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Global escalation of infectious disease outbreak risks necessitates advanced predictive models. Despite meth-
odological advances, errors in initial states and parameters of epidemiological dynamic models remain a key
limitation to prediction reliability. To address this limitation, we propose an optimized data assimilation
framework for combined state-parameter optimization based on Ensemble Kalman Filter. We design space
transformations and adaptive covariance inflation driven by epidemic development and prediction errors,
achieving a more stable update process and rapid response to epidemic changes. Through synthetic experiments
and real-world case studies, the proposed scheme significantly reduces initial state and parameter errors, leading
to a substantial improvement in prediction accuracy during the early stages of an epidemic. Compared with
predictions without data assimilation, the average prediction error rate decreased by more than 50 % for 1-day
predictions and by approximately 15 % for 7-day predictions. The prediction accuracy rate for the peak day of
the epidemic and the peak number of infected cases reached more than 70 % in advance by 3 days. Critically,
simple dynamical model integrated with our data assimilation framework outperform complex models without
data assimilation. This study establishes data assimilation as an essential tool for epidemic forecasting and
provides an extensible framework adaptable to multiple infectious diseases, offering critical support for public

health decision making.

1. Introduction

Globalization and climate change have made infectious diseases
emerge as a considerable public health threat. For instance, the novel
coronavirus disease 2019 (COVID-19) has spread globally rapidly in
recent years, resulting in more than 700 million infections and more
than 7 million deaths. This number is continuing to increase according
to the World Health Organization [1]. Additionally, climate change has
created a more favorable environment for mosquitoes, increasing the
risk of dengue fever. In 2024, Brazil experienced the worst dengue
outbreak in its history. Devastating effects of infectious diseases on
human health and socio-economic systems underscores the urgent need
for timely and accurate forecasting [2,3]. All countries should establish a
reliable and accurate infectious disease forecasting system for a better
response to future public health crises.

At present, dynamic modeling and statistical modeling are the

primary methods used for predicting infectious diseases. The compart-
mental model is the predominant framework for the dynamic modeling
[4], and it has become the most commonly used tool for infectious
diseases prediction and simulation [5-7]. It often divides the population
into distinct states and describes their transition procedures by a
comprehensive understanding of transmission mechanisms. Addition-
ally, the rise of machine learning and deep learning has led to the
widespread use of data-driven statistical models for predicting infectious
diseases [8,9]. However, despite the availability of many infectious
disease predicting models, accurately predicting the future trajectory of
infectious diseases remains a significant challenge [10,11].

As we know, the description of transfer processes in compartmental
models do not precisely align with real-world situations. This
misalignment leads to incomplete dynamic modeling of epidemic
spread, leaving certain physical processes unrepresented. Therefore,
developing more complex dynamic models offers a natural approach to
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reducing errors in infectious disease forecasting. By incorporating a
wider range of states and transmission processes, complex dynamic
models can more accurately reflect real-world conditions, as far as
expecting to improve the accuracy of predictions [2,12,13]. However,
complex dynamic models introduce additional states and parameters,
posing significant challenges in accurately estimating initial conditions.
Since infectious disease dynamics are typically described by differential
equations, precise initial values and parameters are essential for
generating reliable predictions [14]. In reality, it is difficult to obtain
accurate information about all states required for dynamic modeling.
Government statistics usually contain only observable states, such as
infections, recoveries, and deaths. Unobservable states, such as suscep-
tible and exposed, are often unknown. Under such imprecise and
incomplete observation, model parameters are also difficult to estimate
accurately, especially in the early stages of epidemics [15]. Therefore,
reducing errors in initial states and parameters is critical to improving
the predictive performance and practical utility of epidemic models.

Data assimilation serves as a key approach to reducing initial value
errors in dynamic models. It has long been regarded as one of the core
methodologies in numerical weather prediction within meteorology
[16]. By combining observations with model predictions, the data
assimilation technique produces optimal estimates of model states. As
early as 2012, a humidity-driven SIRS model was combined with the
Ensemble Adjusted Kalman Filter (EAKF) for real-time forecasting of
seasonal influenza outbreaks [17]. Subsequent studies compared
various particle filters and ensemble filters in the context of influenza
epidemics, demonstrating the effectiveness of Ensemble Kalman Filter
(EnKF) methods in infectious disease modeling [18]. During the COVID-
19 pandemic, data assimilation gained increased attention due to the
urgent need for accurate epidemic forecasts. Many studies designed data
assimilation algorithms to refine the states in COVID-19 prediction
models [19-21]. Based on augmented state vector techniques, data
assimilation enables simultaneous estimation of both model states and
parameters [22]. Accordingly, a number of studies have applied such
joint state-parameter estimation frameworks in COVID-19 dynamic
modeling [23-25]. Combined optimization of states and parameters
based on dynamic processes is a more reasonable and concise frame-
work. However, applying data assimilation in epidemiology remains
challenging due to the inherent nonlinearity and non-stationarity of
epidemic processes. Covariance inflation and variable constraints are
essential to maintain filter stability and avoid divergence in such set-
tings. Commonly used covariance inflation techniques include corre-
lated random walks [25,26] and fixed inflation factors applied
separately to states and parameters [27]. To keep parameter estimates
stable and within plausible ranges, parameter constraint techniques
have also been developed in earth system modeling [28]. Building on
these foundations, this study incorporates a state and parameter trans-
formation scheme and an adaptive parameter covariance inflation
strategy into the EnKF framework to enhance numerical stability and
dynamic responsiveness in epidemic forecasting. Systematic simulation
experiments and real-world case studies demonstrate how these en-
hancements significantly improve the predictive performance of infec-
tious disease dynamics models.

2. Data and methodology
2.1. Infectious disease dynamic prediction model

The dynamic model of infectious disease employed by this study
categorizes the population into five states: susceptible (S), exposed (E),
infected (I), recovered (R), and dead (D). Assuming a total population of
N, and N = S+ E+ I+ R+ D, then the following equations of dynamic
model are satisfied:
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Here, the parameter f is interpreted as the probability that the sus-
ceptible people contact with infected individuals results in exposure to
the virus. 0 is the relative infectiousness of exposed individuals
compared to infectious individuals. The parameter a is the conversion
rate of exposed individuals to infected ones. The parameter y denotes the
recovery rate of infected individuals to recovered ones, and & is the
mortality rate from infected to dead individuals. Furthermore, we
modify the current model to form dynamic prediction models of varying
complexity to simulate different degrees of model error (Table 1). We
label the SEIRD model that currently considers the infectivity of exposed
individuals as SEIRD_e. The model that does not consider the infectivity
of exposed individuals (¢ = 0) is labeled as SEIRD. After removing the
death compartment, the SEIR model that considers the infectivity of
exposed individuals is labeled as SEIR_e, and the model that does not
consider the infectivity of exposed individuals is labeled as SEIR. Finally,
after further removing the exposed compartment, we obtain the simplest
prediction model SIR.

2.2. EnKF for combined state and parameter estimation

2.2.1. EnKF

By using the augmented state vector technique [22], we add the
parameters of the infectious disease dynamic model to the state space
and estimate the best combination of states and parameters. The main
steps of the presented EnKF by this study can be divided into two parts:
the prediction step and the analysis step. First, in the prediction step,
each ensemble member predicts the states for the next step according to
the epidemiological dynamic model:

X =M(x 07 ,) +er, @

where x{ € R™" is the ensemble of predicted state vector at time t, m is
the number of ensemble samples, and n is the number of states. x{ ; €
R™™ is the ensemble of analyzed value for the state vector at time t — 1.
6%, € R™!is the ensemble of analyzed value for the parameter vector at
time t — 1, and [ is the number of parameters.

Second, in the analysis step, we calculate the ensemble mean of
predicted states X/ and parameters 6. Then, the prediction error
covariance of the states P¥ and parameters P? is obtained as follows:

Table 1
Information on infectious disease dynamics models of varying complexity.
Model Infectivity of Parameters ~ Observable Unobservable
name exposed states states
individuals
SEIRD.e  Yes £.0,a,7,8 IR D S, E
SEIRD No B.a.y,6 I, R, D S, E
SEIR e Yes B.0,a,y I R S, E
SEIR No p.a,y I, R S, E
SIR - By I R s
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Since the parameters have no predicted values, here we let 6, = 6; ;.
The parameters are updated only in the assimilation, and they remain
unchanged in the prediction step. Next, update the state and parameters

of ensemble members by calculating the Kalman gain matrix K,:

( N ) PR (y‘; — Hx"? )

= ) (5)
e o+ Kf(yi _ HX{@)

K = PH(HPH" +R) ', 6)

where y, is the observed value of the epidemic at time t, H is observation
operator, R is the observation error covariance matrix, x{ is the analyzed
value of states, and ¢ is the analyzed value of parameters. Specifically,
for the observable state, the observation operator H is the identity ma-
trix. For unobservable state, the Kalman gain matrix KY is computed as
follows:

K= cov(x‘;",xf)l’ o

var(x?) + R

where x{" is the model prediction for the unobservable state, and x{ is
the model prediction for the observable state. The Kalman gain matrix
used for parameter updating is calculated on the same principle as for
unobservable variables:

cov(6,,x?)

- var(x?) + R ®

t

The updated analysis value is the best estimate of the state at the

current time step and serves as the initial value for the next time step’s
prediction.

2.2.2. State and parameter space transformation

To enforce physical constraints in the epidemiological dynamic
model (non-negativity of state variables and [0, 1] bounds for param-
eters), we implement state and parameter space transformation. During
the update process of data assimilation, we apply the logarithmic
transformation to the predicted results of states from the dynamic
model, then perform the inverse transformation on the updated results
to obtain the analyzed states. Similarly, we utilize logistic trans-
formations for parameters, applying corresponding inverse trans-
formations to the updated parameters to ensure they remain within their
prescribed bounds.

For positivity-constrained states, the logarithmic transformation and
its inverse transformation are given by:

{i =In(x), ©)

X = exp (%)a

where, x represents the original state value, and X denotes the log-
transformed value.

For bounded parameters, the logistic transformation and its inverse
are given by:
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where, 0 is the original parameter value, and @ is the logistic transformed
value.

2.2.3. Adaptive covariance inflation

Observational noise often induces parameter oscillations that un-
dermine prediction stability. Additionally, during shifts in control
measures or environmental conditions, parameter response delays
further compromise forecast accuracy. To address these challenges, we
designed an adaptive covariance inflation mechanism. This mechanism
adjusts the dispersion of updated posterior parameters, striking a bal-
ance between parameter stability and rapid response capability. Spe-
cifically, the covariance inflation factor A(t) decays gradually over time,
with its decay rate 7(t) dynamically adjusted by prediction error: when
prediction errors are large, the decay rate is reduced. This strategically
reduces parameter oscillations during stable epidemic phases while
preserving essential ensemble dispersion during abrupt changes. The
formula for the covariance inflation mechanism is:

A(t) = Aoexp( —t/z(t)), an
E
o(t) =+ , (12)
EPIIESON

where, 1o = 1.2 is initial inflation factor.

2.3. Experimental design

2.3.1. Synthetic experiment

To fully assess the effectiveness of assimilated predictions, it is
necessary to perform synthetic experiments under idealized conditions.
Based on the SEIRD model considering the infectiousness of exposed
individuals, we set the following parameters: = 0.5,0 = 0.5, @ = 0.2,
y=0.1 and § = 0.056 and initial conditions:Sy = 999830, E; = 100,
Iy =50, Rp =10 and Dy = 10. Then, we calculated the state sequence
over 100 days as the “truth” of the epidemic. Further, 20 % random
noise was introduced into the “truth” data, and 100 sets of noisy data
were generated to simulate real observations. Noisy observable states (I,
R, D) data is considered as “observations” and used as input for the dy-
namic prediction model and data assimilation model.

Since model parameters typically range from O to 1, we generate
random parameters based on the beta distribution Beta(2,2) as initial
parameters. During the experiments, we observed that the model rapidly
forgets the initial parameter distribution and gradually converges to-
ward the true parameters. We compared prediction errors between
models with different structural errors under two scenarios: with and
without data assimilation. Prediction models without data assimilation
use the least squares method to update parameters in real time. The
ensemble size of the Ensemble Kalman Filter was set to 1000. Addi-
tionally, we conducted sensitivity experiments with different ensemble
sizes, as shown in Fig. S1.

2.3.2. Real experiment

To test the effectiveness of the assimilation algorithm in the real
world, we selected outbreak report data of the Chinese provinces where
the COVID-19 outbreak lasted more than 30 consecutive days in 2020 to
conduct a realistic experiment. The outbreak report data are obtained
from the Johns Hopkins University Center for Systems Science and En-
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gineering’s COVID-19 dataset, which is accessible via its GitHub re-
pository (https://github.com/CSSEGISandData/COVID-19). Data vari-
ables include the cumulative number of confirmed cases, recoveries and
deaths. Additionally, the number of existing confirmed cases was
calculated by subtracting the number of recoveries and deaths from the
cumulative number of confirmed cases. According to Eq. (13), the un-
known states in the prediction model are initialized:

{

where, Sy is the initial number of susceptible, Ej is the initial number of
exposed, Iy is the initial number of infections, Ry is the initial number of
recovered, Dy is the initial number of deaths, N is the number of pop-
ulation. In real experiments, the SEIRD model considering the infec-
tiousness of exposed individuals was used for prediction.

Eo=1 ,

So=N—Ey—Ip—Ro—Dy , 1s)

2.3.3. Evaluation metric

We calculate the relative error metrics to assess the usefulness of the
data assimilation algorithm. Since the true value of the epidemic states
may be zero, we use the modified SMAPE indicator to measure the
magnitude of the relative error. The formula for SMAPE is as the follows:

1 n ’yif.yi
n—1 Z1 ~ ’
=y Dl ) /2

where y; is the evaluated value, y; is the true value and n is the number of
samples.

SMAPE =

(14)

3. Results
3.1. Data assimilation enables more prompt and precise predictions

The joint assimilation of states and parameters significantly reduces
state errors and parameter uncertainties in infectious disease dynamic
model predictions. Synthetic experiment results demonstrate that the
analyzed values of all states after data assimilation closely match the
true values (Fig.S2), while model parameters progressively converge
toward their true values (Fig.S3). Furthermore, comparative analysis of
different covariance inflation methods (Supplementary Material S1)
confirms that our adaptive approach achieves lower parameter estima-
tion error. Data assimilation provides more reliable initial conditions for

(a) Observable states (I, R, D)
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infectious disease dynamic model, enables more accurate and timely
epidemic predictions.

Fig.1 presents the seven-day average prediction error rates across
different predict starting days. Notably, during the early epidemic phase
(less than 10 days), data assimilation substantially reduces prediction
errors for both observable states (Fig.1(a)) and unobservable states
(Fig.1(b)). This is crucial for rapid response in epidemic control. As
observational data accumulates, prediction errors for observable states
gradually decrease. However, specially for unobservable states, merely
increasing data volume cannot fully eliminate errors caused by initial
states inaccuracies and parameters biases, leading to evident error
accumulation (Fig.1(b)). Data assimilation effectively suppresses the
propagation of such errors, consistently yielding superior prediction
accuracy for unobservable states compared to conventional methods.
This finding confirms that data assimilation not only enhances the
reliability of early-stage predictions but also mitigates error accumula-
tion in later forecasts through continuous correction of system states and
parameters, thereby providing enhanced robustness for infectious dis-
ease dynamic modeling.

3.2. Data assimilation enhances simple model beyond complex model

We simulate varying degrees of model error by intentionally modi-
fying the model structure. Comparisons reveal that data assimilation
consistently reduces prediction errors and mitigates the impact of model
errors across all modified versions (Fig. 2(a)-(c)). Significantly, the
simplest SIR model coupled with data assimilation outperforms SEIRD e
(a structurally complete model with no model error) without assimila-
tion (Fig. 2(d)). This indicates that when coupled with data assimilation,
simpler models can achieve superior predictive capability compared to
complex models. While complex models with accurate structure yield
optimal forecasting performance when integrated with data assimilation
(Fig. 2(d)), employing simpler models with data assimilation proves
more efficient in real-world forecasting contexts where infectious dis-
ease dynamics remain incompletely characterized.

In addition, we found that enhancing predictive performance by
merely increasing model complexity is not always effective. Model
complexity is not the sole determinant of predictive accuracy. Beyond
model error, prediction errors in dynamical epidemic models also stem
from errors in initial states and parameters estimates. As model
complexity increases, so does the number of unknown state variables
and parameters requiring estimation. The superior prediction perfor-
mance of the SIR model over the SEIR model in our experiments is likely

(b) Unobservable states (S, E)
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Fig. 1. Data assimilation effectively reduces prediction errors. The solid blue and orange lines depict the 7-day average SMAPE without and with data assimilation,
respectively, with shaded regions indicating their 95 % confidence intervals. Critical epidemic timepoints are marked: day 10 (black dashed vertical line) and the
epidemic peak day (red dashed vertical line). (a): displays the average SMAPE for predictions of observable states (I, R, D) across different forecast starting days
during the epidemic; (b): presents corresponding results for unobservable states (S, E). (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)
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(b) 7-day prediction
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Fig. 2. Comparison of prediction results for models with varying complexity. (a)-(c): display SMAPE values for 1-day, 7-day, and 14-day predictions, respectively.
Blue and orange lines indicate performance without and with data assimilation, with black lines showing 95 % confidence intervals. (d): compares prediction
performance across three configurations: the simplest SIR model with data assimilation (orange solid line), the structurally complete SEIRD_e model without
assimilation (blue dashed line), and the SEIRD_e model with assimilation (blue solid line). (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

attributable to this reduced difficulty in states and parameters
estimation.

3.3. Application to actual outbreaks of COVID-19 in China

In order to verify the validity of data assimilation in real-world
scenarios, we conduct experiments by using the 2020 outbreak report
data from 29 provincial administrative regions in China. As shown in
Fig.3, data assimilation significantly enhances the predictive accuracy of
the model. Notably, it heightens the model’s sensitivity to epidemio-
logical variations and fluctuations, enabling more responsive tracking of
outbreak dynamics.

(a) Beijing
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Fig.4(a) demonstrates consistent predictive improvement with data
assimilation across all regions and all predicted lead days. Data assim-
ilation has been shown to reduce 1-day prediction error rates by more
than 50 % and 7-day error rates by approximately 15 % in comparison to
predictions without data assimilation. Moreover, date and the number of
infection cases at the epidemic peak are highly focused indicators in
real-world infectious disease prediction. We define the peak day pre-
diction accuracy as the proportion of regions for which the peak day is
predicted correctly. The calculation formula is as }%, where P, is the
number of regions with accurately predicted peak time, and P is the total
number of regions. We consider the prediction to be accurate if the
difference between the predicted and actual peak day is within three

(b) Hubei
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Fig. 3. Daily infection case predictions (1-day) for Beijing and Hubei Province. The orange and blue lines represent predictions with and without data assimilation
respectively, while gray points indicate observed values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)
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(a) Daily infection cases
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(b) Peak day
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Fig. 4. Prediction performance for China’s COVID-19 pandemic. Orange and blue lines indicate predictions with and without data assimilation respectively, while
vertical bars denote 95 % confidence intervals. (a): shows prediction error across various predicted lead days; (b): shows peak day prediction accuracy at different
predicted lead days; (c): shows peak infection cases predictions across various predicted lead days. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

days. As shown in Fig.4(b), data assimilation consistently improves ac-
curacy in predicting peak day across all lead days. Without data
assimilation, the accuracy of peak day prediction declines rapidly after a
lead day of more than three days, while peak day prediction with data
assimilation remains reliable even over longer lead days. Moreover, data
assimilation achieves superior peak infection cases predictions across all
regions (Fig.4(c)). The prediction accuracy rate for the peak day of the
epidemic and the peak number of infected cases reached more than 70 %
in advance by 3 days. Overall, data assimilation can markedly reduce the
prediction error and enhance the prediction ability in real epidemics.

4. Discussion and conclusion
4.1. Contribution of state and parameter space transformation

EnKF relies fundamentally on the assumption that process and
measurement noises are Gaussian. This assumption, however, is often
violated in practical applications such as epidemiological modeling,
where states and parameters can exhibit non-Gaussian distributions. We
applied space transformations that projects state variables and param-
eters into a more Gaussian-compatible space. As shown in Fig. 5, which
compares ensemble distributions of analysis and background (pre-
dictions from the infectious disease dynamic model) in different spaces
during the data assimilation process, the transformation causes the
skewness and kurtosis of the background distributions to more closely
resemble those of a normal distribution. The updated analysis ensemble
is expected to exhibit closer agreement with the observations (Fig. 5(a,
¢)). This transformation strategy helps preserve the physical interpret-
ability of the updated states and parameters while enhancing their
conformity with the Gaussian assumptions inherent in the EnKF
framework, thereby improving numerical stability and estimation
accuracy.

4.2. Real-time assimilation captures the dynamic evolution of the
epidemic

During the early, data-scarce stages of an epidemic, data assimilation
effectively reduces errors in initial values and parameters, enabling
faster and more reliable outbreak predictions and enhancing the
responsiveness of containment policies. In real-world epidemics, the
dynamics of state transmission are not static, and transmission param-
eters change over time [10]. This necessitates constructing complex non-
autonomous models. However, due to the greater number of states and
parameters that are difficult to estimate, complex dynamic models face
practical limitations. Balancing model complexity with accurate simu-
lation of epidemic dynamics remains a critical technical challenge. We
believe that combined optimization of both epidemic model parameters
and states using data assimilation techniques can effectively address this
issue. This technique achieves dynamic parameter evolution to accu-
rately capture epidemic trends without increasing model complexity. It
simultaneously mitigates prediction biases arising from insufficient
modeling, enabling simple models to achieve superior predictive per-
formance. For infectious disease prediction scenarios with unknown
transmission mechanisms and high modeling difficulty, data assimila-
tion facilitates the rapid deployment of predictive models. Undoubtedly,
data assimilation holds significant practical application value in
epidemic prediction.

4.3. Limitations of data assimilation in outbreak prediction

Although the method presented in this paper has achieved significant
practical application value, it also has some limitations. Firstly, EnKF
performance may be limited when dealing with highly nonlinear sys-
tems. In the future, data assimilation algorithms should be further
optimized to meet the needs of more complex nonlinear infectious
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Fig. 5. Distributions of the analysis and background ensembles during data assimilation. The orange distributions represent the analysis ensembles, while the blue
ones denote the background ensembles (forecast outputs from the infectious disease dynamic model). The red dashed vertical line indicates the observed value. Each
distribution is annotated with its standard deviation (std), skewness (sk), and kurtosis (k). (a): shows the original forecast ensemble of the state variable I and the
corresponding analysis ensemble after inverse transformation. Data assimilation brings the ensemble closer to the observation and reduces the standard deviation.
(b): presents the dynamically forecast ensemble after logarithmic transformation and the updated analysis ensemble. Similarly, (c) and (d) depict the analysis and
background ensemble distributions for the parameter , before and after logistic transformation, respectively. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

disease dynamic systems. If sufficient data is available, recently devel-
oped data assimilation algorithms based on machine learning may offer
more effective solutions, as they are better equipped to capture complex
nonlinear relationships [29,30]. Secondly, due to the unknown errors in
epidemic reporting data, accurately estimating the observation error
covariance in data assimilation becomes challenging. This can influence
the weighting of observations and model predictions during the assim-
ilation process, thereby affecting the effectiveness of data assimilation
[31]. Finally, this study developed an assimilation prediction framework
based on the simple SEIRD model, demonstrating that more precise
forecast outcomes can be achieved by refining the states and parameters.
This framework can be flexibly applied to other infectious disease dy-
namic models. Future research could explore the data assimilation
process of more complex dynamic models and focus on optimizing
model errors arising from structural limitations.

4.4. Conclusion

With the ongoing challenges posed by global warming and increased
ease of travel, environment is becoming more conducive to the survival
and rapid spread of infectious diseases. As a result, accurate epidemic
prediction has become increasingly critical for public health prepared-
ness and response. However, inherent uncertainty in the initial states
and parameters of infectious disease dynamic models remains a main
obstacles to achieving reliable predictions. Our study proposes a
generalized data assimilation framework for optimizing states and pa-
rameters in infectious disease dynamic models. Considering the char-
acteristics of infectious disease prediction, we designed separate space
transformation schemes for states and parameters to ensure that the data
assimilation update process remains within reasonable bounds. Addi-
tionally, an adaptive covariance inflation strategy related to the
epidemic development stage and prediction performance was employed

to ensure stable parameter updates and a rapid response to changes in
epidemic.

Synthetic experiments demonstrate that the proposed framework
significantly reduces state and parameter errors, enabling more reliable
early-stage predictions. It effectively estimates both observable and
unobservable states, providing comprehensive insights into epidemic
progression. Crucially, simple models coupled with data assimilation
outperformed complex models without assimilation. Data assimilation
reduces dependence on model complexity for infectious disease pre-
diction and enhances the practicality of infectious disease dynamics
models. Furthermore, validation using real-world COVID-19 data from
China confirmed the framework’s effectiveness and robustness.
Compared to infectious disease dynamics models without data assimi-
lation, prediction models using data assimilation demonstrate improved
accuracy and stability of predictions. Data assimilation technology al-
lows the dynamic model to adapt more efficiently to multi-peak
epidemic outbreaks and irregular epidemic observation data. Addi-
tionally, data assimilation significantly improves the accuracy of pre-
dicting epidemic peak day and the peak number of infection cases.

In summary, this study emphasizes the significant role of data
assimilation in improving epidemic prediction models. The combined
assimilation of states and parameters offers a more accurate and adap-
tive approach, and it can be extended to the prediction of various in-
fectious diseases. Data assimilation techniques are crucial for guiding
timely public health responses, including resource allocation and
intervention strategies.
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