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Leveraging genetic data for female breast cancer
prevention and therapy: Perspectives from Mendelian

randomization

To the editor,

Female breast cancer is a complex disease influenced by
a combination of genetic factors and environmental
factors, both of which contribute to carcinogenesis
and progression [1]. In the past decade, remarkable
advancements in the large-scale genome-wide associa-
tion studies (GWAS) have enabled comprehensive
analyses of millions of genetic variants linked to life-
style factors, molecular biomarkers, and health out-
comes, which have promoted the development of
Mendelian randomization (MR) analysis. MR analysis
leverages these abundant genetic variants as instru-
mental variables (IVs) to infer the causal relationships
between exposures and health outcomes [2]. Here,
we aim to introduce the application of MR analysis in
the prevention and therapy of female breast cancer, as
well as to discuss emerging opportunities to advance
the field.

1 | OVERVIEW OF THE MR
ANALYSIS

MR is an application of IV analysis that aims to infer
the causal relationships between exposures and health
outcomes by leveraging genetic variants as IVs, such as
single nucleotide polymorphisms (SNPs) [2]. An ex-
posure could be a clinical risk factor, a plasma
metabolite or protein, or a gut bacterial species, and an
outcome could refer to a disease or any complex
human trait. The principle of MR analysis is based on
Mendel's second law, which states that alleles segre-
gate independently when DNA is passed from parents
to offspring during gamete formation [2]. This biolog-
ical principle ensures that genetic variants are ran-
domly distributed among individuals, which is similar
to the randomly assigned interventions in a random-
ized controlled trial (RCT) [2]. Therefore, MR acts as a

“natural RCT,” providing a natural experiment for
causal inference and significantly reducing biases from
confounding factors and reverse causality in traditional
observational studies [2]. For example, differences in
risk of disease between two gene allele subgroups (e.g.,
allele A and allele T in rs1229984 in ADHIB) can
indicate the potential causal associations between risk
factors (e.g., alcohol intake) and health outcomes (e.g.,
female breast cancer) (Figure S1). To obtain valid and
reliable results from MR analysis, genetic variants
should meet three core assumptions (Figure S2): (1)
relevance: genetic variants must exhibit strong asso-
ciations with the exposure of interest (e.g., rs1229984
in ADHIB for alcohol intake); (2) independence:
genetic variants should not be associated with poten-
tial confounders (e.g., rs1229984 not associated with
smoking status); (3) exclusion restriction: genetic var-
iants must influence the outcome exclusively through
the exposure (e.g., rs1229984 affects the incidence risk
of female breast cancer only through alcohol intake).
MR can be conducted using either individual-level
genetic data or summary statistics from the GWAS.
Given the widespread availability of GWAS summary
data and the lower costs compared to experimental
approaches, MR has become a widely used and pow-
erful tool in the field of female breast cancer research
(Figure S3).

2 | APPLICATION OF MR
ANALYSIS IN FEMALE BREAST
CANCER

MR has been utilized to explore the potential causal asso-
ciations between various risk factors and female breast
cancet, predict the efficacy and adverse effects of pre-existing
and new-onset drugs, and evaluate opportunities of drug
repurposing for the therapy of female breast cancer.
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2.1 | Identifying genetically predicted
risk factors

We conducted a systematic search across three databases
(PubMed, Embase, and Web of Science) to identify all
studies published from the inception of the databases to
August 1, 2024. The eligible studies reported the poten-
tial causal relationships between any type of exposure
and the occurrence of female breast cancer using any
design of MR analysis. The search strategy is detailed in
Table S1, and comprehensive methods can be found in

(A)

The process of studies selection

the Supplementary Information. The initial literature
search yielded 3783 potentially relevant studies, with 174
eligible studies retained after the systematic screening
process (Figure 1A). The genetically predicted risk fac-
tors of female breast cancer were classified into seven
categories: lifestyle factors, nutrients, obesity and lipid
metabolism, sex hormones and reproductive factors,
inflammatory biomarkers, pathological conditions and
related biomarkers, and social structure factors. The
effect estimates for the principal genetically predicted
risk factors from MR studies with the maximum sample
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FIGURE 1 Overview of the genetically predicted risk factors of female breast cancer. (A) We conducted a systematic search across three
databases (PubMed, Embase, and Web of Science) to identify all studies published from the inception of the databases to August 1, 2024. The
initial literature search yielded 3783 potentially relevant studies, with 174 eligible studies retained after the systematic screening process.
(B) The genetically predicted risk factors of female breast cancer were classified into seven categories: lifestyle factors, nutrients, obesity and
lipid metabolism, sex hormones and reproductive factors, inflammatory biomarkers, pathological conditions and related biomarkers, and
social structure factors. The length of the column represents the estimate of odds ratio (OR), and a column longer than the red circle
corresponds to an OR > 1. Significance (*p < 0.05) and direction of associations were determined by the inverse variance weighted methods
in Mendelian randomization studies with the largest sample size. (C) We identified a total of 14 risk factors and eight protective factors
significantly associated with the occurrence risk of female breast cancer based on the pooled estimates. The red represents risk factors, the
blue represents protective factors, and the gray represents nonsignificant factors for female breast cancer. CBS-10, comparative body size at

age 10; GIPR, glucose-dependent insulinotropic polypeptide receptor.
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size were presented in Figure 1B. More detailed infor-
mation regarding the characteristics of the included
studies and the systematic review results can be found in
Tables S2 and S3, respectively.

To enhance causal inference, we further conducted a
quantitative synthesis of MR evidence and compared these
results with findings from the recently published meta-
analysis on the traditional epidemiological studies. We
identified a total of 14 risk factors and eight protective
factors significantly associated with the occurrence risk of
female breast cancer based on the pooled estimates
(Figure 1C). Detailed meta-analysis results are available in
Table S4. Our comparative analysis suggested that long-
term smoking behavior, lack of physical activity, low body
mass index (BMI) in childhood, dense breast tissue, high
level of circulating oestradiol, schizophrenia, and insulin-
like growth factor (IGF-1) might play a potentially causal
role in the development of female breast cancer (Figure S4).

Several two-sample MR studies have demonstrated sig-
nificant associations between genetically determined lifetime
smoking patterns, problematic alcohol consumption, and an
increased risk of female breast cancer [3, 4]. These studies
further identified potential epigenetic mechanisms, indicat-
ing that DNA methylation at specific CpG sites might play a
critical role in the carcinogenesis of female breast cancer.
These CpG sites were potential intervention targets for the
prevention of female breast cancer, such as epigenetic
modifications at cg07932199 (ATXN2) related to smoking
traits, as well as ¢g03260624 (CDC?7), cg10816169 (ZNF318),
cg03345232 (RIN3), and cg26312998 (RP11-867G23.13) asso-
ciated with drinking behavior [3, 4]. Additionally, a two-
sample MR study demonstrated that improving the resi-
dential environmental quality, especially by reducing noise
and air pollution exposure, might significantly decrease the
risk of female breast cancer [5]. This highlights the correla-
tion between environmental changes and the risk of female
breast cancer.

Using data from metabolomics and lipidomics, MR
has enabled systematic investigations into how geneti-
cally determined differences in vitamins, minerals, and
lipoprotein profiles may contribute to the occurrence
of female breast cancer. For instance, a comprehensive
two-sample MR study examined the associations
between 112 unique blood metabolites and female
breast cancer [6]. The study found that high-density
lipoprotein cholesterol and acetate might act as the
causal mediators in the development of female breast
cancer [6]. Additionally, a large-scale MR study ex-
plored the effects of lipoprotein subclasses on the
occurrence of female breast cancer, considering factors
such as particle size, particle number, and lipid com-
position [7]. It revealed the heterogeneous effect of
high-density lipoprotein subclasses, in which small

high-density lipoprotein traits were associated with a
decreased risk of female breast cancer, while non-small
high-density lipoprotein traits were associated with an
increased risk of female breast cancer [7].

In contrast to traditional epidemiological studies,
multivariable MR analyses revealed a direct protective
effect of early-life obesity on female breast cancer with an
odds ratio (OR) of 0.59 (95% confidence interval [CI], 0.50
to 0.71) after adjusting for adult body size [8]. This con-
tradictory finding might be attributed to temporal het-
erogeneity in the relationship between genetic variants
and obesity traits across the life course [8]. One longitu-
dinal study demonstrated that the association between a
97-variant genetic risk score and adult BMI diminished
with age [9]. Notably, other studies found that the asso-
ciations between genetic variants and early-life body size
remained robust throughout the lifespan, suggesting that
the influence of genetically determined childhood body
size might persist into adulthood, regardless of subsequent
weight changes or other confounding factors [8, 10].
Consequently, the association between adult body size and
breast cancer risk became nonsignificant after adjustment
for genetically predicted early-life obesity [8].

Current clinical guidelines recognize breast mammo-
graphic density (BMD) as an effective factor for identifying
high-risk populations for female breast cancer [11]. MR
studies indicated that breast cancer risk for women with
dense breast tissue increased by 39%, while for those with
non-dense tissue decreased by 35% [12]. Additionally, BMD
is dynamic throughout a woman's lifetime and can be in-
fluenced by several modifiable factors, such as tobacco and
alcohol consumption, physical activity, dietary patterns, and
levels of circulating oestradiol [13]. Therefore, BMD might
serve as a promising biomarker not only for predicting risk
but also for evaluating the effectiveness of breast cancer
prevention efforts [13]. It is recommended to counsel high-
risk individuals on modifying these risk factors to reduce
their BMD and lower their lifetime risk of developing breast
cancer.

MR methods have been increasingly utilized to clarify
the causal relationships between various pathological con-
ditions and breast cancer risk. These conditions included
metabolic disorders, immune-mediated diseases, neurologi-
cal and psychiatric disorders, reproductive system diseases,
cardiovascular conditions, endocrine abnormalities, hepato-
pancreatobiliary disorders, gastrointestinal diseases, skin and
musculoskeletal diseases, and other pathological conditions
(Figure 2). The complex interactions between these patho-
logical conditions and their related biomarkers and female
breast cancer risk highlighted that multimorbidity and
comorbidity patterns are considerable issues to provide val-
uable insights into the targeted early detection of high-risk
populations.
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FIGURE 2 A summary of genetically predicted associations between pathological conditions and related biomarkers and the
occurrence of female breast cancer. The red with two upward arrows represents a strong positive association, the red with one
upward arrow represents a modest positive association, the blue with two upward arrows represents a strong inverse association, the
blue with one upward arrow represents a modest inverse association, and the black represents a nonsignificant association.
Abbreviations: GIPR, glucose-dependent insulinotropic polypeptide receptor; HbAlc, glycated hemoglobin; HOMA-B, homeostasis
model assessment-beta; IBD, inflammatory bowel disease; OSAS, obstructive sleep apnea syndrome; PCOS, polycystic ovary
syndrome; SLE, systemic lupus erythematosus.

In terms of social structure factors, a two-step MR strong protective effects observed for estrogen receptor
analysis found that each standard deviation increase (ER)-negative breast cancer [14]. Several behavioral
in educational attainment was associated with a 9% reduc- mediators might contribute to this association, includ-
tion in the risk of female breast cancer, with particularly = ing moderate physical activities (mediation proportion,
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2.66%), walking for pleasure (12.17%), other exercise
(15.19%), ever smoking (10.44%), and BMI (6.05%) [14].
These findings suggest that population-based educa-
tional interventions may represent an effective strategy
for the prevention of female breast cancer, primarily
through enhancing health literacy, promoting healthy
lifestyle behaviors, and improving participation in
screening programs [15].

2.2 | Predicting drug efficacy and
adverse effects

Drug development is essential to the advancement of
female breast cancer therapies. However, the process of
drug development is slow, expensive, and at high risk
throughout all development phases. MR is a promising
strategy that can accelerate this process and enhance the
probability of success. By leveraging naturally random-
ized genetic variations, MR can identify the causal re-
lationships between drug targets and diseases as well as
predict the efficacy and adverse effects of both pre-
existing and new-onset drugs [16]. Additionally, genetic
associations can provide valuable insights into the life-
long effects of genetic perturbations of drug targets [16].
Notably, circulating proteins are significant indicators of
oncogenic pathways and potential therapeutic targets.
Recent MR studies evaluated the relationships between
blood protein concentrations and breast cancer risk,
based on cis-protein quantitative trait loci (cis-pQTL)
SNPs [17, 18]. These studies identified several novel
potential drug targets and biomarkers for breast cancer,
such as AOC2, SPN1, CD160, and RALB [17, 18].

2.3 | Evaluating the drug repurposing
MR methods have emerged as a powerful tool to eval-
uate the potential of drug repurposing, which offers a
cost-effective strategy to identify new therapeutic ap-
plications for existing medications in the treatment of
female breast cancer. As an example, a large-scale MR
study utilized genetic instruments for 1406 actionable
targets of approved non-oncological drugs based on
gene expression, DNA methylation, and protein ex-
pression quantitative trait loci (eQTL, mQTL, and
PQTL, respectively) [19]. This study identified six sig-
nificant MR associations with gene expression levels
(TUBB, MDM2, CSK, ULK3, MCIR, and KCNN4) and
two significant associations with gene methylation lev-
els across 21 CpG islands (RPS23 and MAPT), suggest-
ing the promising targets for existing drugs in breast
cancer therapy.

3 | FUTURE PERSPECTIVES

Nowadays, MR analysis has become a useful tool in
providing valuable insights into the prevention and
therapy of female breast cancer, including identifying
genetically predicted risk factors, predicting drug efficacy
and adverse effects, and evaluating the potential of drug
repurposing. The development of female breast cancer is
a multifaceted process driven by the dynamic interac-
tions between external and internal exposures including
enviromental change, behavior, infectious, and metabolic
factors. With the advancement of biological technologies,
the number of large-scale multi-omics data is increasing,
such as genomics, transcriptomics, proteomics, metabo-
lomics, and environmental exposome. Despite the ex-
panding applications of MR analysis in the exploration of
biological mechanisms, there are a few studies that sys-
tematically integrate MR methodologies with these
multi-omics data [20]. The development of female breast
cancer involves complex molecular components that
interact through intricate biological networks. In the
future, a combination of innovative MR methodologies
and various multi-omics data can offer unprecedented
potential to reveal the causal networks for risk factors
and drug targets, as well as to improve our understanding
of the biological mechanisms underlying female breast
cancer etiology [20].

4 | METHODS

Detailed methods for the meta-analysis can be found in
the Supporting Information.
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Figure S1. Comparison of Mendelian randomization
studies and randomized controlled trial.
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Figure S2. Canonical causal diagram for instrument
variable assumptions in Mendelian randomization studies.

Figure S3. Number of Mendelian randomization studies
on female breast cancer published by year.

Figure S4. Comparative analysis of the meta-analysis
results from Mendelian randomization and traditional
epidemiological studies.

Table S1. Search strategy.

Table S2. Summary of the characteristics of the included
studies.

Table S3. Systematic review results for Mendelian ran-
domization studies on female breast cancer.

Table S4. Meta-analysis results.
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