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Abstract

This study introduces a novel dynamical climate change hotspot index standard Euclidean
distance, capturing variations in temperature and precipitation through average, variability, and
extreme values, and utilizes ensemble empirical mode decomposition to analyze nonlinear
long-term trends globally. Results highlight pronounced regional disparities, with regions like the
Tibetan Plateau, Mongolia, and the Arabian Peninsula emerging as persistent hotspots due to rapid
warming responses. In contrast, the southeastern United States exhibits early-stage declines,
though vulnerability to extreme weather is growing. A latitude-time analysis reveals asymmetric
hemispheric trajectories, driven by distinct climate dynamics and anthropogenic influences. The
transition from systemic temperature-influenced hotspots to localized, extreme event-influenced
phenomena underscores the intensifying impact of extreme climate events. These findings provide
critical insights into the spatial and temporal evolution of climate change impacts and highlight the

necessity of region-specific adaptation strategies.

1. Introduction

The IPCC (2023) report indicates a persistent increase
in global temperatures over the past century, with
2023 being the warmest year on record since 1850
(Lindsey and Dahlman 2024. This rise in temperat-
ures has led to extreme weather events and signific-
ant socio-economic impacts across all inhabited con-
tinents (Huang et al 2016, 2017, Herring et al 2021).
Notable events include severe floods (Trenberth et al
2015, Zhang et al 2023, Wang et al 2024b), trop-
ical cyclones (Patricola and Wehner 2018)), instances
of extreme heat and drought (Diffenbaugh and Field
2013, Dai 2013, Trenberth et al 2015), and increased
wildfires (Jolly et al 2015, Williams et al 2019).
Understanding the spatial and temporal variability of
climate change impacts is crucial for addressing vul-
nerabilities in different regions and accurately assess-
ing sectoral risks. In this regard, the concept of ‘hot-
spots’ has emerged as a valuable tool for identifying
areas particularly susceptible to climate change.

© 2025 The Author(s). Published by IOP Publishing Ltd

The term ‘climate change hotspots’ was first
introduced by Giorgi (2006), defining these areas
as those significantly affected by environmental
changes or particularly sensitive to global shifts.
Hotspots are typically assessed by comparing relat-
ive climate changes across two fixed time periods.
Research employing the Regional Climate Change
Index identified the Mediterranean and Northeast
Europe as prominent hotspots when comparing cli-
mate responses between 2080-2099 and 1960-1979.
However, this method only measures the degree of
climate response in specific regions without quan-
tifying climate change at finer geographic scales.
Further developments in hotspot identification were
made by Williams et al (2007), who utilized stand-
ard Euclidean distance (SED) to quantify climate dif-
ferences between two periods based on average tem-
perature and precipitation changes in winter and
summer. This approach allows for the comparison
of various meteorological elements and quantifies
multiple factors into a single index. Diffenbaugh
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et al (2008) applied SED to pinpoint climate change
hotspots in the United States, taking into account
temperature, precipitation, average changes, and
interannual variability during dry and wet seasons,
using a baseline from 1961-1989. Building on this,
Diffenbaugh and Giorgi (2008) refined the hot-
spot identification method for a global perspective,
incorporating average changes in temperature and
precipitation, interannual variability, and extreme
conditions across all seasons, establishing hotspot
areas under different emission scenarios for the 21st
century (baseline period: 1986-2005). The iterative
improvements made by these researchers have resul-
ted in a widely adopted method for identifying cli-
mate change hotspots, with much of the subsequent
research relying on the framework and meteorolo-
gical factors proposed by Diffenbaugh and Giorgi
(2008).

Research has since identified global climate
change hotspots using multidimensional climate
metrics across various time periods. For instance,
Turco et al (2015) analyzed observational data from
1981 to 2010, revealing significant hotspots in the
Amazon, Sahel, tropical West Africa, Indonesia, and
Central and East Asia. Additionally, numerous stud-
ies have utilized datasets from the Coupled Model
Intercomparison Project (CMIP) to forecast future
climate change hotspots. Diffenbaugh et al (2008)
employed CMIP3 data to project future hotspots
in the United States under different emission scen-
arios, identifying the southwestern United States
and northern Mexico as the most persistent areas
of concern. Expanding on this, Diffenbaugh and
Giorgi (2012) used CMIP5 data to estimate global
hotspots for the early, middle, and late 21st cen-
tury, focusing on RCP8.5 and RCP4.5 scenarios.
Their analysis identified the Amazon, Sahel, trop-
ical West Africa, Indonesia, and the Qinghai—Tibet
Plateau as critical regional hotspots. Ridder et al
(2020) provided the first analysis of multiple mul-
tivariate compound events (CEs) potentially caus-
ing high-impact floods, droughts, and fires, iden-
tified hotspots of multivariate CEs including many
socio-economically important regions such as North
America, Russia and Western Europe. More recently,
Fan et al (2021) utilized the latest CMIP6 model data
to assess global hotspots under warming scenarios
of 1.5 °C, 2 °C, 3 °C, and 4 °C, considering vari-
ous shared socio-economic pathways (SSP) through-
out the 21st century. They found that hotspots in
the Amazon, Central and West Africa, Indonesia,
and the Qinghai—Tibet Plateau remained consistent
across warming levels of 1.5 °C, 2 °C, and 3 °C.
Notably, under two scenarios (SSP3-7.0 and SSP5-
8.5), regions such as the Arctic, Central America, and
Southern Africa are projected to emerge as hotspots
by the end of the 21st century with a 4 °C increase
in temperature. The CMIP6 model also indicated a
higher hotspot index than CMIP5, suggesting a more
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pronounced cumulative effect of climate change in
these newer scenarios.

Initial research on climate change hotspots, con-
ducted by Giorgi (2006), established a baseline period
to estimate hotspots for a subsequent period (2080—
2099 relative to 1960-1979). In contrast, Diffenbaugh
etal (2008) set the baseline to 1961-1989 and assessed
climate change hotspots across various emission scen-
arios over 21 distinct time periods. While this study
compared different time periods and emission scen-
arios, it primarily focused on the differences in hot-
spot distribution rather than tracking continuous
changes in these areas. Subsequent studies continued
to select fixed observation periods as baselines. For
instance, Diffenbaugh and Giorgi (2008) used 1986—
2005 as a baseline to estimate global climate hotspots
for the early, middle, and late 21st century. Similarly,
Fan et al (2021) analyzed global hotspots for the 21st
century under different SSP associated with temper-
ature increases of 1.5 °C, 2 °C, 3 °C, and 4 °C, using
1995-2014 as their baseline. Turco et al (2015) also
selected 1951-1980 as a baseline to examine the distri-
bution of climate change hotspots from 1981 to 2010.
Although these studies employed fixed reference peri-
ods to compare and analyze hotspot distribution, they
did not investigate the evolutionary characteristics of
SEDs in both hotspot and non-hotspot areas.

In response to the issues identified, this article
establishes a benchmark period of 30 years, start-
ing from 1901 and extending to 2020, resulting in
a total of 90 research periods. Each period allows
for the assessment of global climate change hotspot
distribution patterns and the quantitative indices for
each land grid point. By analyzing the results across
these 90 periods, we can identify trends in hotspot
indices. Traditional linear trend methods often rely
on arbitrary time intervals, which can obscure sig-
nificant changes. To overcome these limitations, we
employ the ensemble empirical mode decomposi-
tion (EEMD) method to explore the nonlinear evol-
ution of hotspot indices across the research peri-
ods. Additionally, the contribution of various climate
variables to the hotspot index has not been thor-
oughly quantified. To address this, we employ the
geographical detector model (GDM) to quantify the
contributions of critical influencing factors behind
climate change hotspots. Section 2 outlines the
datasets, and methods used for hotspot identifica-
tion and factor detection. Section 3 presents and
discusses the main results, while section 4 offers
concluding observations and insights for future
research.

2. Data and methods

2.1.Data

This study utilized the CRU TS v4 dataset (Version
4 of the Climatic Research Unit gridded Time Series),
which offers climate data for all land areas worldwide,
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excluding Antarctica. This dataset is based on an
extensive network of meteorological stations and pro-
duces climate data on a 0.5° x 0.5° latitude and
longitude grid through interpolation methods. The
primary climate variables analyzed in this study were
temperature and precipitation (monthly, spanning
January 1901 to December 2022). The strengths of
the CRU TS dataset, including the continuity of its
time series and comprehensive global coverage, facil-
itate reliable quantitative analysis of large-scale cli-
mate change. Harris ef al (2020) provided a thorough
overview of the updates and enhancements made to
the CRU TS v4 dataset, particularly regarding data
processing and calibration. Furthermore, comparis-
ons with other high-resolution datasets have con-
firmed the global reliability of CRU TS v4.

2.2. Identification of climate change hotspots
Previous studies have developed refined methods
for identifying climate change hotspots, particularly
under extreme weather conditions. Examples include
research on extreme precipitation hotspots (Xu et al
2021a), extreme climate hotspots (Xu et al 2019), and
the approaches proposed by Diffenbaugh and Giorgi
(2012). In this study, we adopt the SED method intro-
duced by (Diffenbaugh and Giorgi 2012) to quantify
overall climate change. We selected seven climate
indicators for each of the four seasons—December—
January-February, March—April-May, June-July—
August, and September—October—November—to
identify global climate change hotspots from 1901
to 2021. These indicators include the average values,
interannual variability, and extreme values of temper-
ature and precipitation. The SED (a unitless measure)
aggregates changes in these indicators between vari-
ous time periods and a baseline period (1901-1930)
based on observational data. The spatial patterns of
average climate indicators during the baseline period
are shown in figures S1 and S2. At each land grid
point, the total SED is calculated as follows:

SED, = [ SED,, (1)
v

for,

2
SED;, = (% — xbv)z/{ma)x [abs (x — xbv)]} 2)
ij

where x;, denotes the value of climate indicator v dur-
ing the study period, x3, denotes the value of variable
v in the ‘baseline’ period, and max([abs(x,_xp,)];
refers to the maximum absolute change in indicator
v across all land grid points (for longitudes i[0,360]
and latitudes j[0,180]). The baseline period spans
1901-1930, while the study period begins in 1902—
1931 and advances in one-year increments, forming
a sliding 30 year window. This process results in 90
study periods, ending with 1991-2020. Each study
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period (¢[1,90]) defines x5 and SED;, as functions
of t. The SED;, calculation incorporates seven cli-
mate indicators: The absolute change in mean tem-
perature (AT) directly quantifies surface temperat-
ure variations and serves as a fundamental indic-
ator of global warming trends. Precipitation alter-
ation constitutes a critical component of hydrolo-
gical cycle evolution, where the relative change in
mean precipitation (AP) reflects water resource avail-
ability shifts at regional and global scales, exerting
substantial impacts on ecosystems and agricultural
systems. The detrended temperature standard devi-
ation (ATy,,) captures interannual temperature vari-
ability and anomalous fluctuations, revealing inher-
ent climate system instability and its responses to
extreme events. The relative change in precipitation
coefficient of variation (AP,,;) quantifies interannual
precipitation uncertainty and extremality, indicative
of drought or deluge frequency alterations. The fre-
quency of years exceeding baseline maximum tem-
peratures (Fpot) directly measures extreme heat event
occurrence, critical for heatwave risk assessment. The
frequency of years below baseline minimum precip-
itation (Fgry) characterizes drought event recurrence,
reflecting extreme deviations in water resource avail-
ability. The frequency of years surpassing baseline
maximum precipitation (Fy.) tracks extreme pre-
cipitation events, crucial for flood risk evaluation.
Collectively, these seven indicators encompass three
primary dimensions of climate change: mean state
(AT, AP), variability (ATy,r, APy), and extremes
(Fhot> Farys Fwet)—all critical factors influencing eco-
systems, agricultural productivity, infrastructure resi-
lience, and public health.

The seasonal stratification of meteorological vari-
ables into winter, spring, summer, and autumn
accounts for distinct seasonal climatic characterist-
ics driven by solar radiation patterns, atmospheric
circulation regimes, and precipitation seasonality.
This temporal partitioning enhances analytical preci-
sion by isolating seasonal climate signals, mitigating
data aggregation biases arising from inter-seasonal
variability, and facilitating targeted interpretation of
seasonal climate dynamics. Furthermore, seasonal
classification aligns with international climatological
research conventions, enabling cross-study compar-
isons and supporting multi-source data integration
to enhance methodological robustness and generaliz-
ability. Seasonal-scale analysis additionally identifies
climate-sensitive regions and temporal vulnerabilit-
ies, providing critical insights for developing season-
specific adaptation strategies.

This integrated approach captures multi-
dimensional characteristics of temperature and pre-
cipitation dynamics across temporal scales, ensuring
the SED index effectively represents climate change
complexity and regional heterogeneity. Concurrently,
seasonal classification reveals differential climate
change manifestations across seasons, circumventing
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potential masking effects inherent in annual aver-
aging while enhancing analytical specificity.

2.3. Definition of nonlinear trend

The method we use to derive the long-term trend
of global SED is multidimensional EEMD (MEEMD;
Wu et al 2009). MEEMD is an extension of the
(EEMD; Huang et al 1998, Huang and Wu 2008,
Wu and Huang 2009), which is a local and adaptive
analysis of nonlinear and non-stationary time series.
Both EEMD and MEEMD have been widely applied
in climate research (Qian et al 2010, Cheng et al 2017).
EEMD decomposes a time series, x(t), into a set
of amplitude-frequency-modulated oscillatory com-
ponents (intrinsic mode functions) C; (t),j = 1,2, ...
n and a residual R(¢), allowing the separation of sig-
nals at different timescales, such as the annual cycle,
interannual variability, decadal trends, multidecadal
variations, and secular trends, as demonstrated in
figure S3.

()= (1) +R(1). (3)
j=1

In this study, we focus on the long-term trend
of global SED, represents by R(t), which is defined
as a curve that is either monotonic or contains only
one extremum, from which no additional oscillatory
components can be extracted (Wu et al 2007). The
time-varying nature of this intrinsic trend offers a
novel perspective on trend analysis. Following Ji et al
(2014), we define the nonlinear trend of a SED series
as Trend(#) = R(#)-R(1), t = 1,2... 90, representing
the accumulated change in SED from present. The
rate of nonlinear change can then be calculated by
determining the slope of the trend at any given point
in time, which varies across both time and space. This
approach allows us to quantify the magnitude and
spatial distribution of the changing rate of SED. The
instantaneous rate of change is calculated as the tem-
poral derivatives of the nonlinear trend. For example,
the rate of change at 1910 is calculated as (Trend at
1911-1909)/2.

For a multidimensional spatial-temporal dataset,
we piece together R(f)s values from all grid points
to generate a comprehensive representation of the
evolution of SED’s long-term trends. This approach,
which accounts for spatial and temporal variability,
provides a more detailed understanding of how cli-
mate change hotspots respond to global warming
over a century, compared to the traditional linear,
time-invariant methods.

2.4. Assessing critical influencing factors

To analyze the contribution of meteorological factors
to changes in hotspot distribution, we use the
Geodetector Method (GDM) to quantify the spa-
tial heterogeneity of each factor with respect to the
SED distribution. The GDM method has been widely
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applied across disciplines such as health, ecology, geo-
graphy, and atmospheric studies (Hu et al 2021, Luo
et al 2016, Yin et al 2019, Zhao et al 2020), demon-
strating robust performance. Specifically, we adopt
the g-statistic proposed by Wang et al (2010, 2016) to
calculate spatial heterogeneity and the k-means clus-
tering method used in Zhao et al (2020) for factor
grouping. In this analysis, each time window serves
as the study unit. For the 90 time periods, we calcu-
late the contribution of seven meteorological factors
for each period. The annual value of each meteorolo-
gical factor is computed as the sum of its values across
all four seasons. Using this approach, we derive the Q
value for each factor in each period, ranging from 0
to 1. A larger Q value indicates stronger spatial het-
erogeneity and a greater contribution of the meteor-
ological factor to the SED distribution. Conversely, a
smaller Q value reflects weaker spatial heterogeneity
and alower contribution. The calculation formula for
Qs as follows:

m 2
> iz Nio;
==

No (4)

Gx, = 1 —

Among them, gy, represents the contribution of
meteorological factor x to SED during the research
period t. m represents the number of layers into which
meteorological factor x; is divided using K-means
(m=2,3,4,...). N; denotes the number of grid points
for meteorological factor x; in layer i, and o, repres-
ents the variance of x, in layer i. N signifies the total
number of global grid points for x;, and o denotes
the global variance of x;.

It is important to note that the Geographical
Detector Model (GDM) is designed to quantify spa-
tial stratified heterogeneity and assess the strength of
associations between variables. However, GDM does
not provide evidence of causality; it only indicates the
influence of various factors on the observed spatial
patterns.

3. Results

3.1. Evolution of global climate change hotspots

To enhance our understanding of climate change
hotspots, we build on existing research and hotspot
definitions, noting that most studies emphasize com-
parisons of specific periods against a baseline under
various scenarios. While insightful, such approaches
often overlook intermediate processes that shape final
outcomes. Key questions remain largely unanswered:
Which regions exhibit the earliest responses to cli-
mate change? How does hotspot intensity evolve
within the same region over time? Addressing these
questions is essential for a fuller understanding of
climate dynamics and how responses may spread
and intensify. Therefore, we employed a sliding win-
dow method to construct a dynamic time series
of hotspot indices, enabling us to observe shifts in
intensity and spatial spread. We also utilized the
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Figure 1. Global distribution of cumulative changes in the nonlinear evolution trends of SED across different time periods.
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EEMD method to explore the long-term evolution-
ary characteristics of these trends. This approach
has been effective in detecting patterns in other cli-
mate system aspects, such as global land and sea
surface temperature trend (Ji et al 2014, Xu et al
2021b), global vegetation (Pan et al 2018), and dry-
ing and wetting trends in China (Wu et al 2024).
By integrating these methods, we provide a temporal
perspective on climate impacts, revealing how cli-
mate change hotspots may shift and expand over
time.

According to the methodology and definitions
previously mentioned, we obtained a time series of
SED values spanning a period of 90 years for each grid
point. Here, SED (1) represents the hotspot index cal-
culated for 1902-1931 relative to the baseline period,
which, for convenience, we refer to as the hotspot
index in 1902. Similarly, SED (90) is for 1991-2020
relative to the baseline period. By applying EEMD
method to the hotspot index at each grid point,
we can extract the final component representing the
long-term trend, allowing us to piece together a com-
prehensive spatial-temporal evolution of the global
climate change hotspot index. This is the essence of

the MEEMD, with more details were introduced by Ji
etal (2014).

The spatial evolution of accumulated changes
over time is depicted in figure 1, revealing pro-
nounced regional heterogeneity in trends. In the earli-
est period (figure 1(a)), areas exhibiting substan-
tial SED changes are relatively limited, with most
regions showing near-zero values, indicating minimal
deviation from baseline climate sensitivity. Subtle
increases first appear over the Tibetan Plateau and
Mongolia, with smaller isolated patches emerging
in northern North America, South America, high-
latitude regions of Canada and Greenland, and Africa.
Conversely, regions such as the southeastern United
States, north-central Eurasia, southwestern China,
and Australia exhibit slight decreases, suggesting ini-
tial zones of reduced sensitivity to climatic changes.
This general pattern persists over subsequent decades,
but the intensity and spatial extent of changes begin
to increase (figure 1(b)). By 1941 (figure 1(c)), areas
experiencing both increases and decreases become
more defined, with their magnitudes growing notice-
ably. The Tibetan Plateau, Mongolia, high-latitude
regions of Canada and Greenland, and the Arabian
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Peninsula increasingly dominate as hotspots of rising
sensitivity, while regions of decline—including the
southeastern United States, north-central Eurasia,
and southwestern China—continue to expand and
intensify. By 1951 (figure 1(d)), the spatial con-
trast between regions of increasing and decreas-
ing sensitivity becomes sharper, reflecting diverging
regional responses to climate forcing. From 1961
onward, the patterns observed earlier remain consist-
ent, albeit with a gradual spatial expansion of areas
experiencing increases and a contraction of regions
showing decreases (figures 1(e)—(g)). These decades
mark a transitional phase, during which hotspots of
increasing sensitivity become more spatially coher-
ent, signifying a shift toward more widespread and
pronounced regional trends. The final frame, 1991
(figure 1(h)), represents the culmination of nearly a
century of evolving climate sensitivity. Regions such
as the Tibetan Plateau, Mongolia, and the Arabian
Peninsula, which initially exhibited subtle increases,
now show dramatic and widespread rises in SED.
Additionally, parts of Africa and South America reveal

significant positive trends, while much of Eurasia dis-
plays heightened sensitivity. In contrast, the south-
eastern United States and southwestern China remain
prominent as regions of persistently low sensitiv-
ity, reflecting entrenched resistance to the trends
observed elsewhere. However, this evolution of the
SED trends cannot be revealed by the linear trend
(figure S5a).

3.2. Evolution of global climate hotspots change
rates

Given the time-varying nature of the SED trends,
their temporal rates of change-calculated as the tem-
poral derivatives of the non-linear trends at spe-
cific years-provide valuable insight into the pace and
direction of these changes. These rates, represent-
ing the slope of the non-linear trend at each year,
offer a complementary perspective to figure 1 by
emphasizing the dynamic evolution of SED trends
over time. During the early decades, the rates of
change in SED trends exhibit pronounced regional
contrasts (figures 2(a)—(d)). Negative rates dominate




10P Publishing

Environ. Res. Lett. 20 (2025) 074031

Z Du et al

The impacts (q values) of the seven climatic factors on the spatial distribution of standard Euclidean distance (SED)
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Figure 3. The impacts (q values) of the seven climatic factors on the spatial distribution of standard Euclidean distance (SED).

in the northern high latitudes (e.g. Eurasia and
North America, except for the high-latitude regions of
Canada and Greenland) and the southern extratrop-
ics, reflecting a rapid decline in SED trends in these
areas. Conversely, positive rates emerge prominently
in the tropics and subtropics, particularly over regions
such as the Tibetan Plateau, Mongolia, and the
Arabian Peninsula, signaling an acceleration of SED
trends. Over time, these spatial patterns begin to
evolve. The regions with negative rates (blue areas)
contract rapidly, while the regions with positive rates
(red areas) expand. By 1951, areas with declining
SED trends become increasingly confined, primarily
to southern Greenland, southeastern North America,
and a few isolated locations. This spatial contrac-
tion indicates that the rate of SED trend decline
in southeastern North America is slowing, while in
Eurasia, the SED trends have already transitioned
from a declining phase to an upward trajectory.
Simultaneously, regions such as the Tibetan Plateau
and Mongolia, which previously experienced accel-
erated increases in SED trends, show a slowing rate
of growth, reflecting an early shift in their dynamic
evolution.

After 1961, a significant transition occurs in the
global patterns of SED trend rates. The southeast-
ern North American continent, which had previ-
ously shown declining SED trends, experiences a
turnaround, with its rates shifting to positive val-
ues. In contrast, regions like the Tibetan Plateau
and Mongolia experience a continued deceleration
in SED growth rates, highlighting the complex inter-
play of regional climatic factors and internal vari-
ability. During this period, the global landmasses
begin to exhibit a more unified characteristic: a wide-
spread acceleration in SED increases, as indicated by
the dominance of positive rates across most regions.
This shift underscores a global-scale intensification in
SED trends driven by both anthropogenic forcing and
natural variability. By the end of the study period,
the SED growth rates reach their highest levels, with
the most pronounced increases concentrated in the

mid-to-high latitudes of Eurasia and across much of
the Southern Hemisphere. These regions emerge as
global hotspots for accelerated SED trends, reflect-
ing the combined effects of intensifying anthropo-
genic impacts and regional climate feedback mechan-
isms. However, this evolution of the SED trend rates
also cannot be reflected by the straight line fitting
(figure S5(b)).

3.3. Climatic factors influencing the spatial
distribution of SED

To systematically analyze the spatial-temporal char-
acteristics of climate change hotspots, we quantified
the relative contributions of seven climatic indicat-
ors, encompassing both temperature and precipita-
tion factors, to the spatial distribution of SEDs using
the Geographical Detector Model (GDM). Figure 3
reveals the temporal evolution of these contributions,
providing critical insights into the changing influen-
cing factors of hotspot formation. We employed the
significance test method for the statistic g described
by Wang et al (2016) to assess our results. The find-
ings indicate that, except for ATy, and APy, the
q values for other factors—such as mean temperat-
ure change, extreme precipitation, and extreme high
temperature—are statistically significant. During the
early decades, the spatial distribution of climate
change hotspots was predominantly influenced by
shifts in the mean surface temperature (AT). Elevated
g-values for AT suggest that gradual changes in aver-
age temperature were the primary factor shaping hot-
spot formation, reflecting the initial stages of global
warming, where the impacts of rising mean temperat-
ures on regional climates were relatively uniform and
widespread. However, a notable transition occurred
after 1920, when precipitation-related extremes, spe-
cifically the frequency of extreme wet events (Fyt)
and drought years (Fgyy), emerged as dominant con-
tributors. During 1940 and 1970, the g-values for
Fye and Fgyy reached their peak, highlighting the
critical role of spatial variability in extreme precip-
itation events in influencing hotspots. Concurrently,
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Figure 4. The maximum contributing factors for each of the 43 IPCC ARG reference regions in (a) the early period (1910), (b) the
mid-term (1950), and (c) the later period (1990). Colors in the graph indicate the meteorological factors with the greatest
contribution to the SED distribution in the region during that time. Solid dots represent the instantaneous rates of cumulative
trends in SED in the region during this period. Blue indicates negative values, while red indicates positive values.

the influence of precipitation variability (APy,)
increased moderately, further underscoring the sig-
nificance of fluctuating precipitation patterns during
this phase. In contrast, temperature-related indicat-
ors, including AT and its variability (ATy,,), exhib-
ited a marked decline in their g-values, indicating
a reduced influence of mean temperature changes
and temperature variability on hotspot distributions.
This shift aligns with observed trends in global mean
temperature, which exhibited a cooling phase dur-
ing this period. After 1970, the landscape of climate
change influencing factors underwent another sig-
nificant shift. The influence of precipitation-related
extremes began to diminish, as evidenced by their
gradually declining g-values, although they remained
substantial. Simultaneously, the frequency of extreme
heat events (F},) rose to prominence, with stead-
ily increasing g-values over time. This transition
reflects the escalating impact of high-temperature
extremes, such as heatwaves, as a defining charac-
teristic of contemporary climate hotspots. At the
end, Fp,: had become the most influential indic-
ator, signifying a paradigm shift in hotspot forma-
tion mechanisms from precipitation-related extremes
to temperature-related impacts, influenced by contin-
ued global warming.

To further analyze the temporal evolution of cli-
mate change hotspots, we assessed the dominant con-
tributing factors across global regions as defined by
the IPCC AR6 WGI (Iturbide et al 2020). Figure 4
illustrates the primary climatic factors influencing
hotspots for three representative periods (1910, 1950,
and 1990). In 1910, changes in mean surface tem-
perature (AT) dominated across 37.21% (table S1)

of global land regions, particularly in high-latitude
areas such as Northern Europe and North America.
Precipitation-related extremes also contributed sig-
nificantly, with wet events (Fye, 13.95%) and dry
extremes (Fgry, 32.56%) being prominent in trop-
ical regions and eastern Asia. By 1950, precipitation-
related extremes became increasingly influential, sig-
naling a shift in the factors influencing hotspot. Dry
extremes (Fgry, 30.23%) emerged as the dominant
factor in regions such as South and East Asia and
northern Africa, reflecting heightened susceptibility
to drought conditions. Concurrently, wet extremes
(Fuwet> 25.58%) became more prominent in areas like
Siberia, Mediterranean, and high-latitude regions of
Canada and Greenland, emphasizing the growing
impact of extreme precipitation events. This period
marked a significant decline in the influence of
temperature-related indicators such as AT, corres-
ponding to observed global cooling trends during this
time. By 1990, heat extremes (Fpot) had become the
most influential factor, dominating 41.86% of global
land regions. This factor was particularly impactful
in North America, Eastern South America, Central
Europe, Africa, East Asia, and Australia, underscor-
ing the intensifying role of heatwaves under accelerat-
ing global warming. Despite this shift, precipitation-
related extremes (Fyry and Fy.) continued to account
for 51.16% of hotspot influencing factors, highlight-
ing the enduring influence of hydrological extremes.
The lower portion of each hexagon provides a
nuanced representation of the averaged SED trend
rates. The color indicates whether the trend is increas-
ing (red) or decreasing (blue), while the size of the
dots reflects the absolute rate of change, with larger
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dots signifying more pronounced shifts. During the
early period, blue dots are predominant across many
regions, signifying a general decline in the intens-
ity of climate change hotspots. The variability in
dot size highlights regional differences: while some
areas experienced only minor decreases, others, such
as parts of North America, exhibited more substan-
tial declines. In contrast, certain regions, including
the Tibetan Plateau, eastern Central Asia, and the
Arabian Peninsula, emerged as areas of rapid increase,
marked by red dots of moderate size. These regions
foreshadow the future intensification of climate
change impacts, influenced by localized factors such
as temperature and precipitation extremes. By 1950,
the spatial distribution of trends undergoes a notable
shift. Most regions begin to exhibit increasing trends,
as indicated by the growing prevalence of red dots.
Notably, regions such as Europe, Siberia, and parts
of East Asia experience moderate to large increases
in hotspot intensity, suggesting a transition to accel-
erated climate change impacts. Simultaneously, the
southeastern part of North America shows a dimin-
ishing rate of decline, with smaller blue dots indicat-
ing a tapering downward trend. This period reflects a
dynamic phase of regional divergence, where hotspots
in certain areas begin to intensify while others stabil-
ize or show muted changes. By 1990, red dots dom-
inate the global landscape, illustrating a widespread
and rapid intensification of climate change hotspots.
Lots regions stand out with large red dots, indicat-
ing significant increases in the rate of change. Only
a few regions, such as the southern part of the South
American and Madagascar, exhibit weak declines, as
marked by small blue dots. These isolated excep-
tions highlight localized factors that may tempor-
arily counterbalance broader global trends. Overall,
the spatial pattern underscores a near-universal shift
toward accelerating climate change impacts by the
latest period.

It is important to note that while our study
primarily focuses on meteorological indicators
(temperature, precipitation, and their extremes)
to identify climate change hotspots, this approach
may oversimplify the complexity of climate forcing.
External forcing factors such as greenhouse gas con-
centrations, aerosols, and land use changes, as well
as ocean—atmosphere interactions and teleconnec-
tion processes (e.g. ENSO, AMO, IOD), are also key
drivers of climate variability. Although our prelimin-
ary analysis of large-scale climate modes (e.g. the rela-
tionships between AMO/PDO and the SED index)
suggests that oceanic signals can modulate regional
climate patterns, the underlying physical mechanisms
remain to be fully elucidated.

Z Du et al

4, Conclusions and discussion

This study introduces the dynamical climate change
hotspots index SED, derived from seasonal variations
in average temperature and precipitation, interannual
variability, and extreme values. The evolution of the
nonlinear long-term trends in the SED was ana-
lyzed using EEMD. The results reveal a marked
spatial variability in SED trends globally, with dis-
tinct regional disparities. Over time, regions near
the Tibetan Plateau, Mongolia, and the Arabian
Peninsula consistently exhibit increasing SED values,
becoming prominent hotspots of global climate sens-
itivity. Conversely, the southeastern United States and
southwestern China show a declining SED trend dur-
ing the early decades, maintaining a status of low
sensitivity. Most other regions, however, have exper-
ienced a shift toward rising SED in later periods.

Regions such as the Tibetan Plateau and
Mongolia, which initially displayed increases in SED,
demonstrate a rapid response to global warming, as
noted in previous studies (Yao et al 2000, Batima
et al 2005, Lu et al 2009). Despite a deceleration in
the rate of SED growth, the accumulated effects have
led to significant climate-related challenges in these
areas (You et al 2021, Zhou and Zhang 2021, Meng
et al 2023). The southeastern United States, charac-
terized by a prominent ‘warming hole’ (Meehl et al
2012, Eischeid et al 2023), shows a marked decline
in SED. Yet, the contraction of this cooling zone
and the subsequent shift toward increased sensitiv-
ity indicate growing vulnerability to extreme weather
events (Eck et al 2020, Takhellambam et al 2023).
Globally, the overall acceleration in SED trends sig-
nals that the impacts of climate change are expanding,
rather than remaining confined to specific regions.
Kornhuber et al (2024) also document this shift, not-
ing the increasing frequency of extreme heatwaves
across every continent except Antarctica, which have
become widespread, intense, and persistent.

The latitude-time evolution of SED, along with
the rates of change in SED trends, reveals distinct
trajectories for the two hemispheres. The Western
Hemisphere exhibits a more heterogeneous response,
with regions of both increasing and decreasing trends,
particularly in the mid-latitudes. In contrast, the
Eastern Hemisphere shows more uniform increases
in SED, with hotspots of sensitivity intensifying in
the Tibetan Plateau and Arabian Peninsula. These
hemispheric differences likely arise from a com-
plex interplay of regional climate dynamics, land-
ocean distribution, and anthropogenic influences.
They underscore the region-specific responses to
both internal variability and external forcing, offering
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crucial insights into the hemispheric asymmetries in
the evolution of climate change hotspots.

The temporal shift in the key influencing factors
of climate change hotspots further emphasizes the
evolving nature of climate change impacts. Initially,
gradual temperature increases dominated hotspot
formation, but over time, more localized and extreme
climate events have become the primary influencing
factors. This transition reflects the growing role of
extreme weather in shaping spatial variability in cli-
mate change impacts, a trend that is corroborated by
the rising frequency of such events globally (Robinson
et al 2021, Duan et al 2024, Lyu et al 2024, Tian et al
2024, Wang et al 2024a, Zhang et al 2024). Regions
facing frequent extreme events, such as droughts,
floods, and heatwaves, are increasingly becoming
focal points of climate-induced stress. These devel-
opments carry profound implications for ecosystems,
agriculture, and socio-economic systems, highlight-
ing the urgent need for targeted mitigation and adapt-
ation strategies.

Data availability statement

The data that support the findings of this study are
openly available at the following URL/DOI: https://
crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.08/.

Acknowledgments

This work was jointly supported by the Joint
Funds of the National Natural Science Foundation
of China (U2342205), National Natural Science
Foundation of China (42494871 and 42275034), and
Gansu Provincial Science and Technology Project
(23JRRA1030).

Conflict of interest

The authors declare that they have no known compet-
ing financial interests or personal relationships that
could have appeared to influence the work reported
in this paper.

CRediT authorship contribution
statement

Du Zhuoya: Writing—review & editing, Writing—
original draft, Visualization, Validation, Software,
Methodology, Investigation, Formal analysis,
Data curation, Conceptualization. Han Xuchou:
Writing—review & editing, Visualization, Software,
Methodology, Conceptualization. Ji Fei: Writing—
review & editing, Writing—original draft, Validation,
Supervision, Resources, Methodology, Funding
acquisition, Formal analysis, Conceptualization. Xu
Zhenhao: Writing—review & editing, Supervision.
Guan Xiaodan: Writing—review & editing,

10

Z Du et al

Supervision. Huang Jianping: Writing—review &
editing, Supervision.

ORCID iDs

Xuchou Han
9762
Fei Ji ® https://orcid.org/0000-0002-7985-1558

https://orcid.org/0009-0004-3861-

Zhenhao Xu ® https://orcid.org/0000-0001-5997-
7439

Xiaodan Guan ® https://orcid.org/0000-0003-3716-
4503

Jianping Huang ® https://orcid.org/0000-0003-
2845-797X

References

Batima P, Natsagdorj L, Gombluudev P and Erdenetsetseg B 2005
Observed climate change in Mongolia (ATACC WP No. 12).
assessments of impacts and adaptations to climate change
(AIACC) project (available at: www.aiaccproject.org)

Cheng S, Huang J, Ji F and Lin L 2017 Uncertainties of soil
moisture in historical simulations and future projections J.
Geophys. Res. 122 2239-53

Dai A 2013 Increasing drought under global warming in
observations and models Nat. Clim. Change 3 52-58

Diffenbaugh N S and Field C B 2013 Changes in ecologically
critical terrestrial climate conditions Science 341 48692

Diffenbaugh N S and Giorgi F 2012 Climate change hotspots in
the CMIP5 global climate model ensemble Clim. Change
114 813-22

Diffenbaugh N S, Giorgi F and Pal J S 2008 Climate change
hotspots in the United States Geophys. Res. Lett. 35 L16709

Duan R, Huang G, Wang F, Tian C and Wu X 2024 Observations
over a century underscore an increasing likelihood of
compound dry-hot events in China Earth’s Future
12 €2024EF004546

Eck M A, Murray A R, Ward A R and Konrad C E 2020 Influence
of growing season temperature and precipitation anomalies
on crop yield in the southeastern United States Agric. For.
Meteorol. 291 108053

Eischeid J K et al 2023 Why has the summertime central U.S.
Warming hole not disappeared? J. Clim. 36 7319-36

Fan X, Miao C, Duan Q, Shen C and Wu Y 2021 Future climate
change hotspots under different 21st century warming
scenarios Earth’s Future 9 e2021EF002027

Giorgi F 2006 Climate change hot-spots Geophys. Res. Lett. 33

Harris I, Osborn T J, Jones P and Lister D 2020 Version 4 of the
CRU TS monthly high-resolution gridded multivariate
climate dataset [dataset] Sci. Data 7 109

Herring S C, Christidis N, Hoell A, Hoerling M P and Stott P A
2021 Explaining extreme events of 2019 from a climate
perspective Bull. Am. Meteorol. Soc. 102 S1-S115

Hu M et al 2021 Risk of coronavirus disease 2019 transmission in
train passengers: an epidemiological and modeling study
Clin. Infect. Dis. 72 604-10

Huang J, Yu H, Dai A, Wei Y and Kang L 2017 Drylands face
potential threat under 2 °C global warming target Nat.
Clim. Change 7 417-22

Huang J, Yu H, Guan X, Wang G and Guo R 2016 Accelerated
dryland expansion under climate change Nat. Clim. Change
6 166-72

Huang N E and Wu Z 2008 A review on Hilbert—-Huang
transform: the method and its applications on geophysical
studies Rev. Geophys. 46 RG2006

Huang N, Shen Z, Long S, Wu M, Shih H, Zheng Q, Yen N-C,
Tung C C and Liu H 1998 The empirical mode
decomposition method and the Hilbert spectrum for
non-stationary time series analysis Proc. R. Soc. A
454 903995


https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.08/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.08/
https://orcid.org/0009-0004-3861-9762
https://orcid.org/0009-0004-3861-9762
https://orcid.org/0009-0004-3861-9762
https://orcid.org/0000-0002-7985-1558
https://orcid.org/0000-0002-7985-1558
https://orcid.org/0000-0001-5997-7439
https://orcid.org/0000-0001-5997-7439
https://orcid.org/0000-0001-5997-7439
https://orcid.org/0000-0003-3716-4503
https://orcid.org/0000-0003-3716-4503
https://orcid.org/0000-0003-3716-4503
https://orcid.org/0000-0003-2845-797X
https://orcid.org/0000-0003-2845-797X
https://orcid.org/0000-0003-2845-797X
https://www.aiaccproject.org
https://doi.org/10.1002/2016JD025871
https://doi.org/10.1002/2016JD025871
https://doi.org/10.1038/nclimate1633
https://doi.org/10.1038/nclimate1633
https://doi.org/10.1126/science.1237123
https://doi.org/10.1126/science.1237123
https://doi.org/10.1007/s10584-012-0570-x
https://doi.org/10.1007/s10584-012-0570-x
https://doi.org/10.1029/2008gl035075
https://doi.org/10.1029/2008gl035075
https://doi.org/10.1029/2024EF004546
https://doi.org/10.1029/2024EF004546
https://doi.org/10.1016/j.agrformet.2020.108053
https://doi.org/10.1016/j.agrformet.2020.108053
https://doi.org/10.1175/JCLI-D-22-0716.1
https://doi.org/10.1175/JCLI-D-22-0716.1
https://doi.org/10.1029/2021ef002027
https://doi.org/10.1029/2021ef002027
https://doi.org/10.1029/2006gl025734
https://doi.org/10.1038/s41597-020-0453-3
https://doi.org/10.1038/s41597-020-0453-3
https://doi.org/10.1175/BAMS-ExplainingExtremeEvents2019.1
https://doi.org/10.1175/BAMS-ExplainingExtremeEvents2019.1
https://doi.org/10.1093/cid/ciaa1057
https://doi.org/10.1093/cid/ciaa1057
https://doi.org/10.1038/NCLIMATE3275
https://doi.org/10.1038/NCLIMATE3275
https://doi.org/10.1038/nclimate2837
https://doi.org/10.1038/nclimate2837
https://doi.org/10.1029/2007RG000228
https://doi.org/10.1029/2007RG000228
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1098/rspa.1998.0193

10P Publishing

Environ. Res. Lett. 20 (2025) 074031

Iturbide M et al 2020 An update of IPCC climate reference regions
for subcontinental analysis of climate model data: definition
and aggregated datasets Earth Syst. Sci. Data 12 2959-70

Ji E Wu Z, Huang J and Chassignet E P 2014 Evolution of land
surface air temperature trend Nat. Clim. Change 4 462—6

Jolly W, Cochrane M, Freeborn P, Holden Z A, Brown T J,
Williamson G J and Bowman D M J § 2015 Climate-induced
variations in global wildfire danger from 1979 to 2013 Nat.
Commun. 6 7537

Kornhuber K, Bartusek S, Seager R, Schellnhuber H J and Ting M
2024 Global emergence of regional heatwave hotspots
outpaces climate model simulations Proc. Natl Acad. Sci.
USA 121 €2411258121

Lindsey R and Dahlman L 2024 Climate change: global
temperature. NOAA climate.gov. reviewed by J. Blunden
(available at: www.energy.gov/sites/default/files/2024-02)

Lu N, Wilske B, Ni J, John R and Chen J 2009 Climate change in
inner Mongolia from 1955 to 2005—trends at regional,
biome, and local scales Environ. Res. Lett. 4 045006

Luo W, Jasiewicz J, Stepinski T, Wang J, Xu C and Cang X 2016
Spatial association between dissection density and
environmental factors over the entire conterminous United
States Geophys. Res. Lett. 43 692—700

LyuY et al 2024 The characterization, mechanism, predictability,
and impacts of the unprecedented 2023 Southeast Asia
heatwave npj Clim. Atmos. Sci. 7 246

Meehl G A, Arblaster ] M and Branstator G 2012 Mechanisms
contributing to the warming hole and the consequent U.S.
East—West differential of heat extremes J. Clim.

25 6394-408

Meng Y, Duan K, Shi P, Shang W, Li S, Cheng Y, Xing L, Chen R
and He J 2023 Sensitive temperature changes on the Tibetan
Plateau in response to global warming Atmos. Res.

294 106948

Pan N, Feng X, Fu B, Wang S, Ji F and Pan S 2018 Increasing
global vegetation browning hidden in overall vegetation
greening: insights from time-varying trends Remote Sens.
Environ. 214 59-72

Patricola C M and Wehner M F 2018 Anthropogenic influences on
major tropical cyclone events Nature 563 339-46

Qian C, Wu Z, Fu C B and Zhou T J 2010 On multi-timescale
variability of temperature in China in modulated annual
cycle reference frame Adv. Atmos. Sci. 27 1169-82

Ridder N N, Pitman A J, Westra S, Ukkola A, Do H X, Bador M,
Hirsch A L, Evans J P, Di Luca A and Zscheischler J 2020
Global hotspots for the occurrence of compound events Nat.
Commun. 11 5956

Robinson A, Lehmann J, Barriopedro D, Rahmstorf S and
Coumou D 2021 Increasing heat and rainfall extremes now
far outside the historical climate npj Clim. Atmos. Sci. 4 45

Takhellambam B S, Srivastava P, Lamba J, McGehee R P, Kumar H
and Tian D 2023 Projected mid-century rainfall erosivity
under climate change over the southeastern United States
Sci. Total Environ. 865 161119

Tian Y, Giaquinto D, Di Capua G, Claassen J N, Ali J, Li H and De
Michele C 2024 Historical changes in the causal effect
networks of compound hot and dry extremes in central
Europe Commun. Earth Environ. 5 764

Trenberth K, Fasullo J and Shepherd T 2015 Attribution of climate
extreme events Nat. Clim. Change 5 725-30

Turco M, Palazzi E, von Hardenberg J and Provenzale A 2015
Observed climate change hotspots Geophys. Res. Lett.

42 3521-8

11

Z Du et al

Wang C, Li Z, Chen Y, Li Y, Ouyang L, Zhu ], Sun E, Song S and
Li H 2024a Changes in global heatwave risk and its drivers
over one century Earth’s Future 12 €2024EF004430

Wang H, Wang S, Shu X, He Y and Huang J 2024b Increasing
occurrence of sudden turns from drought to flood over
China J. Geophys. Res. 129 €2023]D039974

Wang J-F, Zhang T-L and Fu B-J 2016 A measure of spatial
stratified heterogeneity Ecol. Indic. 67 250—6

Wang J, Li X, Christakos G, Liao Y, Zhang T, Gu X and Zheng X
2010 Geographical detectors-based health risk assessment
and its application in the neural tube defects study of the
Heshun region, China Int. J. Geogr. Inf. Sci.

24 107-27

Williams A P, Abatzoglou J T, Gershunov A, Guzman-Morales J,
Bishop D A, Balch J K and Lettenmaier D P 2019 Observed
impacts of anthropogenic climate change on wildfire in
California Earth’s Future 7 892-910

Williams ] W, Jackson S T and Kutzbach J E 2007 Projected
distributions of novel and disappearing climates by 2100 AD
Proc. Natl. Acad. Sci. USA 104 573842

Wu W, Ji E Hu S and He Y 2024 Asymmetric drying and wetting
trends in Eastern and Western China Adv. Atmos. Sci.

41 221-32

Wu Z and Huang N E 2009 Ensemble empirical mode
decomposition: a noise-assisted data analysis method Adv.
Atmos. Sci. 1 1-41

Wu Z, Huang N E and Chen X 2009 The multi-dimensional
ensemble empirical mode decomposition method Adv.
Adapt. Data Anal. 1 339-72

Wu Z, Huang N E, Long S R and Peng C-K 2007 On the trend,
detrending and variability of nonlinear and non-stationary
time series Proc. Natl Acad. Sci. USA 104 14889-94

Xu L, Wang A, Wang D and Wang H 2019 Hot spots of climate
extremes in the future J. Geophys. Res. 124 3035-49

Xu L, Wang A, Yu W and Yang S 2021a Hot spots of extreme
precipitation change under 1.5 and 2 °C global warming
scenarios Weather Clim. Extremes 33 100357

Xu Z, JiE, Liu B, Feng T, Gao Y, He Y and Chang F 2021b
Long-term evolution of global sea surface temperature trend
Int. J. Climatol. 41 4494-508

Yao T D, Liu X D, Wang N L and Shi Y F 2000 Amplitude of
climatic changes in Qinghai-Tibetan Plateau Chin. Sci. Bull.
45 123643

Yin Q, Wang J, Ren Z, Li J and Guo Y 2019 Mapping the increased
minimum mortality temperatures in the context of global
climate change Nat. Commun. 10 4640

You Q et al 2021 Warming amplification over the Arctic pole and
third pole: trends, mechanisms and consequences Earth Sci.
Rev. 217 103625

Zhang B, Wang S and Slater L 2024 Anthropogenic climate change
doubled the frequency of compound drought and heatwaves
in low-income regions Commun. Earth Environ. 5715

Zhang ], Wang S, Huang J, He Y and Ren Y 2023 The
precipitation-recycling process enhanced extreme
precipitation in Xinjiang, China Geophys. Res. Lett.

50 €2023GL104324

Zhao W, Hu Z, Guo Q, Wu G, Chen R and Li S 2020
Contributions of climatic factors to interannual variability
of the vegetation index in Northern China grasslands J.
Clim. 33 175-83

Zhou T and Zhang W 2021 Anthropogenic warming of Tibetan
Plateau and constrained future projection Environ. Res. Lett.
16 044039


https://doi.org/10.5194/essd-12-2959-2020
https://doi.org/10.5194/essd-12-2959-2020
https://doi.org/10.1038/nclimate2223
https://doi.org/10.1038/nclimate2223
https://doi.org/10.1038/ncomms8537
https://doi.org/10.1038/ncomms8537
https://doi.org/10.1073/pnas.2411258121
https://doi.org/10.1073/pnas.2411258121
https://www.energy.gov/sites/default/files/2024-02
https://doi.org/10.1088/1748-9326/4/4/045006
https://doi.org/10.1088/1748-9326/4/4/045006
https://doi.org/10.1002/2015GL066941
https://doi.org/10.1002/2015GL066941
https://doi.org/10.1038/s41612-024-00797-w
https://doi.org/10.1038/s41612-024-00797-w
https://doi.org/10.1175/JCLI-D-11-00655.1
https://doi.org/10.1175/JCLI-D-11-00655.1
https://doi.org/10.1016/j.atmosres.2023.106948
https://doi.org/10.1016/j.atmosres.2023.106948
https://doi.org/10.1016/j.rse.2018.05.018
https://doi.org/10.1016/j.rse.2018.05.018
https://doi.org/10.1038/s41586-018-0673-2
https://doi.org/10.1038/s41586-018-0673-2
https://doi.org/10.1007/s00376-009-9121-4
https://doi.org/10.1007/s00376-009-9121-4
https://doi.org/10.1038/s41467-020-19639-3
https://doi.org/10.1038/s41467-020-19639-3
https://doi.org/10.1038/s41612-021-00202-w
https://doi.org/10.1038/s41612-021-00202-w
https://doi.org/10.1016/j.scitotenv.2022.161119
https://doi.org/10.1016/j.scitotenv.2022.161119
https://doi.org/10.1038/s43247-024-01934-2
https://doi.org/10.1038/s43247-024-01934-2
https://doi.org/10.1038/nclimate2657
https://doi.org/10.1038/nclimate2657
https://doi.org/10.1002/2015gl063891
https://doi.org/10.1002/2015gl063891
https://doi.org/10.1029/2024EF004430
https://doi.org/10.1029/2024EF004430
https://doi.org/10.1029/2023JD039974
https://doi.org/10.1029/2023JD039974
https://doi.org/10.1016/j.ecolind.2016.02.052
https://doi.org/10.1016/j.ecolind.2016.02.052
https://doi.org/10.1080/13658810802443457
https://doi.org/10.1080/13658810802443457
https://doi.org/10.1029/2019EF001210
https://doi.org/10.1029/2019EF001210
https://doi.org/10.1073/pnas.0606292104
https://doi.org/10.1073/pnas.0606292104
https://doi.org/10.1007/s00376-022-2216-x
https://doi.org/10.1007/s00376-022-2216-x
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.1142/S1793536909000187
https://doi.org/10.1142/S1793536909000187
https://doi.org/10.1073/pnas.0701020104
https://doi.org/10.1073/pnas.0701020104
https://doi.org/10.1029/2018JD029980
https://doi.org/10.1029/2018JD029980
https://doi.org/10.1016/j.wace.2021.100357
https://doi.org/10.1016/j.wace.2021.100357
https://doi.org/10.1002/joc.7082
https://doi.org/10.1002/joc.7082
https://doi.org/10.1007/BF02886087
https://doi.org/10.1007/BF02886087
https://doi.org/10.1038/s41467-019-12663-y
https://doi.org/10.1038/s41467-019-12663-y
https://doi.org/10.1016/j.earscirev.2021.103625
https://doi.org/10.1016/j.earscirev.2021.103625
https://doi.org/10.1038/s43247-024-01894-7
https://doi.org/10.1038/s43247-024-01894-7
https://doi.org/10.1029/2023GL104324
https://doi.org/10.1029/2023GL104324
https://doi.org/10.1175/JCLI-D-18-0587.1
https://doi.org/10.1175/JCLI-D-18-0587.1
https://doi.org/10.1088/1748-9326/abede8
https://doi.org/10.1088/1748-9326/abede8

	Observed evolution of global climate change hotspots
	1. Introduction
	2. Data and methods
	2.1. Data
	2.2. Identification of climate change hotspots
	2.3. Definition of nonlinear trend
	2.4. Assessing critical influencing factors

	3. Results
	3.1. Evolution of global climate change hotspots
	3.2. Evolution of global climate hotspots change rates
	3.3. Climatic factors influencing the spatial distribution of SED

	4. Conclusions and discussion
	References


