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Traffic-driven spatio-temporal prediction =
for fine-scale epidemic outbreaks in China
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Abstract

Background As the high connectivity creates favorable conditions for the infectious diseases, understanding the
dynamics of epidemic spread across regions is significant. However, existing models often focus on single dimensions
and specific factors under strict controls, but generally overlook regional differences and interactions.

Methods In this research, we constructed a spatio-temporal forecasting model based on multiple modeling
architectures, specifically designed to predict the post-lockdown epidemic’s transmission at a fine scale across
prefecture-level cities nationwide. The model integrates comprehensive factors and constructs a structured graph
based on transportation patterns and characteristic variables across municipal regions in China. To further enhance
its ability to capture spatial interactions among regions, the model integrates human mobility into edge weight
calculations to optimize the adjacency matrix.

Results We analyzed the prediction errors across different urban clusters, provinces, folds, and forecast durations,
revealing spatial variations and consistent error reductions. The results demonstrate that our model can accurately
predict the spatio-temporal spread of the epidemic across 309 Chinese prefecture-level cities with a high correlation
coefficient (r=0.94) validated through extensive cross-validation.

Conclusions Our proposed approach integrates transportation patterns and human mobility into edge weight
calculations to enhance spatial connectivity. This post-lockdown simulation across cities in China offers a fine-grained
analytical scale previously unexplored, and the comprehensive analysis provides enhanced insights into epidemic
dynamics and transmission patterns, supporting the future public health strategies.
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Introduction

Since COVID-19 began spreading globally, its profound
impacts on public health, economy, and social life have
made it one of the most severe public health crises in
recent history [1, 2]. Driven by global climate change
and human activities, significant shifts in the spread of
the pandemic are anticipated [3, 4]. The COVID-19 pan-
demic has underscored the urgent need for more effec-
tive tools to assess and predict the spread and intensity of
epidemics across different regions [5]. Furthermore, the
complexity of the pandemic is exacerbated by the interac-
tion of various factors, especially human mobility, along
with socioeconomic conditions, public health conditions,
and meteorological factors all contribute to the increased
complexity of the pandemic [6—8].

On December 7, 2022, the General Office of the State
Council of China issued new regulations to further opti-
mize epidemic prevention and control measures, explic-
itly canceling mass nucleic acid testing, nucleic acid
certificate inspections, as well as travel and health codes
[9]. This shift brings new challenges, particularly in the
context of increased mobility, which is a critical factor in
the spread of epidemics [6]. Large-scale mobility between
communities or regions can transport the virus from
high-risk to low-risk areas, increasing the risk of wider
geographical spread and potentially triggering new out-
breaks [10—12]. Especially when the relaxation of control
measures led to increased transportation activity, posing
new public health challenges. Studies using traffic flow
data for analysis indicate that this high-intensity flow of
people greatly increases the likelihood of cross-regional
virus transmission [13, 14]. The research also shows that
public transportation accelerates the spread of COVID-
19, especially when travelers from high-incidence areas
introduce the virus to less affected regions, initiating new
transmission chains [15]. Following the adjustment of
control measures, many areas in China quickly reached
their infection peaks, with the first wave reportedly peak-
ing in late December 2022 and subsequently declining
[16]. After the relaxation of epidemic policies, the spe-
cific social behaviors and mobility patterns continue to
play a pivotal role in shaping the spatio-temporal distri-
bution characteristics of the epidemic.

In the field of infectious disease epidemiology, the Sus-
ceptible-Exposed-Infectious-Recovered (SEIR) model
is widely used to predict and analyze the dynamics of
disease transmission. This model describes the changes
in populations over time using differential equations,
including key parameters such as the infection rate,
recovery rate, and incubation period [17]. Consequently,
the traditional SEIR model has been enhanced by incor-
porating a variety of parametrization schemes under dif-
ferent scenarios for more realistic simulations, and these
improved models have achieved high prediction accuracy
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in epidemic forecasting [18-21]. Meanwhile, the SEIR
models often focus on internal infection rates, neglect-
ing human mobility and spatial distribution, which lim-
its their effectiveness in spatially diverse scenarios. Some
improved SEIR models also incorporate transmission
dynamics within transportation systems and parameters
for inter-regional human mobility, significantly enhanc-
ing the accuracy of predicting epidemic spread risks
during holidays [22-28]. It is evident that the chang-
ing mobility patterns transform epidemic simulation
into a complex spatio-temporal challenge, necessitating
advanced models that can handle the intricate interplay
of temporal dynamics and spatial heterogeneity.

In recent years, the rapid advancement of deep learn-
ing has significantly improved the technical ability to
model complex spatio-temporal dynamics in infectious
diseases. Among the various methodologies, Graph Neu-
ral Networks (GNNs) have gained substantial popularity
across diverse fields. By leveraging the intricate relation-
ships between nodes and edges, GNNs excel at capturing
complex network structural features [29]. Using GNNs
to model the spread of epidemics can more accurately
consider the impacts of geographical and social network
structures, thereby improving the accuracy and appli-
cability of predictions [30, 31]. To further enhance their
predictive power, GNNs are frequently integrated with
time series models, allowing for the simultaneous cap-
ture of both spatial and temporal dependencies. Time
series data, in particular, provide a means to observe
and analyze how diseases evolve over time, enabling the
identification of trends and dynamic patterns. A notable
advancement in time series modeling is the develop-
ment of Long Short-Term Memory Networks (LSTMs),
which were specifically designed to overcome the issues
of vanishing or exploding gradients in traditional Recur-
rent Neural Networks (RNNs). By incorporating gating
mechanisms (including input, forget, and output gates),
LSTMs effectively manage and control the flow of infor-
mation, allowing them to learn and remember long-term
dependencies [32]. As of infectious diseases, long-term
dependencies refer to the influence of past conditions on
the current or future state of the disease spread. In epi-
demic simulation, LSTMs can predict future outbreak
trends using historical infection data [33]. Nikparvar et
al. used a multivariate LSTMs to predict infections and
deaths in U.S. counties, enhancing accuracy by combin-
ing time-series and mobility data [34].

Understanding the spatio-temporal diffusion patterns
of post-lockdown epidemics and the interactions between
regions has become a crucial scientific issue. While vari-
ous models and methods exist to study epidemic dynam-
ics, most focus on single-dimensional analysis, primarily
describing the impact of specific factors under strict con-
trol measures without effectively capturing regional
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differences and interactions, such as socioeconomic fac-
tors variability across regions, as well as mobility-driven
connections arising predominantly from human travel
and transportation flows. In this study, we utilize a spatio-
temporal model based on several modeling architectures.
This model is designed to simulate the spread of epidem-
ics and analyze their distribution when control measures
are lifted, providing a multifactorial geographic analysis
of the dynamics. Based on the multi-source spatio-tem-
poral data of prefecture-level cities in China, this study
uses GNNs to deal with the spatial dependence relation-
ship in the complex network structure and constructs the
edge weight considering the influence of human flow fac-
tors, so as to reflect the spatial connection and interac-
tion between different regions. Additionally, LSTM was
used to capture the characteristics of time series changes,
and the dynamic development of the epidemic following
the relaxation of control measures was effectively simu-
lated and predicted. Through a comprehensive analysis
of these interconnected factors, this study achieves an in-
depth understanding of the dynamics and transmission
patterns of epidemics.

Methods

Data collection

Epidemic data

This study utilized confirmed case data from different
regions in China sourced from the Chinese Center for
Disease Control and Prevention’s fever clinic attendance
records [35]. The data includes national and provincial
totals of fever clinic visits, positive cases, and the posi-
tivity rate from December 12, 2022 to June 6, 2023. The
number of positive cases in fever clinics can reflect the
actual situation of virus transmission and the infection
rate within communities, providing preliminary informa-
tion on epidemic activities. This data is aggregated at the
provincial level; therefore, to enhance the analysis with
more detailed insights, the study additionally collected
granular data from the Baidu search index, sourced from
Baidu’s search engine (https://index.baidu.com). Baidu
search index is a data-sharing platform based on the
massive behavioral data of Baidu’s internet users and uses
data searched by Baidu’s users to calculate the search
indices of different keywords over various time periods.
By setting location and time parameters, the platform
retrieves daily search data on specific keywords across
PC and mobile devices, as well as aggregate search data,
revealing the information that users are most interested
in regarding certain topics. Li et al. found that Baidu
index had high correlation with daily incidences, with
coefficient greater than 0.89 [36]. Thus, for this study,
the Baidu search index platform was chosen as the data
source, and data on the combined search indices of key-
words on both PC and mobile devices were obtained
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using web scraping techniques. In total, the study col-
lected search index data related to the epidemic from 309
prefecture-level cities across China, spanning from Janu-
ary 1, 2023 to November 1, 2023.

Human mobility data

The human mobility data utilized in this research was
sourced from the Baidu migration platform (http://qian
xi.baidu.com). Baidu migration, based on the location-
based services (LBS) of the Baidu Maps open platform,
dynamically and instantly visualizes migration trajec-
tories and characteristics. This includes migration scale
indices (inflow index and outflow index) for different
study areas, reflecting the scale of population moving in
or out. This data represents the total number of people
migrating into and out of cities within a day, allowing
for horizontal comparisons between different cities. It
also includes the proportion of Origin-Destination (OD)
migration between different regions on specific dates,
detailing the origins of migration and the percentage of
the population that migrated to a specific area the day
before, relative to the total migrating population, includ-
ing the proportions for the top 100 cities. The cities
ranked beyond the top 100 have a very small proportion
and are therefore negligible. The data obtained multiplies
the daily ratios of migration origins by the total migra-
tion scale of different cities on that day, ultimately used to
determine the edge weights between different cities.

Transportation network data

The 2024 national road and network data for China was
sourced from OpenStreetMap (OSM) (https://www.o
penstreetmap.org/). OSM is a highly detailed map data
base whose data is open-source and freely available for
download, offering a free global map database. The road
network data within OSM includes railways and urban
roads. The latest national vector data for China’s 1st to
5th class river systems also comes from OSM, updated
in the year 2023. This includes the super detailed water
body data extracted from OSM in 2023, stored in shape-
files containing lines and polygons. The railway and
urban road networks in China are depicted in Fig. la
and b, while the 1st to 4th class water system networks
are shown in Fig. 1c. Flight data for China was collected
based on the Ctrip app (https://www.ctrip.com/). The
data encompasses the routes between cities with air-
ports, recorded daily from January 1 to January 7, 2022.
The method involves querying flights between specific
cities each day, recording the starting and ending cities
for each route. The collected data reflects the network
structure of flight routes across the country, as displayed
in Fig. 2b, which illustrates the collected flight routes for
all flights in China.
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Fig. 1 The transportation network of China (Fig. 1a depicts the national railway network; Fig. b shows the national road network; Fig. 1¢ presents the

national 1 st to 4th class water systems)
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Fig. 2 Connectivity networks of various transportation modes in China (Fig. 2a represents the connectivity network of road, rail, and waterway transport;

Fig. 2b shows the connectivity network of air transport)

Characteristic variables data

The feature variable data used in this analysis includes the
population density of prefecture-level cities across China
and GDP (Gross Domestic Product) data for each of
these cities for the year 2022, both sourced from regional
statistical bureaus of China. GDP data, as a key indicator
of the economic output of a region, reflects the economic
scale and development level of that area. Additionally, the
study utilized nighttime light data, which provides spatial
distribution information about artificial light sources on
the earth’s surface, revealing the intensity of human activ-
ity and regional development disparities. The national
nighttime light data for prefecture-level cities was com-
piled from corrected DMSP-OLS and SNPP-VIIRS data,
covering annual data from 1992 to 2023 for China [37].
The 2023 corrected nighttime light raster data were
aggregated according to the administrative boundaries
of China’s prefecture-level cities, using the average night-
time light values as input features.

Study design

Construction of connectivity networks

To determine the connectivity between regions via
transportation networks, we define direct connections
based on the presence of transportation routes linking
them. If a transportation network, such as a road or rail-
way, extends between two regions, they are considered
directly connected. In other words, regions are consid-
ered directly connected if there is a transportation net-
work linking them; otherwise, they are not connected.
This method provides a structured approach to capturing
the real-world transportation connections that influence
regional interactions and mobility patterns.

Using this retrieval method, we constructed connectiv-
ity networks covering various modes of transportation in
China. Figure 2a displays the primary corridor network
of cities formed by roadways, railways, and waterways.
Figure 2b shows the distribution of all flight routes in
China, including over 3000 routes. The flight data have
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Table 1 Connectivity coverage of various transportation
networks
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Table 3 Average correlation coefficients between the Baidu
search indices of keywords and the number of fever clinic cases

Transportation Patterns Number of Cities Coverage Keyword Name R Keyword Name R
Road transportation 334 98.53% Cough (V1) 0.8593  COVID (V7) 0.7732
Rail transportation 324 95.58% Amoxicillin (V2) 0.8301 High fever (V8) 0.7607
Water transportation 297 87.61% Dry cough (V3) 0.7834  Cough with phlegm (V9) 0.7261
Air transportation 201 59.29% Pneumonia (V4) 0.7824  Body temperature (V10) 0.7250
Nasal congestion (V5) 0.7771 Gan Kang (V11) 0.7211
COVID-19 (V6) 0.7746 Fever (V12) 0.7054

Table 2 Baidu search indices of keywords retrieved

Cough, Amoxicillin, Pneumonia, Dry cough, Nasal congestion, COVID,
COVID-19, High fever, Body temperature, Cough with phlegm, Gan
Kang (Compound Paracetamol and Amantadine Hydrochloride Tablets),
Fever, Lianhua Qingwen (Chinese patent drug), Common cold, Sore
throat, SARS-CoV-2, Infection, Lianhua Qingwen (Chinese patent drug,
another chinese expression), Coughing up phlegm, Pharyngeal pain,
Contac, Tylenol, Fever clinic, Vaccine, Antibody, covid-19, Runny nose,
Throat swelling and pain, Face mask, Cold symptoms, Headache, Throat
pain, Cold medicine, Febrile, Shortness of breath, Epidemic, Novel
pneumonia, Muscle soreness, Sneezing, Breathing difficulties, Cold
cough, Disinfection, Influenza virus, Fatigue, Viral cold, Influenza, Flu
symptoms, Diarrhea, Epidemic influenza, Immunity, Viral influenza, Cold
with runny nose, Treatment, Flu vaccine, Flu epidemic, Tiredness

Searches were conducted in Chinese, and the above table includes translations
of the key terms

been organized by origin and destination, which suf-
fices for establishing clear adjacency relationships and
requires no further retrieval.

The coverage of the connectivity network of various
modes of transportation in China is shown in Table 1:
Among the various transportation modes, air transpor-
tation has a coverage rate of 59.29%, followed by water
transportation at 87.61%, railway transportation at
95.58%, and road transportation with the highest cover-
age at 98.53%. Such a connectivity network covers major
cities in China, connecting virtually all cities and allow-
ing for comprehensive analysis understanding on the
interactions between regions.

Construction of epidemic spread indicators

This study first selected search terms related to the spread
of the epidemic in terms of symptoms, treatment, and
preventive measures, and then conducted a preliminary
evaluation of each keyword in the data set to determine
its relevance to the research topic. A total of 56 keywords
were collected in the study, as shown in Table 2.

To further filter out highly correlated keywords, this
study conducted a correlation analysis between the num-
ber of fever clinic cases and the organized Baidu search
index of keywords. Initially, the correlation analysis was
performed between the number of fever clinic cases in
various regions and the Baidu search index of each key-
word for the corresponding areas. This provided the cor-
relation coefficients for different regions, which were
then averaged to obtain the average correlation coef-
ficient for each keyword. During the initial screening of

keywords, the pearson correlation coefficient between
the time series of selected keywords and the number of
fever clinic cases should be at least 0.7, and all should
pass the significance test. An analysis of the ranking of
correlations between various keyword Baidu search indi-
ces and the epidemic revealed that 12 out of 56 keywords
have a correlation coefficient greater than 0.7 with the
epidemic, as shown in Table 3.

In this study, we applied an exponential decay model to
adjust the weights of keywords, ranking them in descend-
ing order based on their correlation scores, and assign-
ing each keyword an initial weight based on its ranking.
The weight of each keyword was adjusted using an expo-
nential decay function W; = exp(—a« - rank;), where W;
represents the keyword weight, rank; is the ranking of
the keyword, and « is the decay coefficient, which con-
trols the rate of weight reduction. In this study, o was
set to 0.5. To ensure that the total sum of all keyword
weights equals 1, all adjusted weights were normalized.
The weighted sum of all keywords was then used to con-
struct an index that reflects the dynamics of epidemic
transmission. The final nationwide correlation coefficient
achieved was 0.970, as shown in Fig. 3.

Construction of graph structures for GNNs

GNNs can effectively capture spatial dependencies
and information hidden within non-Euclidean struc-
tural data, efficiently solving the spatio-temporal chal-
lenges associated with epidemic forecasting. A graph is
the fundamental structure utilized by GNNs, defined as
G = (V, E, A), where V represents the set of vertices
or nodes, E is the set of edges between nodes, and A is
the adjacency matrix. Nodes and edges possess distinct
attributes. In this work, a weighted undirected graph
was defined within the model, with cities listed as a set
of vertices V; the spatial relationships between cities are
represented by the set of edges E, and the local attri-
butes of cities (including time series data) are listed as a
set of features X. Vertex attributes are divided into two
categories: static attributes, which include population
numbers, GDP, and nighttime lights; and dynamic attri-
butes, which consist of the time series of epidemic spread
dynamics indicators. All these variables undergo z-score
normalization to ensure a uniform scale across different
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Fig. 3 The correlation between constructed epidemic spread indicators and epidemic transmission (Fig. 3a shows the time trend of the selected 12 Baidu

search indices and the number of cases in national fever clinics; Fig. 3b re
and the weighted Baidu search index)

regions. For the set of edges E, the adjacency matrix is
crucial for capturing spatial dependencies. The adjacency
matrix can be defined as a union of previously described
connectivity grids, encompassing roadway, waterway,
railway, and airline networks. In the study, edge weights
were determined by the intensity of human mobility
interactions and the physical distance between different
regions, ultimately weighting the adjacency matrix to
form a weighted connectivity matrix.

Construction of edge weights

Most previous studies have based GNNs edge weights
primarily on physical distance, but this approach has lim-
itations, as roads and traffic connections between regions
often do not follow straight paths. Therefore, this study
proposes a new method that more accurately reflects the
actual interaction strength between cities by integrating
both human mobility and physical distance between cit-
ies. Based on these factors, we have weighted the adja-
cency matrix to form a weighted connectivity matrix that
reflects the effective strength of connections.

The defined edge weights in our model consider
the intensity of human mobility interactions between
regions. Given the availability of data over time, the study
period selected for calculating human mobility edge
weights is from January 1, 2023 to November 1, 2023. The
average human traffic between two points during this
period is used to determine the interactions of human
mobility. The data period for calculating edge weights is
as comprehensive as possible to cover the entire forecast
period. The population ratio data are first processed by
multiplying the ratio of the population migrating into
(or out of) one city from another by the corresponding

presents the correlation between the number of cases in national fever clinics

city’s migration scale index on that day (this value repre-
sents the total number of people migrating into or out of
that city in one day, allowing for horizontal comparisons
between different cities). This value is then scaled up by a
factor of 1000, which to some extent represents the pop-
ulation index of migration into (or out of) another city.
The calculations are as shown in formulas (1-2):

MOI;; = OPR;; x OSI; x 1000 (2)

In the formulas, MII;; represents the migration scale
index of population moving in from region i to region j;
IPR;; is the ratio of the population size moving in from
region i to region j; ISI; is the migration scale index
for region j at a given time for incoming populations;
MOI;; represents the migration scale index for popula-
tion moving out from region i to region j; OPR;; is the
ratio of the population size moving out from region i to
region j; OS; is the migration scale index for region j at a
given time for outgoing populations.

Since the dataset includes daily data for the top 100 cit-
ies in terms of people moving in and out of the 309 cit-
ies, it first needs to be organized and preprocessed. For
each pair of cities, we calculate the average daily migra-
tion scale for both incoming and outgoing populations
within the selected date range. If a pair of cities does
not rank in the top 100 on a particular day, the popula-
tion flow for that pair is considered zero for that day. The
variation in the daily top 100 rankings of incoming and
outgoing cities has been partially addressed by averag-
ing the data across all dates. Even if some cities are not
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in the top 100 on certain days, this variation is smoothed
out through the daily average calculation. Through these
steps, a composite index reflecting the human traffic
flow between cities is obtained, which can be used as the
weight of edges in the graph model. Additionally, this
study employs the min-max normalization method to
normalize the data. Min-max normalization is a common
data preprocessing technique that linearly transforms
and scales each value in the original data to fit within a
specified range, typically from 0 to 1. The specific trans-
formation formula is shown as formula (3):

X' =(X - Xmin)/(Xmax — X (3)

min)
In the formulas, X represents a specific value from the
original data, and X’ represents the normalized value.
Xminand Xmax are the minimum and maximum values
in the original data, respectively.

7ﬁdistij

(5)

edfij =e€

720

1,440 2,160 2,880

km
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W;; = a x norm (flow;j)+(1-«) x norm (edf;;) (6)

In this study, the edge weights are calculated by integrat-
ing the weighted interaction strength of human mobility
with the distance decay function applied to the physi-
cal distance between regions (as defined in Egs. 4-6).
In these equations, W;; represents the edge weight
between node i and node j. Here, (MIL;; + MOI,;)/2
denotes the human traffic flow between node i and node
j, where norm (flow;;) is the normalized human mobil-
ity scale between city i and city j, and norm (edf;;) is the
normalization of the distance decay function applied to
the physical distance between city i and city j.

We explicitly utilize an exponential decay function
e~Pdistiiwith B = 0.01 to model the diminishing inter-
action intensity with increasing distance [38]. Physi-
cal distances are calculated using latitude and longitude
coordinates associated with each city center to weight the
graph edges. In the calculation of edge weights, a weight
of 0.5 is set, and using the above formulas, the weights
between different nodes are constructed as shown in
Fig. 4. By applying these edge weights to the adjacency
matrix, a weighted adjacency matrix is created, which in

Edge weight
—— 0.0000-0.1818
——— 0.1818-0.2705
_ 0.2705 - 0.3260
) o 0.3260 - 0.3704
F 0.3704 - 0.4139
0.4139 - 0.4664
04664 -0.5595
05595 - 0.9984

L .

Fig. 4 Edge weights of the graph network connectivity matrix based on the intensity of human mobility interactions and physical distance
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turn can reflect the intensity of interactions between dif-
ferent regions.

Spatio-temporal forecasting model architecture
Our forecasting model combines GNNs for spatial fea-
ture learning with LSTM network for temporal sequence
modeling. The GNNs components are composed of a
Graph Convolution Networks (GraphConv) layer fol-
lowed by a Graph Attention Networks v2 (GATv2Conv)
layer, and the output from these graph layers feeds into
the LSTM. The GraphConv layer first aggregates infor-
mation from neighboring cities to capture the general
spatial structure of the mobility network. On top of this,
we apply a GATv2Conv layer, which introduces an atten-
tion mechanism. The GATv2Conv layer computes learn-
able attention weights for each edge, so that important
connections receive higher weights. In combination,
GraphConv provides a broad propagation of informa-
tion across the network, and GATv2Conv hones in on
the most influential travel routes. The spatially informed
node features are then passed into an LSTM to forecast
epidemic dynamics over time. The LSTM is well-suited
for this task because it can maintain long-term depen-
dencies through its gated memory cells. In our model,
the LSTM processes the sequence of graph-derived fea-
tures and learns the evolution of the epidemic, output-
ting predictions for future infection counts in each city.
We modeled data from 309 cities across China, inte-
grating a GNNs module and a recurrent network with
an input time window to effectively manage long-term
dependencies. The aggregation step involves collecting
information from neighboring nodes and the update step
updates the current node’s state based on the informa-
tion gathered during aggregation and the previous state.
These steps are crucial for understanding patterns and
trends in historical data. The model takes as input a com-
posite feature matrix (covering both static and dynamic
features) and a weighted adjacency matrix, maximizing
the use of available historical information to enhance
prediction accuracy. The prediction results are based
on the next day’s forecast within a T-day historical time
window, ensuring the model can respond to recent data
changes.

Model architecture implementation details

To ensure the model generalizes well and does not overfit
to regions with extremely high mobility (high-flow con-
nections), we incorporate two key techniques. These aim
to mitigate any bias toward the busiest travel routes and
encourage the model to learn broad patterns. We nor-
malize the inter-city mobility weights using Min-Max
scaling before inputting them to the GNNs. This normal-
ization prevents extremely high-flow routes from skew-
ing the learned spatial features, forcing the GNNs layers
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to consider relative differences more evenly. Additionally,
We apply a dropout layer within the model, specifically
on the graph layer outputs, to randomly omit a fraction
of neurons during training. By randomly dropping out
the units (rate =0.01), the model cannot solely depend on
the signals from high-mobility regions or particular path-
ways. Even regions with lower mobility thus get a chance
to influence the training, improving generalization.

To evaluate the effectiveness of our model, we imple-
mented a testing strategy that used a 7-day historical
time window. Meanwhile, the data used in this study
spanned from December 1, 2022 to September 26, 2023,
comprising a 300-day time series divided into 6 folds for
cross-validation, each including distinct training, test-
ing, and validation sets. During model training, the data-
set was segmented into these sets based on the timeline,
with each subset defined as a partition of the time series
from day one to dayfy, for 6-fold cross-validation. Each
fold defined as a time interval starting from the first day
of the epidemiological study and continuing up to dayfy,
with 0 varying with each fold. This allowed the model to
utilize time series of varying lengths starting from the
first day of the epidemic, helping to assess whether the
proposed architecture could capture dynamics within
specific periods. The segmentation of data into folds was
systematically adjusted to balance training, validation,
and testing samples effectively, ensuring comprehensive
learning and evaluation. Specifically, the size of the train-
ing set gradually increased from 90 days at k=1 to 300
days at k=6, while the sizes of the validation and testing
sets were fixed at 30 days each. The dataset segmentation
method is as shown in formulas (7-9).

Ek’,train = [17 cee 79/€L 916 =90 + 30(]{? - 1) (7)
2;67\,&11(1 = [Gk +1,...,0k+ 30] (8)
Yk test = [ek +31,...,0 + 60] 9)

We conducted a detailed cross-validation of the model
architecture. To ensure the effectiveness of the pro-
posed architecture, we first used the training set to fit the
model and utilized the validation set for evaluation. This
cross-validation method trained each fold of the model
separately while comparing models via average loss. After
evaluation, the model was refitted to the training and
validation sets with the determined hyperparameters and
then subjected to a final evaluation on a subset of the test
set. In terms of model configuration, the following hyper-
parameters were set: the learning rate was set to 0.001,
with a reduction to 0.25 of the original rate after every
200 epochs; the ADAM optimizer was used to opti-
mize training and validation steps. Mean Square Error
(MSE) and Mean Absolute Error (MAE) were used as
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loss functions for backpropagation. Ultimately, to com-
prehensively evaluate the performance of the proposed
architecture, we compiled the evaluation results of each
model in their respective folds during the cross-valida-
tion process and calculated the average of these results.
This approach verifies the performance of individual
models and gauges the overall architecture’s performance
across multiple test scenarios, which is key to ensuring
the model operates stably and achieves expected out-
comes in practical applications.

Evaluation metrics

In this study, we comprehensively evaluated the effec-
tiveness of the model by employing three core evalu-
ation metrics that analyzed model performance from
multiple perspectives. These assessments included urban
agglomerations, provincial divisions, forecast time spans,
and various data folds. The selected metrics include
the Root Mean Squared Error (RMSE), Mean Abso-
lute Error (MAE), and Mean Absolute Percentage Error
(MAPE). The calculations are shown in formulas (10-12).
Here,j; represents the predicted value for the i-th obser-
vation,y;represents the actual value for the i-th observa-
tion, and M is the number of values to be predicted.

M
~ 1 .
RMSE(5.y) = | 77 > (i — 9i)? (10)
i=1

M
~ 1 N
MAE(®.y) = 77 > lvi = 3] (11)
=1

1 M
MAPE(3.y) = 7 D

i=1

~

Yi — Yi
Yi

(12)

Results

Model training results

Training and validation losses across training epochs
are depicted in Fig.A3 [see Additional file 1]. Addition-
ally, the dataset was divided according to the timeline,
with time series assigned to various folds, each fold
defined as an independent segment of the time series.
In this research, six-fold cross-validation (k=1, 2, 3...6)
was employed to ensure robustness and reliability of the
evaluation results, and we analyzed the prediction errors
across different folds, with the results displayed in Fig.A4
[see Additional file 1]. Cross-validation analysis revealed
fluctuations in model performance across different folds,
enabling adjustments to training parameters based on
performance variations.
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Model analysis results

The results of the third cross-validation, derived from the
model established in the third training phase and trained
using only half of the available time series data. Figure 5
systematically compares four geographically representa-
tive cities: Harbin (Northeastern region), Wuhan (Cen-
tral region), Xiamen (Eastern region), and Xi'an (Western
region). These case studies validate the model’s adaptabil-
ity across China’s four major economic zones as defined
in Fig.A2 [see Additional file 1]. For extended analysis at
the urban cluster scale, Fig.A5 [see Additional file 1] fur-
ther illustrates epidemic spread dynamics in main cities
in three major urban agglomerations: the Beijing-Tian-
jin-Hebei region (BTH), the Yangtze River Delta (YRD),
and the Pearl River Delta (PRD). The model’s simulated
predictions generally aligned with actual trends, dem-
onstrating its effectiveness in capturing complex sce-
narios. Notably, towards the end of 2022, as lockdown
measures were lifted, several cities experienced sig-
nificant epidemic fluctuations. The first major outbreak
occurred from December 2022 to the Spring Festival in
2023, primarily due to the rapid spread of the virus fol-
lowing sudden relaxations in preventive measures. This
was followed by second and third peaks during March
and Labour Day holiday in May, reflecting the impact
of increased human mobility and social gatherings dur-
ing holidays. The simulation results showed consistent
epidemic patterns across cities, confirming the model’s
effectiveness and practicality.

Model analysis error

Based on the proposed methodology framework, we con-
ducted a comprehensive analysis based on geographical
location and levels of economic development (sourced
from the National Bureau of Statistics of China), as eco-
nomic development significantly reflects human mobil-
ity, which is crucial for understanding and predicting
epidemic spread. As shown in Fig.A2 [see in Additional
file 1], China’s four major economic regions include the
Eastern, Central, Western, and Northeastern regions,
encompassing 85, 81, 108, and 35 prefecture-level cities
respectively. As illustrated in Fig. 6, the prediction errors
across the regions show a diverse pattern. This variation
in the MAE, RMSE, and MAPE values across different
regions may be influenced by various factors, including
each region’s economic development level and human
mobility patterns. Regions like the Northeastern and
Central areas, which exhibited smaller MAE and RMSE
values, may benefit from certain characteristics. Con-
versely, the Western and Northeastern regions displayed
larger MAPE values, suggesting variability that could be
attributed to less uniform economic development and
diverse mobility patterns. These discrepancies highlight
how regional dynamics, such as population density and
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Fig. 5 Analysis results for epidemic spread dynamics in various cities (The orange dashed line represents predicted values, while the blue solid line rep-
resents actual values. The shaded areas represent the model’s predictions for data that were not included during the training process), including Harbin
(Northeastern region), Wuhan (Central region), Xiamen (Eastern region), Xi'an (Western region)
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Fig. 6 Analysis errors for different regions in China (Northeastern, Eastern, Western, and Central regions), including MAE, MAPE and RMSE

economic activity, can impact the effectiveness of epi-
demic modeling and forecasting.

By using a time series segmentation approach, we
ensured that the maximum testing period could cover
up to 30 days, corresponding to the length of a single test
set. We used three metrics for comparison to evaluate the
performance of epidemic spread dynamics predictions
over a range of 1-30 days. Fig.A6 [see in Additional file
1] displays the trend of loss functions over a 30-day pre-
diction period across different divisions (Eastern, Cen-
tral, Western, and Northeastern regions), where the error
curves are based on the average loss values calculated
from data across all folds and cities. The model’s error

metrics display a dynamic pattern across all regions. Ini-
tially, MAE and RMSE decrease, rise in the second week,
and then decline to lower levels by the end of the 30-day
period. Conversely, MAPE shows lower and stable levels
in the Eastern and Central regions, while in the Western
and Northeastern regions, it quickly drops in the first five
days and then gradually decreases, stabilizing at a low
level. These trends highlight the model’s adaptability and
underscore its potential for effective long-term epidemic
forecasting across diverse geographic settings. Addi-
tionally, Fig.A7 [see in Additional file 1] offers a detailed
display of predictive errors at the provincial level, empha-
sizing the spatial variability across different regions.
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Furthermore, at the prefecture-level city scale, the pre-
dictive errors for all 309 cities are shown in Fig. 7. The
correlation coefficient between the model and the actual
data reached 0.94, indicating high predictive accuracy.
Moreover, the RMSE of 20.19, expressed as a dimension-
less metric, further validates the model’s effectiveness
and reliability in practical applications.

Discussion

Our research yielded several important findings. The
first is to enhance understanding of post-lockdown epi-
demic dynamics and modeling. Our spatio-temporal
model effectively captures the rise, peak, and fall of epi-
demic transmission after lockdown is relaxed. It success-
fully modeled the resurgence patterns observed when
restrictions were lifted, indicating that the model can
reflect real-world epidemic trend changes in the after-
math of lockdown measures. Analysis suggests that
human mobility and travel patterns were correlated with
epidemic resurgence, in alignment with prior evidence
emphasizing the importance of mobility in epidemic out-
break [6, 10]. Regions that experienced higher increases
in mobility tended to see subsequent increases in epi-
demic activity, which our model was able to anticipate.
This finding underscores the critical role of mobility in
driving new infection waves, reinforcing previous find-
ings that mobility metrics are critical for accurate out-
break predictions [22, 25, 26]. Unlike many prior studies
that have primarily focused on single-region modeling,

our results demonstrate consistent epidemic trends
across multiple prefecture-level cities. In our case studies
(in distinct economic areas), the model identified similar
pattern dynamics, suggesting that it captured fundamen-
tal characteristics of epidemic spread that are not limited
to a single city or region. The observed cross-region gen-
eralization suggests that our model captures fundamental
transmission dynamics beyond localized outbreaks. This
broader applicability addresses an important yet often
overlooked aspect in epidemic modeling, where regional
differences and interactions have often been inadequately
explored or omitted [39, 40], particularly for fine-scale
simulations at the prefecture-level cities in China follow-
ing the lifting of control measures. Our results indicate
that the learned patterns are broadly applicable, enhanc-
ing the model’s relevance to diverse settings. There-
fore, the capacity of our proposed method to generalize
spatially represents a improvement over conventional
region-specific models, making our findings particularly
relevant for diverse geographic contexts.

The strengths of the GNN lie in its ability to perform
complex simulations based on local (vertex) and struc-
tural (edge) features, guiding future research to focus
on dynamically adjusting adjacency matrix weights with
machine learning to reflect policy changes, develop-
ing refined geospatial tools for predicting virus spread
in smaller areas, and enhancing a predictor architecture
that processes a broad range of time-series data for wide-
spread application in public health studies. The model’s
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ability to incorporate mobility data means it can serve
as an early warning system for epidemic resurgences. In
practice, surges in travel and movement often precede
rises in cases. By detecting these mobility upticks and
accurately forecasting the consequent case increases,
public health authorities could receive advanced notice of
an impending outbreak. Our results highlight the value
of integrating human mobility metrics into epidemic
forecasting, which can directly inform policy. By simu-
lating different mobility scenarios through the model,
decision-makers can quantitatively assess the potential
impact of policy choices on future case counts. Because
our approach proved effective across different metro-
politan areas and even across countries, it offers a general
framework that agencies in various locales could adopt.
Moreover, the framework could be adapted to other
infectious diseases where human mobility drives spread
(for example, influenza or dengue fever in interconnected
communities).

The research still has some limitations, such as not
distinguishing the specific impacts of different trans-
portation modes, which could limit its accuracy in cer-
tain scenarios. While it has shown good predictive
performance across multiple cities and regions, its gen-
eralizability needs further verification across a broader
geographic scope. Its accuracy currently relies on eco-
nomic and human mobility data, whose updating fre-
quency and coverage limitations could hinder further
precision improvements. The granularity of transpor-
tation and mobility data crucially affects the predictive
accuracy of our model. In regions like the Western part
of China, where transportation data might be sparser
and less regular, the coarser granularity could lead to
less accurate predictions. Moreover, the model has yet to
fully consider complex factors like policy changes, pub-
lic health emergency measures, and population compli-
ance, which might affect the accuracy and practicality of
its predictions. Future work will comprehensively extend
and deepen this research by exploring diverse data
sources, including social media and mobile phone sig-
nals, to gather more real-time information on human
mobility and public sentiment. It will also integrate mul-
tiple data sources like weather conditions, traffic flows,
and medical resource distribution to enhance the model’s
adaptability to environmental variables. Additionally, fur-
ther efforts will involve developing dynamic adjustment
mechanisms for the model to adapt to policy changes and
public health interventions, combining predictive mod-
els with decision-support systems to provide real-time
epidemic trend predictions and resource allocation rec-
ommendations for government and public health institu-
tions, and exploring the model’s potential applications in
vaccine distribution and emergency response planning,
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all of which will significantly enhance the model’s practi-
cality and impact.

Conclusions

This study employs a spatio-temporal model that uti-
lizes deep learning models to accurately simulate the
dynamics of epidemic spread across various prefecture-
level cities in China. This model utilizes a traffic-based
graphical representation to depict the intensity of human
mobility interactions between regions, employing GNNs
and time-series neural networks to analyze both spatial
dependencies and temporal trends. Extensive cross-vali-
dation and error analysis show that the model performs
well across various urban clusters with a high correlation
coefficient and notably reduced error results. Over a 300-
day period, the model demonstrated adaptability across
different temporal windows and its value for long-term
forecasting, critical for public health decision-making
and resource allocation. Collectively, these findings dem-
onstrate that our approach can reliably model complex
epidemic behaviors in an interconnected, post-lockdown
context. By capturing how increased mobility leads to
case surges and doing so across varied regions, it pro-
vides empirical evidence that combining human mobility
networks with advanced neural architectures can gener-
alize across different settings. The study not only deepens
understanding of epidemic transmission mechanisms but
also provides a scientific basis for public health strategy,
particularly in optimizing resource allocation and epi-
demic control measures.
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