic 
transformation to the predicted results of states from the dynamic 
model, then perform the inverse transformation on the updated results 
to obtain the analyzed states. Similarly, we utilize logistic trans
formations for parameters, applying corresponding inverse trans
formations to the updated parameters to ensure they remain within their 
prescribed bounds.

For positivity-constrained states, the logarithmic transformation and 
its inverse transformation are given by: 
{

x̃ = ln(x),
x = exp(x̃), (9) 

where, x represents the original state value, and x̃ denotes the log- 
transformed value.

For bounded parameters, the logistic transformation and its inverse 
are given by: 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ̃ = log
(

θ
1 − θ

)

,

θ =
1

1 + exp
(
− θ̃
),

(10) 

where, θ is the original parameter value, and ̃θ is the logistic transformed 
value.

2.2.3. Adaptive covariance inflation
Observational noise often induces parameter oscillations that un

dermine prediction stability. Additionally, during shifts in control 
measures or environmental conditions, parameter response delays 
further compromise forecast accuracy. To address these challenges, we 
designed an adaptive covariance inflation mechanism. This mechanism 
adjusts the dispersion of updated posterior parameters, striking a bal
ance between parameter stability and rapid response capability. Spe
cifically, the covariance inflation factor λ(t) decays gradually over time, 
with its decay rate τ(t) dynamically adjusted by prediction error: when 
prediction errors are large, the decay rate is reduced. This strategically 
reduces parameter oscillations during stable epidemic phases while 
preserving essential ensemble dispersion during abrupt changes. The 
formula for the covariance inflation mechanism is: 

λ(t) = λ0exp( − t/τ(t) ), (11) 

τ(t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
m
∑m

i=1

(
Hxf(i)

t − yi
t

)2
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
m
∑m

i=1

(
yi

t − yt
)2

√ , (12) 

where, λ0 = 1.2 is initial inflation factor.

2.3. Experimental design

2.3.1. Synthetic experiment
To fully assess the effectiveness of assimilated predictions, it is 

necessary to perform synthetic experiments under idealized conditions. 
Based on the SEIRD model considering the infectiousness of exposed 
individuals, we set the following parameters:β = 0.5, θ = 0.5, α = 0.2, 
γ = 0.1 and δ = 0.056 and initial conditions:S0 = 999830, E0 = 100, 
I0 = 50, R0 = 10 and D0 = 10. Then, we calculated the state sequence 
over 100 days as the “truth” of the epidemic. Further, 20 % random 
noise was introduced into the “truth” data, and 100 sets of noisy data 
were generated to simulate real observations. Noisy observable states (I,
R,D) data is considered as “observations” and used as input for the dy
namic prediction model and data assimilation model.

Since model parameters typically range from 0 to 1, we generate 
random parameters based on the beta distribution Beta(2,2) as initial 
parameters. During the experiments, we observed that the model rapidly 
forgets the initial parameter distribution and gradually converges to
ward the true parameters. We compared prediction errors between 
models with different structural errors under two scenarios: with and 
without data assimilation. Prediction models without data assimilation 
use the least squares method to update parameters in real time. The 
ensemble size of the Ensemble Kalman Filter was set to 1000. Addi
tionally, we conducted sensitivity experiments with different ensemble 
sizes, as shown in Fig. S1.

2.3.2. Real experiment
To test the effectiveness of the assimilation algorithm in the real 

world, we selected outbreak report data of the Chinese provinces where 
the COVID-19 outbreak lasted more than 30 consecutive days in 2020 to 
conduct a realistic experiment. The outbreak report data are obtained 
from the Johns Hopkins University Center for Systems Science and En
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gineering’s COVID-19 dataset, which is accessible via its GitHub re
pository (https://github.com/CSSEGISandData/COVID-19). Data vari
ables include the cumulative number of confirmed cases, recoveries and 
deaths. Additionally, the number of existing confirmed cases was 
calculated by subtracting the number of recoveries and deaths from the 
cumulative number of confirmed cases. According to Eq. (13), the un
known states in the prediction model are initialized: 
{

E0 = I0 ,

S0 = N − E0 − I0 − R0 − D0 ,
(13) 

where, S0 is the initial number of susceptible, E0 is the initial number of 
exposed, I0 is the initial number of infections, R0 is the initial number of 
recovered, D0 is the initial number of deaths, N is the number of pop
ulation. In real experiments, the SEIRD model considering the infec
tiousness of exposed individuals was used for prediction.

2.3.3. Evaluation metric
We calculate the relative error metrics to assess the usefulness of the 

data assimilation algorithm. Since the true value of the epidemic states 
may be zero, we use the modified SMAPE indicator to measure the 
magnitude of the relative error. The formula for SMAPE is as the follows: 

SMAPE =
1

n − 1
∑n

i=1

⃒
⃒
⃒
⃒y
⌢

i − yi

⃒
⃒
⃒
⃒

(⃒
⃒
⃒
⃒y
⌢

i

⃒
⃒
⃒
⃒+ |yi|

)/

2
, (14) 

where ̂yi is the evaluated value, yi is the true value and n is the number of 
samples.

3. Results

3.1. Data assimilation enables more prompt and precise predictions

The joint assimilation of states and parameters significantly reduces 
state errors and parameter uncertainties in infectious disease dynamic 
model predictions. Synthetic experiment results demonstrate that the 
analyzed values of all states after data assimilation closely match the 
true values (Fig.S2), while model parameters progressively converge 
toward their true values (Fig.S3). Furthermore, comparative analysis of 
different covariance inflation methods (Supplementary Material S1) 
confirms that our adaptive approach achieves lower parameter estima
tion error. Data assimilation provides more reliable initial conditions for 

infectious disease dynamic model, enables more accurate and timely 
epidemic predictions.

Fig.1 presents the seven-day average prediction error rates across 
different predict starting days. Notably, during the early epidemic phase 
(less than 10 days), data assimilation substantially reduces prediction 
errors for both observable states (Fig.1(a)) and unobservable states 
(Fig.1(b)). This is crucial for rapid response in epidemic control. As 
observational data accumulates, prediction errors for observable states 
gradually decrease. However, specially for unobservable states, merely 
increasing data volume cannot fully eliminate errors caused by initial 
states inaccuracies and parameters biases, leading to evident error 
accumulation (Fig.1(b)). Data assimilation effectively suppresses the 
propagation of such errors, consistently yielding superior prediction 
accuracy for unobservable states compared to conventional methods. 
This finding confirms that data assimilation not only enhances the 
reliability of early-stage predictions but also mitigates error accumula
tion in later forecasts through continuous correction of system states and 
parameters, thereby providing enhanced robustness for infectious dis
ease dynamic modeling.

3.2. Data assimilation enhances simple model beyond complex model

We simulate varying degrees of model error by intentionally modi
fying the model structure. Comparisons reveal that data assimilation 
consistently reduces prediction errors and mitigates the impact of model 
errors across all modified versions (Fig. 2(a)-(c)). Significantly, the 
simplest SIR model coupled with data assimilation outperforms SEIRD_e 
(a structurally complete model with no model error) without assimila
tion (Fig. 2(d)). This indicates that when coupled with data assimilation, 
simpler models can achieve superior predictive capability compared to 
complex models. While complex models with accurate structure yield 
optimal forecasting performance when integrated with data assimilation 
(Fig. 2(d)), employing simpler models with data assimilation proves 
more efficient in real-world forecasting contexts where infectious dis
ease dynamics remain incompletely characterized.

In addition, we found that enhancing predictive performance by 
merely increasing model complexity is not always effective. Model 
complexity is not the sole determinant of predictive accuracy. Beyond 
model error, prediction errors in dynamical epidemic models also stem 
from errors in initial states and parameters estimates. As model 
complexity increases, so does the number of unknown state variables 
and parameters requiring estimation. The superior prediction perfor
mance of the SIR model over the SEIR model in our experiments is likely 

Fig. 1. Data assimilation effectively reduces prediction errors. The solid blue and orange lines depict the 7-day average SMAPE without and with data assimilation, 
respectively, with shaded regions indicating their 95 % confidence intervals. Critical epidemic timepoints are marked: day 10 (black dashed vertical line) and the 
epidemic peak day (red dashed vertical line). (a): displays the average SMAPE for predictions of observable states (I, R, D) across different forecast starting days 
during the epidemic; (b): presents corresponding results for unobservable states (S, E). (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)
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attributable to this reduced difficulty in states and parameters 
estimation.

3.3. Application to actual outbreaks of COVID-19 in China

In order to verify the validity of data assimilation in real-world 
scenarios, we conduct experiments by using the 2020 outbreak report 
data from 29 provincial administrative regions in China. As shown in 
Fig.3, data assimilation significantly enhances the predictive accuracy of 
the model. Notably, it heightens the model’s sensitivity to epidemio
logical variations and fluctuations, enabling more responsive tracking of 
outbreak dynamics.

Fig.4(a) demonstrates consistent predictive improvement with data 
assimilation across all regions and all predicted lead days. Data assim
ilation has been shown to reduce 1-day prediction error rates by more 
than 50 % and 7-day error rates by approximately 15 % in comparison to 
predictions without data assimilation. Moreover, date and the number of 
infection cases at the epidemic peak are highly focused indicators in 
real-world infectious disease prediction. We define the peak day pre
diction accuracy as the proportion of regions for which the peak day is 
predicted correctly. The calculation formula is as Pacc

P , where Pacc is the 
number of regions with accurately predicted peak time, and P is the total 
number of regions. We consider the prediction to be accurate if the 
difference between the predicted and actual peak day is within three 

Fig. 2. Comparison of prediction results for models with varying complexity. (a)-(c): display SMAPE values for 1-day, 7-day, and 14-day predictions, respectively. 
Blue and orange lines indicate performance without and with data assimilation, with black lines showing 95 % confidence intervals. (d): compares prediction 
performance across three configurations: the simplest SIR model with data assimilation (orange solid line), the structurally complete SEIRD_e model without 
assimilation (blue dashed line), and the SEIRD_e model with assimilation (blue solid line). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 3. Daily infection case predictions (1-day) for Beijing and Hubei Province. The orange and blue lines represent predictions with and without data assimilation 
respectively, while gray points indicate observed values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)
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days. As shown in Fig.4(b), data assimilation consistently improves ac
curacy in predicting peak day across all lead days. Without data 
assimilation, the accuracy of peak day prediction declines rapidly after a 
lead day of more than three days, while peak day prediction with data 
assimilation remains reliable even over longer lead days. Moreover, data 
assimilation achieves superior peak infection cases predictions across all 
regions (Fig.4(c)). The prediction accuracy rate for the peak day of the 
epidemic and the peak number of infected cases reached more than 70 % 
in advance by 3 days. Overall, data assimilation can markedly reduce the 
prediction error and enhance the prediction ability in real epidemics.

4. Discussion and conclusion

4.1. Contribution of state and parameter space transformation

EnKF relies fundamentally on the assumption that process and 
measurement noises are Gaussian. This assumption, however, is often 
violated in practical applications such as epidemiological modeling, 
where states and parameters can exhibit non-Gaussian distributions. We 
applied space transformations that projects state variables and param
eters into a more Gaussian-compatible space. As shown in Fig. 5, which 
compares ensemble distributions of analysis and background (pre
dictions from the infectious disease dynamic model) in different spaces 
during the data assimilation process, the transformation causes the 
skewness and kurtosis of the background distributions to more closely 
resemble those of a normal distribution. The updated analysis ensemble 
is expected to exhibit closer agreement with the observations (Fig. 5(a, 
c)). This transformation strategy helps preserve the physical interpret
ability of the updated states and parameters while enhancing their 
conformity with the Gaussian assumptions inherent in the EnKF 
framework, thereby improving numerical stability and estimation 
accuracy.

4.2. Real-time assimilation captures the dynamic evolution of the 
epidemic

During the early, data-scarce stages of an epidemic, data assimilation 
effectively reduces errors in initial values and parameters, enabling 
faster and more reliable outbreak predictions and enhancing the 
responsiveness of containment policies. In real-world epidemics, the 
dynamics of state transmission are not static, and transmission param
eters change over time [10]. This necessitates constructing complex non- 
autonomous models. However, due to the greater number of states and 
parameters that are difficult to estimate, complex dynamic models face 
practical limitations. Balancing model complexity with accurate simu
lation of epidemic dynamics remains a critical technical challenge. We 
believe that combined optimization of both epidemic model parameters 
and states using data assimilation techniques can effectively address this 
issue. This technique achieves dynamic parameter evolution to accu
rately capture epidemic trends without increasing model complexity. It 
simultaneously mitigates prediction biases arising from insufficient 
modeling, enabling simple models to achieve superior predictive per
formance. For infectious disease prediction scenarios with unknown 
transmission mechanisms and high modeling difficulty, data assimila
tion facilitates the rapid deployment of predictive models. Undoubtedly, 
data assimilation holds significant practical application value in 
epidemic prediction.

4.3. Limitations of data assimilation in outbreak prediction

Although the method presented in this paper has achieved significant 
practical application value, it also has some limitations. Firstly, EnKF 
performance may be limited when dealing with highly nonlinear sys
tems. In the future, data assimilation algorithms should be further 
optimized to meet the needs of more complex nonlinear infectious 

Fig. 4. Prediction performance for China’s COVID-19 pandemic. Orange and blue lines indicate predictions with and without data assimilation respectively, while 
vertical bars denote 95 % confidence intervals. (a): shows prediction error across various predicted lead days; (b): shows peak day prediction accuracy at different 
predicted lead days; (c): shows peak infection cases predictions across various predicted lead days. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)
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disease dynamic systems. If sufficient data is available, recently devel
oped data assimilation algorithms based on machine learning may offer 
more effective solutions, as they are better equipped to capture complex 
nonlinear relationships [29,30]. Secondly, due to the unknown errors in 
epidemic reporting data, accurately estimating the observation error 
covariance in data assimilation becomes challenging. This can influence 
the weighting of observations and model predictions during the assim
ilation process, thereby affecting the effectiveness of data assimilation 
[31]. Finally, this study developed an assimilation prediction framework 
based on the simple SEIRD model, demonstrating that more precise 
forecast outcomes can be achieved by refining the states and parameters. 
This framework can be flexibly applied to other infectious disease dy
namic models. Future research could explore the data assimilation 
process of more complex dynamic models and focus on optimizing 
model errors arising from structural limitations.

4.4. Conclusion

With the ongoing challenges posed by global warming and increased 
ease of travel, environment is becoming more conducive to the survival 
and rapid spread of infectious diseases. As a result, accurate epidemic 
prediction has become increasingly critical for public health prepared
ness and response. However, inherent uncertainty in the initial states 
and parameters of infectious disease dynamic models remains a main 
obstacles to achieving reliable predictions. Our study proposes a 
generalized data assimilation framework for optimizing states and pa
rameters in infectious disease dynamic models. Considering the char
acteristics of infectious disease prediction, we designed separate space 
transformation schemes for states and parameters to ensure that the data 
assimilation update process remains within reasonable bounds. Addi
tionally, an adaptive covariance inflation strategy related to the 
epidemic development stage and prediction performance was employed 

to ensure stable parameter updates and a rapid response to changes in 
epidemic.

Synthetic experiments demonstrate that the proposed framework 
significantly reduces state and parameter errors, enabling more reliable 
early-stage predictions. It effectively estimates both observable and 
unobservable states, providing comprehensive insights into epidemic 
progression. Crucially, simple models coupled with data assimilation 
outperformed complex models without assimilation. Data assimilation 
reduces dependence on model complexity for infectious disease pre
diction and enhances the practicality of infectious disease dynamics 
models. Furthermore, validation using real-world COVID-19 data from 
China confirmed the framework’s effectiveness and robustness. 
Compared to infectious disease dynamics models without data assimi
lation, prediction models using data assimilation demonstrate improved 
accuracy and stability of predictions. Data assimilation technology al
lows the dynamic model to adapt more efficiently to multi-peak 
epidemic outbreaks and irregular epidemic observation data. Addi
tionally, data assimilation significantly improves the accuracy of pre
dicting epidemic peak day and the peak number of infection cases.

In summary, this study emphasizes the significant role of data 
assimilation in improving epidemic prediction models. The combined 
assimilation of states and parameters offers a more accurate and adap
tive approach, and it can be extended to the prediction of various in
fectious diseases. Data assimilation techniques are crucial for guiding 
timely public health responses, including resource allocation and 
intervention strategies.
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