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Abstract
Background  As the high connectivity creates favorable conditions for the infectious diseases, understanding the 
dynamics of epidemic spread across regions is significant. However, existing models often focus on single dimensions 
and specific factors under strict controls, but generally overlook regional differences and interactions.

Methods  In this research, we constructed a spatio-temporal forecasting model based on multiple modeling 
architectures, specifically designed to predict the post-lockdown epidemic’s transmission at a fine scale across 
prefecture-level cities nationwide. The model integrates comprehensive factors and constructs a structured graph 
based on transportation patterns and characteristic variables across municipal regions in China. To further enhance 
its ability to capture spatial interactions among regions, the model integrates human mobility into edge weight 
calculations to optimize the adjacency matrix.

Results  We analyzed the prediction errors across different urban clusters, provinces, folds, and forecast durations, 
revealing spatial variations and consistent error reductions. The results demonstrate that our model can accurately 
predict the spatio-temporal spread of the epidemic across 309 Chinese prefecture-level cities with a high correlation 
coefficient (r = 0.94) validated through extensive cross-validation.

Conclusions  Our proposed approach integrates transportation patterns and human mobility into edge weight 
calculations to enhance spatial connectivity. This post-lockdown simulation across cities in China offers a fine-grained 
analytical scale previously unexplored, and the comprehensive analysis provides enhanced insights into epidemic 
dynamics and transmission patterns, supporting the future public health strategies.
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Introduction
Since COVID-19 began spreading globally, its profound 
impacts on public health, economy, and social life have 
made it one of the most severe public health crises in 
recent history [1, 2]. Driven by global climate change 
and human activities, significant shifts in the spread of 
the pandemic are anticipated [3, 4]. The COVID-19 pan-
demic has underscored the urgent need for more effec-
tive tools to assess and predict the spread and intensity of 
epidemics across different regions [5]. Furthermore, the 
complexity of the pandemic is exacerbated by the interac-
tion of various factors, especially human mobility, along 
with socioeconomic conditions, public health conditions, 
and meteorological factors all contribute to the increased 
complexity of the pandemic [6–8].

On December 7, 2022, the General Office of the State 
Council of China issued new regulations to further opti-
mize epidemic prevention and control measures, explic-
itly canceling mass nucleic acid testing, nucleic acid 
certificate inspections, as well as travel and health codes 
[9]. This shift brings new challenges, particularly in the 
context of increased mobility, which is a critical factor in 
the spread of epidemics [6]. Large-scale mobility between 
communities or regions can transport the virus from 
high-risk to low-risk areas, increasing the risk of wider 
geographical spread and potentially triggering new out-
breaks [10–12]. Especially when the relaxation of control 
measures led to increased transportation activity, posing 
new public health challenges. Studies using traffic flow 
data for analysis indicate that this high-intensity flow of 
people greatly increases the likelihood of cross-regional 
virus transmission [13, 14]. The research also shows that 
public transportation accelerates the spread of COVID-
19, especially when travelers from high-incidence areas 
introduce the virus to less affected regions, initiating new 
transmission chains [15]. Following the adjustment of 
control measures, many areas in China quickly reached 
their infection peaks, with the first wave reportedly peak-
ing in late December 2022 and subsequently declining 
[16]. After the relaxation of epidemic policies, the spe-
cific social behaviors and mobility patterns continue to 
play a pivotal role in shaping the spatio-temporal distri-
bution characteristics of the epidemic.

In the field of infectious disease epidemiology, the Sus-
ceptible-Exposed-Infectious-Recovered (SEIR) model 
is widely used to predict and analyze the dynamics of 
disease transmission. This model describes the changes 
in populations over time using differential equations, 
including key parameters such as the infection rate, 
recovery rate, and incubation period [17]. Consequently, 
the traditional SEIR model has been enhanced by incor-
porating a variety of parametrization schemes under dif-
ferent scenarios for more realistic simulations, and these 
improved models have achieved high prediction accuracy 

in epidemic forecasting [18–21]. Meanwhile, the SEIR 
models often focus on internal infection rates, neglect-
ing human mobility and spatial distribution, which lim-
its their effectiveness in spatially diverse scenarios. Some 
improved SEIR models also incorporate transmission 
dynamics within transportation systems and parameters 
for inter-regional human mobility, significantly enhanc-
ing the accuracy of predicting epidemic spread risks 
during holidays [22–28]. It is evident that the chang-
ing mobility patterns transform epidemic simulation 
into a complex spatio-temporal challenge, necessitating 
advanced models that can handle the intricate interplay 
of temporal dynamics and spatial heterogeneity.

In recent years, the rapid advancement of deep learn-
ing has significantly improved the technical ability to 
model complex spatio-temporal dynamics in infectious 
diseases. Among the various methodologies, Graph Neu-
ral Networks (GNNs) have gained substantial popularity 
across diverse fields. By leveraging the intricate relation-
ships between nodes and edges, GNNs excel at capturing 
complex network structural features [29]. Using GNNs 
to model the spread of epidemics can more accurately 
consider the impacts of geographical and social network 
structures, thereby improving the accuracy and appli-
cability of predictions [30, 31]. To further enhance their 
predictive power, GNNs are frequently integrated with 
time series models, allowing for the simultaneous cap-
ture of both spatial and temporal dependencies. Time 
series data, in particular, provide a means to observe 
and analyze how diseases evolve over time, enabling the 
identification of trends and dynamic patterns. A notable 
advancement in time series modeling is the develop-
ment of Long Short-Term Memory Networks (LSTMs), 
which were specifically designed to overcome the issues 
of vanishing or exploding gradients in traditional Recur-
rent Neural Networks (RNNs). By incorporating gating 
mechanisms (including input, forget, and output gates), 
LSTMs effectively manage and control the flow of infor-
mation, allowing them to learn and remember long-term 
dependencies [32]. As of infectious diseases, long-term 
dependencies refer to the influence of past conditions on 
the current or future state of the disease spread. In epi-
demic simulation, LSTMs can predict future outbreak 
trends using historical infection data [33]. Nikparvar et 
al. used a multivariate LSTMs to predict infections and 
deaths in U.S. counties, enhancing accuracy by combin-
ing time-series and mobility data [34].

Understanding the spatio-temporal diffusion patterns 
of post-lockdown epidemics and the interactions between 
regions has become a crucial scientific issue. While vari-
ous models and methods exist to study epidemic dynam-
ics, most focus on single-dimensional analysis, primarily 
describing the impact of specific factors under strict con-
trol measures without effectively capturing regional 
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differences and interactions, such as socioeconomic fac-
tors variability across regions, as well as mobility-driven 
connections arising predominantly from human travel 
and transportation flows. In this study, we utilize a spatio-
temporal model based on several modeling architectures. 
This model is designed to simulate the spread of epidem-
ics and analyze their distribution when control measures 
are lifted, providing a multifactorial geographic analysis 
of the dynamics. Based on the multi-source spatio-tem-
poral data of prefecture-level cities in China, this study 
uses GNNs to deal with the spatial dependence relation-
ship in the complex network structure and constructs the 
edge weight considering the influence of human flow fac-
tors, so as to reflect the spatial connection and interac-
tion between different regions. Additionally, LSTM was 
used to capture the characteristics of time series changes, 
and the dynamic development of the epidemic following 
the relaxation of control measures was effectively simu-
lated and predicted. Through a comprehensive analysis 
of these interconnected factors, this study achieves an in-
depth understanding of the dynamics and transmission 
patterns of epidemics.

Methods
Data collection
Epidemic data
This study utilized confirmed case data from different 
regions in China sourced from the Chinese Center for 
Disease Control and Prevention’s fever clinic attendance 
records [35]. The data includes national and provincial 
totals of fever clinic visits, positive cases, and the posi-
tivity rate from December 12, 2022 to June 6, 2023. The 
number of positive cases in fever clinics can reflect the 
actual situation of virus transmission and the infection 
rate within communities, providing preliminary informa-
tion on epidemic activities. This data is aggregated at the 
provincial level; therefore, to enhance the analysis with 
more detailed insights, the study additionally collected 
granular data from the Baidu search index, sourced from 
Baidu’s search engine (https://index.baidu.com). Baidu 
search index is a data-sharing platform based on the 
massive behavioral data of Baidu’s internet users and uses 
data searched by Baidu’s users to calculate the search 
indices of different keywords over various time periods. 
By setting location and time parameters, the platform 
retrieves daily search data on specific keywords across 
PC and mobile devices, as well as aggregate search data, 
revealing the information that users are most interested 
in regarding certain topics. Li et al. found that Baidu 
index had high correlation with daily incidences, with 
coefficient greater than 0.89 [36]. Thus, for this study, 
the Baidu search index platform was chosen as the data 
source, and data on the combined search indices of key-
words on both PC and mobile devices were obtained 

using web scraping techniques. In total, the study col-
lected search index data related to the epidemic from 309 
prefecture-level cities across China, spanning from Janu-
ary 1, 2023 to November 1, 2023.

Human mobility data
The human mobility data utilized in this research was 
sourced from the Baidu migration platform ​(​​​h​t​t​p​:​/​/​q​i​a​n​
x​i​.​b​a​i​d​u​.​c​o​m​​​​​)​. Baidu migration, based on the location-
based services (LBS) of the Baidu Maps open platform, 
dynamically and instantly visualizes migration trajec-
tories and characteristics. This includes migration scale 
indices (inflow index and outflow index) for different 
study areas, reflecting the scale of population moving in 
or out. This data represents the total number of people 
migrating into and out of cities within a day, allowing 
for horizontal comparisons between different cities. It 
also includes the proportion of Origin-Destination (OD) 
migration between different regions on specific dates, 
detailing the origins of migration and the percentage of 
the population that migrated to a specific area the day 
before, relative to the total migrating population, includ-
ing the proportions for the top 100 cities. The cities 
ranked beyond the top 100 have a very small proportion 
and are therefore negligible. The data obtained multiplies 
the daily ratios of migration origins by the total migra-
tion scale of different cities on that day, ultimately used to 
determine the edge weights between different cities.

Transportation network data
The 2024 national road and network data for China was 
sourced from OpenStreetMap (OSM) (​h​t​t​p​​s​:​/​​/​w​w​w​​.​o​​
p​e​n​​s​t​r​​e​e​t​m​​a​p​​.​o​r​g​/). OSM is a highly detailed map ​d​a​t​a​
b​a​s​e whose data is open-source and freely available for 
download, offering a free global map database. The road 
network data within OSM includes railways and urban 
roads. The latest national vector data for China’s 1 st to 
5th class river systems also comes from OSM, updated 
in the year 2023. This includes the super detailed water 
body data extracted from OSM in 2023, stored in shape-
files containing lines and polygons. The railway and 
urban road networks in China are depicted in Fig.  1a 
and b, while the 1 st to 4th class water system networks 
are shown in Fig. 1c. Flight data for China was collected 
based on the Ctrip app (https://www.ctrip.com/). The 
data encompasses the routes between cities with air-
ports, recorded daily from January 1 to January 7, 2022. 
The method involves querying flights between specific 
cities each day, recording the starting and ending cities 
for each route. The collected data reflects the network 
structure of flight routes across the country, as displayed 
in Fig. 2b, which illustrates the collected flight routes for 
all flights in China.

https://index.baidu.com
http://qianxi.baidu.com
http://qianxi.baidu.com
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://www.ctrip.com/
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Characteristic variables data
The feature variable data used in this analysis includes the 
population density of prefecture-level cities across China 
and GDP (Gross Domestic Product) data for each of 
these cities for the year 2022, both sourced from regional 
statistical bureaus of China. GDP data, as a key indicator 
of the economic output of a region, reflects the economic 
scale and development level of that area. Additionally, the 
study utilized nighttime light data, which provides spatial 
distribution information about artificial light sources on 
the earth’s surface, revealing the intensity of human activ-
ity and regional development disparities. The national 
nighttime light data for prefecture-level cities was com-
piled from corrected DMSP-OLS and SNPP-VIIRS data, 
covering annual data from 1992 to 2023 for China [37]. 
The 2023 corrected nighttime light raster data were 
aggregated according to the administrative boundaries 
of China’s prefecture-level cities, using the average night-
time light values as input features.

Study design
Construction of connectivity networks
To determine the connectivity between regions via 
transportation networks, we define direct connections 
based on the presence of transportation routes linking 
them. If a transportation network, such as a road or rail-
way, extends between two regions, they are considered 
directly connected. In other words, regions are consid-
ered directly connected if there is a transportation net-
work linking them; otherwise, they are not connected. 
This method provides a structured approach to capturing 
the real-world transportation connections that influence 
regional interactions and mobility patterns.

Using this retrieval method, we constructed connectiv-
ity networks covering various modes of transportation in 
China. Figure  2a displays the primary corridor network 
of cities formed by roadways, railways, and waterways. 
Figure  2b shows the distribution of all flight routes in 
China, including over 3000 routes. The flight data have 

Fig. 2  Connectivity networks of various transportation modes in China (Fig. 2a represents the connectivity network of road, rail, and waterway transport; 
Fig. 2b shows the connectivity network of air transport)

 

Fig. 1  The transportation network of China (Fig. 1a depicts the national railway network; Fig. 1b shows the national road network; Fig. 1c presents the 
national 1 st to 4th class water systems)
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been organized by origin and destination, which suf-
fices for establishing clear adjacency relationships and 
requires no further retrieval.

The coverage of the connectivity network of various 
modes of transportation in China is shown in Table  1: 
Among the various transportation modes, air transpor-
tation has a coverage rate of 59.29%, followed by water 
transportation at 87.61%, railway transportation at 
95.58%, and road transportation with the highest cover-
age at 98.53%. Such a connectivity network covers major 
cities in China, connecting virtually all cities and allow-
ing for comprehensive analysis understanding on the 
interactions between regions.

Construction of epidemic spread indicators
This study first selected search terms related to the spread 
of the epidemic in terms of symptoms, treatment, and 
preventive measures, and then conducted a preliminary 
evaluation of each keyword in the data set to determine 
its relevance to the research topic. A total of 56 keywords 
were collected in the study, as shown in Table 2.

To further filter out highly correlated keywords, this 
study conducted a correlation analysis between the num-
ber of fever clinic cases and the organized Baidu search 
index of keywords. Initially, the correlation analysis was 
performed between the number of fever clinic cases in 
various regions and the Baidu search index of each key-
word for the corresponding areas. This provided the cor-
relation coefficients for different regions, which were 
then averaged to obtain the average correlation coef-
ficient for each keyword. During the initial screening of 

keywords, the pearson correlation coefficient between 
the time series of selected keywords and the number of 
fever clinic cases should be at least 0.7, and all should 
pass the significance test. An analysis of the ranking of 
correlations between various keyword Baidu search indi-
ces and the epidemic revealed that 12 out of 56 keywords 
have a correlation coefficient greater than 0.7 with the 
epidemic, as shown in Table 3.

In this study, we applied an exponential decay model to 
adjust the weights of keywords, ranking them in descend-
ing order based on their correlation scores, and assign-
ing each keyword an initial weight based on its ranking. 
The weight of each keyword was adjusted using an expo-
nential decay function Wi = exp(−α · ranki), where Wi

represents the keyword weight, ranki  is the ranking of 
the keyword, and α  is the decay coefficient, which con-
trols the rate of weight reduction. In this study, α  was 
set to 0.5. To ensure that the total sum of all keyword 
weights equals 1, all adjusted weights were normalized. 
The weighted sum of all keywords was then used to con-
struct an index that reflects the dynamics of epidemic 
transmission. The final nationwide correlation coefficient 
achieved was 0.970, as shown in Fig. 3.

Construction of graph structures for GNNs
GNNs can effectively capture spatial dependencies 
and information hidden within non-Euclidean struc-
tural data, efficiently solving the spatio-temporal chal-
lenges associated with epidemic forecasting. A graph is 
the fundamental structure utilized by GNNs, defined as 
G = (V, E, A), where V represents the set of vertices 
or nodes, E  is the set of edges between nodes, and A  is 
the adjacency matrix. Nodes and edges possess distinct 
attributes. In this work, a weighted undirected graph 
was defined within the model, with cities listed as a set 
of vertices V; the spatial relationships between cities are 
represented by the set of edges E, and the local attri-
butes of cities (including time series data) are listed as a 
set of features X. Vertex attributes are divided into two 
categories: static attributes, which include population 
numbers, GDP, and nighttime lights; and dynamic attri-
butes, which consist of the time series of epidemic spread 
dynamics indicators. All these variables undergo z-score 
normalization to ensure a uniform scale across different 

Table 1  Connectivity coverage of various transportation 
networks
Transportation Patterns Number of Cities Coverage
Road transportation 334 98.53%
Rail transportation 324 95.58%
Water transportation 297 87.61%
Air transportation 201 59.29%

Table 2  Baidu search indices of keywords retrieved
Cough, Amoxicillin, Pneumonia, Dry cough, Nasal congestion, COVID, 
COVID-19, High fever, Body temperature, Cough with phlegm, Gan 
Kang (Compound Paracetamol and Amantadine Hydrochloride Tablets), 
Fever, Lianhua Qingwen (Chinese patent drug), Common cold, Sore 
throat, SARS-CoV-2, Infection, Lianhua Qingwen (Chinese patent drug, 
another chinese expression), Coughing up phlegm, Pharyngeal pain, 
Contac, Tylenol, Fever clinic, Vaccine, Antibody, covid-19, Runny nose, 
Throat swelling and pain, Face mask, Cold symptoms, Headache, Throat 
pain, Cold medicine, Febrile, Shortness of breath, Epidemic, Novel 
pneumonia, Muscle soreness, Sneezing, Breathing difficulties, Cold 
cough, Disinfection, Influenza virus, Fatigue, Viral cold, Influenza, Flu 
symptoms, Diarrhea, Epidemic influenza, Immunity, Viral influenza, Cold 
with runny nose, Treatment, Flu vaccine, Flu epidemic, Tiredness
Searches were conducted in Chinese, and the above table includes translations 
of the key terms

Table 3  Average correlation coefficients between the Baidu 
search indices of keywords and the number of fever clinic cases
Keyword Name R Keyword Name R
Cough (V1) 0.8593 COVID (V7) 0.7732
Amoxicillin (V2) 0.8301 High fever (V8) 0.7607
Dry cough (V3) 0.7834 Cough with phlegm (V9) 0.7261
Pneumonia (V4) 0.7824 Body temperature (V10) 0.7250
Nasal congestion (V5) 0.7771 Gan Kang (V11) 0.7211
COVID-19 (V6) 0.7746 Fever (V12) 0.7054
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regions. For the set of edges  E, the adjacency matrix is 
crucial for capturing spatial dependencies. The adjacency 
matrix can be defined as a union of previously described 
connectivity grids, encompassing roadway, waterway, 
railway, and airline networks. In the study, edge weights 
were determined by the intensity of human mobility 
interactions and the physical distance between different 
regions, ultimately weighting the adjacency matrix to 
form a weighted connectivity matrix.

Construction of edge weights
Most previous studies have based GNNs edge weights 
primarily on physical distance, but this approach has lim-
itations, as roads and traffic connections between regions 
often do not follow straight paths. Therefore, this study 
proposes a new method that more accurately reflects the 
actual interaction strength between cities by integrating 
both human mobility and physical distance between cit-
ies. Based on these factors, we have weighted the adja-
cency matrix to form a weighted connectivity matrix that 
reflects the effective strength of connections.

The defined edge weights in our model consider 
the intensity of human mobility interactions between 
regions. Given the availability of data over time, the study 
period selected for calculating human mobility edge 
weights is from January 1, 2023 to November 1, 2023. The 
average human traffic between two points during this 
period is used to determine the interactions of human 
mobility. The data period for calculating edge weights is 
as comprehensive as possible to cover the entire forecast 
period. The population ratio data are first processed by 
multiplying the ratio of the population migrating into 
(or out of ) one city from another by the corresponding 

city’s migration scale index on that day (this value repre-
sents the total number of people migrating into or out of 
that city in one day, allowing for horizontal comparisons 
between different cities). This value is then scaled up by a 
factor of 1000, which to some extent represents the pop-
ulation index of migration into (or out of ) another city. 
The calculations are as shown in formulas (1–2):

	 MIIij = IPRij × ISIj × 1000� (1)

	 MOIij = OPRij × OSIj × 1000� (2)

In the formulas, MIIij   represents the migration scale 
index of population moving in from region i to region j; 
IPRij   is the ratio of the population size moving in from 
region i to region j; ISIj   is the migration scale index 
for region j at a given time for incoming populations; 
MOIij   represents the migration scale index for popula-
tion moving out from region i to region j; OPRij   is the 
ratio of the population size moving out from region i to 
region j; OSIj  is the migration scale index for region j at a 
given time for outgoing populations.

Since the dataset includes daily data for the top 100 cit-
ies in terms of people moving in and out of the 309 cit-
ies, it first needs to be organized and preprocessed. For 
each pair of cities, we calculate the average daily migra-
tion scale for both incoming and outgoing populations 
within the selected date range. If a pair of cities does 
not rank in the top 100 on a particular day, the popula-
tion flow for that pair is considered zero for that day. The 
variation in the daily top 100 rankings of incoming and 
outgoing cities has been partially addressed by averag-
ing the data across all dates. Even if some cities are not 

Fig. 3  The correlation between constructed epidemic spread indicators and epidemic transmission (Fig. 3a shows the time trend of the selected 12 Baidu 
search indices and the number of cases in national fever clinics; Fig. 3b represents the correlation between the number of cases in national fever clinics 
and the weighted Baidu search index)
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in the top 100 on certain days, this variation is smoothed 
out through the daily average calculation. Through these 
steps, a composite index reflecting the human traffic 
flow between cities is obtained, which can be used as the 
weight of edges in the graph model. Additionally, this 
study employs the min-max normalization method to 
normalize the data. Min-max normalization is a common 
data preprocessing technique that linearly transforms 
and scales each value in the original data to fit within a 
specified range, typically from 0 to 1. The specific trans-
formation formula is shown as formula (3):

	 X ′ = (X − Xmin)/(Xmax − Xmin)� (3)

In the formulas, X  represents a specific value from the 
original data, and X ′  represents the normalized value. 
Xminand Xmax are the minimum and maximum values 
in the original data, respectively.

	 flowij = (MIIij + MOIij)/2� (4)

	 edfij = e−βdistij � (5)

	Wij = α × norm (flowij)+(1-α) × norm (edfij)� (6)

In this study, the edge weights are calculated by integrat-
ing the weighted interaction strength of human mobility 
with the distance decay function applied to the physi-
cal distance between regions (as defined in Eqs.  4–6). 
In these equations, Wij   represents the edge weight 
between node i and node j. Here, (MIIij + MOIij)/2
denotes the human traffic flow between node i and node 
j, where norm (flowij)  is the normalized human mobil-
ity scale between city i and city j, and norm (edfij) is the 
normalization of the distance decay function applied to 
the physical distance between city i and city j.

We explicitly utilize an exponential decay function 
e−βdistij with β = 0.01 to model the diminishing inter-
action intensity with increasing distance [38]. Physi-
cal distances are calculated using latitude and longitude 
coordinates associated with each city center to weight the 
graph edges. In the calculation of edge weights, a weight 
of 0.5 is set, and using the above formulas, the weights 
between different nodes are constructed as shown in 
Fig. 4. By applying these edge weights to the adjacency 
matrix, a weighted adjacency matrix is created, which in 

Fig. 4  Edge weights of the graph network connectivity matrix based on the intensity of human mobility interactions and physical distance
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turn can reflect the intensity of interactions between dif-
ferent regions.

Spatio-temporal forecasting model architecture
Our forecasting model combines GNNs for spatial fea-
ture learning with LSTM network for temporal sequence 
modeling. The GNNs components are composed of a 
Graph Convolution Networks (GraphConv) layer fol-
lowed by a Graph Attention Networks v2 (GATv2Conv) 
layer, and the output from these graph layers feeds into 
the LSTM. The GraphConv layer first aggregates infor-
mation from neighboring cities to capture the general 
spatial structure of the mobility network. On top of this, 
we apply a GATv2Conv layer, which introduces an atten-
tion mechanism. The GATv2Conv layer computes learn-
able attention weights for each edge, so that important 
connections receive higher weights. In combination, 
GraphConv provides a broad propagation of informa-
tion across the network, and GATv2Conv hones in on 
the most influential travel routes. The spatially informed 
node features are then passed into an LSTM to forecast 
epidemic dynamics over time. The LSTM is well-suited 
for this task because it can maintain long-term depen-
dencies through its gated memory cells. In our model, 
the LSTM processes the sequence of graph-derived fea-
tures and learns the evolution of the epidemic, output-
ting predictions for future infection counts in each city.

We modeled data from 309 cities across China, inte-
grating a GNNs module and a recurrent network with 
an input time window to effectively manage long-term 
dependencies. The aggregation step involves collecting 
information from neighboring nodes and the update step 
updates the current node’s state based on the informa-
tion gathered during aggregation and the previous state. 
These steps are crucial for understanding patterns and 
trends in historical data. The model takes as input a com-
posite feature matrix (covering both static and dynamic 
features) and a weighted adjacency matrix, maximizing 
the use of available historical information to enhance 
prediction accuracy. The prediction results are based 
on the next day’s forecast within a T-day historical time 
window, ensuring the model can respond to recent data 
changes.

Model architecture implementation details
To ensure the model generalizes well and does not overfit 
to regions with extremely high mobility (high-flow con-
nections), we incorporate two key techniques. These aim 
to mitigate any bias toward the busiest travel routes and 
encourage the model to learn broad patterns. We nor-
malize the inter-city mobility weights using Min-Max 
scaling before inputting them to the GNNs. This normal-
ization prevents extremely high-flow routes from skew-
ing the learned spatial features, forcing the GNNs layers 

to consider relative differences more evenly. Additionally, 
We apply a dropout layer within the model, specifically 
on the graph layer outputs, to randomly omit a fraction 
of neurons during training. By randomly dropping out 
the units (rate = 0.01), the model cannot solely depend on 
the signals from high-mobility regions or particular path-
ways. Even regions with lower mobility thus get a chance 
to influence the training, improving generalization.

To evaluate the effectiveness of our model, we imple-
mented a testing strategy that used a 7-day historical 
time window. Meanwhile, the data used in this study 
spanned from December 1, 2022 to September 26, 2023, 
comprising a 300-day time series divided into 6 folds for 
cross-validation, each including distinct training, test-
ing, and validation sets. During model training, the data-
set was segmented into these sets based on the timeline, 
with each subset defined as a partition of the time series 
from day one to dayθk, for 6-fold cross-validation. Each 
fold defined as a time interval starting from the first day 
of the epidemiological study and continuing up to dayθk, 
with θkvarying with each fold. This allowed the model to 
utilize time series of varying lengths starting from the 
first day of the epidemic, helping to assess whether the 
proposed architecture could capture dynamics within 
specific periods. The segmentation of data into folds was 
systematically adjusted to balance training, validation, 
and testing samples effectively, ensuring comprehensive 
learning and evaluation. Specifically, the size of the train-
ing set gradually increased from 90 days at k = 1 to 300 
days at k = 6, while the sizes of the validation and testing 
sets were fixed at 30 days each. The dataset segmentation 
method is as shown in formulas (7–9).

	 Σk,train = [1, . . . , θk], θk = 90 + 30(k − 1)� (7)

	 Σk,valid = [θk + 1, . . . , θk + 30]� (8)

	 Σk,test = [θk + 31, . . . , θk + 60]� (9)

We conducted a detailed cross-validation of the model 
architecture. To ensure the effectiveness of the pro-
posed architecture, we first used the training set to fit the 
model and utilized the validation set for evaluation. This 
cross-validation method trained each fold of the model 
separately while comparing models via average loss. After 
evaluation, the model was refitted to the training and 
validation sets with the determined hyperparameters and 
then subjected to a final evaluation on a subset of the test 
set. In terms of model configuration, the following hyper-
parameters were set: the learning rate was set to 0.001, 
with a reduction to 0.25 of the original rate after every 
200 epochs; the ADAM optimizer was used to opti-
mize training and validation steps. Mean Square Error 
(MSE) and Mean Absolute Error (MAE) were used as 
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loss functions for backpropagation. Ultimately, to com-
prehensively evaluate the performance of the proposed 
architecture, we compiled the evaluation results of each 
model in their respective folds during the cross-valida-
tion process and calculated the average of these results. 
This approach verifies the performance of individual 
models and gauges the overall architecture’s performance 
across multiple test scenarios, which is key to ensuring 
the model operates stably and achieves expected out-
comes in practical applications.

Evaluation metrics
In this study, we comprehensively evaluated the effec-
tiveness of the model by employing three core evalu-
ation metrics that analyzed model performance from 
multiple perspectives. These assessments included urban 
agglomerations, provincial divisions, forecast time spans, 
and various data folds. The selected metrics include 
the Root Mean Squared Error (RMSE), Mean Abso-
lute Error (MAE), and Mean Absolute Percentage Error 
(MAPE). The calculations are shown in formulas (10–12). 
Here,ŷi represents the predicted value for the i-th obser-
vation,yirepresents the actual value for the i-th observa-
tion, and M is the number of values to be predicted.

	
RMSE(ŷ, y) =

√√√√ 1
M

M∑
i=1

(yi − ŷi)2� (10)

	
MAE(ŷ, y) = 1

M

M∑
i=1

|yi − ŷi|� (11)

	
MAPE(ŷ, y) = 1

M

M∑
i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣� (12)

Results
Model training results
Training and validation losses across training epochs 
are depicted in Fig.A3 [see Additional file 1]. Addition-
ally, the dataset was divided according to the timeline, 
with time series assigned to various folds, each fold 
defined as an independent segment of the time series. 
In this research, six-fold cross-validation (k = 1, 2, 3…6) 
was employed to ensure robustness and reliability of the 
evaluation results, and we analyzed the prediction errors 
across different folds, with the results displayed in Fig.A4 
[see Additional file 1]. Cross-validation analysis revealed 
fluctuations in model performance across different folds, 
enabling adjustments to training parameters based on 
performance variations.

Model analysis results
The results of the third cross-validation, derived from the 
model established in the third training phase and trained 
using only half of the available time series data. Figure 5 
systematically compares four geographically representa-
tive cities: Harbin (Northeastern region), Wuhan (Cen-
tral region), Xiamen (Eastern region), and Xi’an (Western 
region). These case studies validate the model’s adaptabil-
ity across China’s four major economic zones as defined 
in Fig.A2 [see Additional file 1]. For extended analysis at 
the urban cluster scale, Fig.A5 [see Additional file 1] fur-
ther illustrates epidemic spread dynamics in main cities 
in three major urban agglomerations: the Beijing-Tian-
jin-Hebei region (BTH), the Yangtze River Delta (YRD), 
and the Pearl River Delta (PRD). The model’s simulated 
predictions generally aligned with actual trends, dem-
onstrating its effectiveness in capturing complex sce-
narios. Notably, towards the end of 2022, as lockdown 
measures were lifted, several cities experienced sig-
nificant epidemic fluctuations. The first major outbreak 
occurred from December 2022 to the Spring Festival in 
2023, primarily due to the rapid spread of the virus fol-
lowing sudden relaxations in preventive measures. This 
was followed by second and third peaks during March 
and Labour Day holiday in May, reflecting the impact 
of increased human mobility and social gatherings dur-
ing holidays. The simulation results showed consistent 
epidemic patterns across cities, confirming the model’s 
effectiveness and practicality.

Model analysis error
Based on the proposed methodology framework, we con-
ducted a comprehensive analysis based on geographical 
location and levels of economic development (sourced 
from the National Bureau of Statistics of China), as eco-
nomic development significantly reflects human mobil-
ity, which is crucial for understanding and predicting 
epidemic spread. As shown in Fig.A2 [see in Additional 
file 1], China’s four major economic regions include the 
Eastern, Central, Western, and Northeastern regions, 
encompassing 85, 81, 108, and 35 prefecture-level cities 
respectively. As illustrated in Fig. 6, the prediction errors 
across the regions show a diverse pattern. This variation 
in the MAE, RMSE, and MAPE values across different 
regions may be influenced by various factors, including 
each region’s economic development level and human 
mobility patterns. Regions like the Northeastern and 
Central areas, which exhibited smaller MAE and RMSE 
values, may benefit from certain characteristics. Con-
versely, the Western and Northeastern regions displayed 
larger MAPE values, suggesting variability that could be 
attributed to less uniform economic development and 
diverse mobility patterns. These discrepancies highlight 
how regional dynamics, such as population density and 
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economic activity, can impact the effectiveness of epi-
demic modeling and forecasting.

By using a time series segmentation approach, we 
ensured that the maximum testing period could cover 
up to 30 days, corresponding to the length of a single test 
set. We used three metrics for comparison to evaluate the 
performance of epidemic spread dynamics predictions 
over a range of 1–30 days. Fig.A6 [see in Additional file 
1] displays the trend of loss functions over a 30-day pre-
diction period across different divisions (Eastern, Cen-
tral, Western, and Northeastern regions), where the error 
curves are based on the average loss values calculated 
from data across all folds and cities. The model’s error 

metrics display a dynamic pattern across all regions. Ini-
tially, MAE and RMSE decrease, rise in the second week, 
and then decline to lower levels by the end of the 30-day 
period. Conversely, MAPE shows lower and stable levels 
in the Eastern and Central regions, while in the Western 
and Northeastern regions, it quickly drops in the first five 
days and then gradually decreases, stabilizing at a low 
level. These trends highlight the model’s adaptability and 
underscore its potential for effective long-term epidemic 
forecasting across diverse geographic settings. Addi-
tionally, Fig.A7 [see in Additional file 1] offers a detailed 
display of predictive errors at the provincial level, empha-
sizing the spatial variability across different regions. 

Fig. 6  Analysis errors for different regions in China (Northeastern, Eastern, Western, and Central regions), including MAE, MAPE and RMSE

 

Fig. 5  Analysis results for epidemic spread dynamics in various cities (The orange dashed line represents predicted values, while the blue solid line rep-
resents actual values. The shaded areas represent the model’s predictions for data that were not included during the training process), including Harbin 
(Northeastern region), Wuhan (Central region), Xiamen (Eastern region), Xi’an (Western region)
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Furthermore, at the prefecture-level city scale, the pre-
dictive errors for all 309 cities are shown in Fig.  7. The 
correlation coefficient between the model and the actual 
data reached 0.94, indicating high predictive accuracy. 
Moreover, the RMSE of 20.19, expressed as a dimension-
less metric, further validates the model’s effectiveness 
and reliability in practical applications.

Discussion
Our research yielded several important findings. The 
first is to enhance understanding of post-lockdown epi-
demic dynamics and modeling. Our spatio-temporal 
model effectively captures the rise, peak, and fall of epi-
demic transmission after lockdown is relaxed. It success-
fully modeled the resurgence patterns observed when 
restrictions were lifted, indicating that the model can 
reflect real-world epidemic trend changes in the after-
math of lockdown measures. Analysis suggests that 
human mobility and travel patterns were correlated with 
epidemic resurgence, in alignment with prior evidence 
emphasizing the importance of mobility in epidemic out-
break [6, 10]. Regions that experienced higher increases 
in mobility tended to see subsequent increases in epi-
demic activity, which our model was able to anticipate. 
This finding underscores the critical role of mobility in 
driving new infection waves, reinforcing previous find-
ings that mobility metrics are critical for accurate out-
break predictions [22, 25, 26]. Unlike many prior studies 
that have primarily focused on single-region modeling, 

our results demonstrate consistent epidemic trends 
across multiple prefecture-level cities. In our case studies 
(in distinct economic areas), the model identified similar 
pattern dynamics, suggesting that it captured fundamen-
tal characteristics of epidemic spread that are not limited 
to a single city or region. The observed cross-region gen-
eralization suggests that our model captures fundamental 
transmission dynamics beyond localized outbreaks. This 
broader applicability addresses an important yet often 
overlooked aspect in epidemic modeling, where regional 
differences and interactions have often been inadequately 
explored or omitted [39, 40], particularly for fine-scale 
simulations at the prefecture-level cities in China follow-
ing the lifting of control measures. Our results indicate 
that the learned patterns are broadly applicable, enhanc-
ing the model’s relevance to diverse settings. There-
fore, the capacity of our proposed method to generalize 
spatially represents a improvement over conventional 
region-specific models, making our findings particularly 
relevant for diverse geographic contexts.

The strengths of the GNNs lie in its ability to perform 
complex simulations based on local (vertex) and struc-
tural (edge) features, guiding future research to focus 
on dynamically adjusting adjacency matrix weights with 
machine learning to reflect policy changes, develop-
ing refined geospatial tools for predicting virus spread 
in smaller areas, and enhancing a predictor architecture 
that processes a broad range of time-series data for wide-
spread application in public health studies. The model’s 

Fig. 7  Correlation between modeled and actual values across cities in China
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ability to incorporate mobility data means it can serve 
as an early warning system for epidemic resurgences. In 
practice, surges in travel and movement often precede 
rises in cases. By detecting these mobility upticks and 
accurately forecasting the consequent case increases, 
public health authorities could receive advanced notice of 
an impending outbreak. Our results highlight the value 
of integrating human mobility metrics into epidemic 
forecasting, which can directly inform policy. By simu-
lating different mobility scenarios through the model, 
decision-makers can quantitatively assess the potential 
impact of policy choices on future case counts. Because 
our approach proved effective across different metro-
politan areas and even across countries, it offers a general 
framework that agencies in various locales could adopt. 
Moreover, the framework could be adapted to other 
infectious diseases where human mobility drives spread 
(for example, influenza or dengue fever in interconnected 
communities).

The research still has some limitations, such as not 
distinguishing the specific impacts of different trans-
portation modes, which could limit its accuracy in cer-
tain scenarios. While it has shown good predictive 
performance across multiple cities and regions, its gen-
eralizability needs further verification across a broader 
geographic scope. Its accuracy currently relies on eco-
nomic and human mobility data, whose updating fre-
quency and coverage limitations could hinder further 
precision improvements. The granularity of transpor-
tation and mobility data crucially affects the predictive 
accuracy of our model. In regions like the Western part 
of China, where transportation data might be sparser 
and less regular, the coarser granularity could lead to 
less accurate predictions. Moreover, the model has yet to 
fully consider complex factors like policy changes, pub-
lic health emergency measures, and population compli-
ance, which might affect the accuracy and practicality of 
its predictions. Future work will comprehensively extend 
and deepen this research by exploring diverse data 
sources, including social media and mobile phone sig-
nals, to gather more real-time information on human 
mobility and public sentiment. It will also integrate mul-
tiple data sources like weather conditions, traffic flows, 
and medical resource distribution to enhance the model’s 
adaptability to environmental variables. Additionally, fur-
ther efforts will involve developing dynamic adjustment 
mechanisms for the model to adapt to policy changes and 
public health interventions, combining predictive mod-
els with decision-support systems to provide real-time 
epidemic trend predictions and resource allocation rec-
ommendations for government and public health institu-
tions, and exploring the model’s potential applications in 
vaccine distribution and emergency response planning, 

all of which will significantly enhance the model’s practi-
cality and impact.

Conclusions
This study employs a spatio-temporal model that uti-
lizes deep learning models to accurately simulate the 
dynamics of epidemic spread across various prefecture-
level cities in China. This model utilizes a traffic-based 
graphical representation to depict the intensity of human 
mobility interactions between regions, employing GNNs 
and time-series neural networks to analyze both spatial 
dependencies and temporal trends. Extensive cross-vali-
dation and error analysis show that the model performs 
well across various urban clusters with a high correlation 
coefficient and notably reduced error results. Over a 300-
day period, the model demonstrated adaptability across 
different temporal windows and its value for long-term 
forecasting, critical for public health decision-making 
and resource allocation. Collectively, these findings dem-
onstrate that our approach can reliably model complex 
epidemic behaviors in an interconnected, post-lockdown 
context. By capturing how increased mobility leads to 
case surges and doing so across varied regions, it pro-
vides empirical evidence that combining human mobility 
networks with advanced neural architectures can gener-
alize across different settings. The study not only deepens 
understanding of epidemic transmission mechanisms but 
also provides a scientific basis for public health strategy, 
particularly in optimizing resource allocation and epi-
demic control measures.
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