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Ecosystem transition occurs when ecological thresholds are crossed, causing ecosystems to irreversibly
shift from secure to insecure states. However, how ecosystem transition exacerbates species richness loss
remains poorly understood. This hinders the effective protection of species richness, which is an urgent
global priority. In this study, we integrated multiple ecosystem variables to elucidate ecosystem transi-
tion and its impacts on species richness loss. Our findings reveal that species richness declines abruptly
following ecosystem transition, as insecure ecosystems are characterized by reduced plant cover and pro-
ductivity, intensified warming and drying, and diminished oxygen production. Insecure ecosystems
imperil the survival of all species, including 39.4% of threatened birds and 29.2% of threatened mammal
species. We project that by 2100, the ecosystem areas considered insecure will encompass 40.4% of the
global land areas under the RCP8.5 scenario, contributing to 51.6% of species richness loss. In contrast,
hyper-secure ecosystems are projected to account for 18.1% of species richness loss. This study identifies
ecosystem transition as a critical driver of species richness loss that should be accounted for by policy-
makers in designing targeted conservation strategies.
© 2025 The Authors. Published by Elsevier B.V. and Science China Press. This is anopenaccess article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Climate change is driving substantial changes in ecosystem
attributes and functions, exerting widespread and far-reaching
impacts on life on Earth [1]. The escalating frequency of climate
crises, such as global warming, glacier melting, drought, and heat-
waves [2–4], combined with unsustainable human activities like
overconsumption of fossil fuels [5] and terrestrial water storage
depletion [6], is destabilizing the natural balance of ecosystems
at an alarming pace. Of particular concern is that ecosystem
changes may occur abruptly once certain environmental thresh-
olds are exceeded [7]. Building upon ecological theories, including
regime shifts [8], tipping points [9], and alternative stable states
[10,11], we propose the concept of ‘‘ecosystem transition”, which
refers to the shift of ecosystems from secure to insecure states dri-
ven by multiple ecosystem variables. Such a transition is triggered
by positive feedback when ecological thresholds are crossed,
resulting in a new equilibrium state.
Recent studies have identified critical thresholds in various eco-
logical processes, indicating how ecosystems respond to environ-
mental changes. For example, temperature thresholds are
associated with the sensitivity of ecosystem respiration [12], which
exhibits an unimodal response [13]. Soil moisture thresholds influ-
ence plant water stress in terrestrial ecosystems [14] and have
been shown to affect soil biodiversity and functions when specific
water availability thresholds are crossed [15]. Aridity thresholds
significantly alter nitrogen cycling in arid and semi-arid grasslands
[16]. Furthermore, several studies have investigated transitions
triggered by threshold crossings, focusing on boreal biomes [17],
tropical forests [18], and dryland ecosystems [7]. Although these
works are invaluable for understanding ecological thresholds, their
focus on single factors or specific regions constrains our ability to
capture the complexity of ecosystems influenced by multiple fac-
tors. To address this, we integrated 19 ecosystem variables to elu-
cidate ecosystem transition and provide a comprehensive
assessment of their interactions.

Species richness is a key indicator of ecosystem health and sta-
bility, and ecosystem transition profoundly impacts species diver-
sity. Currently, tens of thousands of species are threatened with
extinction, raising significant global concern [19,20]. According to
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the WWF’s Living Planet Report 2022, wildlife populations
declined by an average of 69% between 1970 and 2018 [21]. Stud-
ies have indicated climate change [22], abrupt land-use changes
[23,24], habitat loss, and fragmentation [25] as primary drivers of
biodiversity loss. Moreover, overhunting [26] and overfishing
[27] have significantly contributed to species population declines.
Together, these factors underscore the escalating and multifaceted
nature of the global biodiversity crisis. Projections suggest that bio-
diversity loss will continue to intensify, with extinction risks
threatening up to one in six species as a result of future global
warming [22]. A recent report emphasizes that the climate and
biodiversity crises must be tackled simultaneously, serving as a
reminder that failure to mitigate climate change will significantly
accelerate species richness loss [28]. This alarming situation has
prompted biologists to warn of an impending sixth mass extinction
[29], highlighting the urgent need for species conservation. Despite
extensive research focused on biodiversity loss, interactions among
multiple ecosystem variables and their collective impact on species
richness loss remain underexplored. Given the severity of the situ-
ation, our study provides new insights into species richness loss
driven by ecosystem transition. It offers a scientific basis for poli-
cymakers to identify early warning signals of species decline and
develop targeted conservation strategies.

In this study, we analyzed the response of 19 ecosystem vari-
ables, representing abiotic and biotic characteristics of ecosystems,
to the ecosystem security index (ESI) [7,30,31]. To test the hypoth-
esis regarding the threshold of ecosystem transition, we employed
threshold regression models and cluster analysis [7,15] (Fig. 1). Our
Fig. 1. Workflow for detecting thre
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goal is to classify ecosystems into two states, ‘‘secure” and ‘‘inse-
cure”, each with two levels. We then examined the impact of
ecosystem transition on threatened species and projected future
species richness loss. Subsequently, we elucidated how key ecosys-
tem variables directly or indirectly influence threatened bird and
mammal species (Fig. S1 online).
2. Data and methods

2.1. Data

The inherent complexity and dynamics of ecosystems necessi-
tate a multifaceted approach to accurately assess changes, as reli-
ance on a single variable is insufficient. We selected a set of
important and commonly used variables to identify ecosystem
transition (Table 1). Data on threatened birds and mammals were
derived from Jenkins [32]. The future projections of the net change
in local species richness since 1500 under RCP8.5 and RCP4.5 sce-
narios were provided by Newbold [23]. Additional detailed
descriptions of datasets are provided in the Supplementary
materials.

2.2. Ecological security index (ESI)

Ecosystems are complex systems consisting of biogeochemical
cycles including oxygen, carbon, water, heat, and biological pro-
cesses, all of which are essential for sustaining vegetation, animal
sholds of ecosystem transition.
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Table 1
19 ecosystem variables used in this study.

Database type Description / Abbreviation

Climate data Sensible heat flux (Hs) Latent heat flux (LE) Temperature Precipitation
Evapotranspiration (Evap)

Soil data Soil moisture Soil temperature Soil biodiversity
index (Soilbio)

Soil pH

Sand content Total nitrogen (TN) Organic carbon (OC)
Vegetation data Vegetation

sensitivity index (VSI)
Net primary
production (NPP)

Normalized difference vegetation index (NDVI) Leaf area index (LAI)

Human activity data Human footprint Human development index (HDI) GDP per capita (GDP_per)
life, and human well-being (Fig. S2 online) [33]. Based on this, the
study adopted the ecological security index (ESI), developed by
Huang et al. [34], which integrates the aforementioned five cycles
to comprehensively assess terrestrial ecosystem states. The ESI is
defined as:

ESI
Oc

Op
Tm

1
AI

1 3

10

where the parameters Oc and Op represent the consumption and
production of oxygen, respectively; the Tm is the temperature
warming magnification, and AI is the aridity index. Detailed
descriptions of each term are provided in the Supplementary mate-
rials (Fig. S3 online).

2.3. Detection and classification of ecosystem transition

Fig. 1 presents a comprehensive workflow for detecting thresh-
olds of ecosystem transition, consisting of four steps: model fitting,
threshold detection, threshold significance validation, and cluster
analysis. First, we fitted the relationships between 19 ecosystem
variables and the ESI using both linear and nonlinear regression
approaches. The nonlinear models included quadratic and general-
ized additive models (GAMs). For a GAM, we used the gam() func-
tion from the ‘‘mgcv” package (v4.2-1) in R, applying thin-plate
splines for smoothing and setting the error distribution to Gaussian
(family = ‘‘gaussian”) [35]. The best-fitting models were selected
based on the Akaike information criterion (AIC), with lower AIC
values indicating a better fit (Table S3 online). All ecosystem vari-
ables exhibited a better fit with nonlinear models compared to lin-
ear model (AICnonlinear < AIClinear). We then explored thresholds, as
nonlinearity is a prerequisite for threshold detection. Second, we
applied two types of threshold models to identify ecological
thresholds: segmented regression (continuous change in slope)
and stegmented regression (discontinuous change in both inter-
cept and slope), following the definition of Berdugo et al. [7]
(Fig. S4 online). In cases where GAM regression was the best-
fitting model, segmented regression was used to indicate the point
of maximum curvature. The most suitable threshold models (seg-
mented/stegmented) were chosen using minimum AIC criteria,
and their robustness was further validated with the Bayesian Infor-
mation Criterion (BIC).

Third, we performed bootstraped linear regressions on both
sides of each threshold for each variable 200 times. The Mann-
Whitney U-test was used to compare the slopes before and after
the threshold. All variables showed significant differences in the
slopes on either side of the threshold (marked with an asterisk in
Fig. 2c). Fourth, we applied the Elbowmethod and the Broken Stick
method to determine the optimal number of clusters based on the
within-cluster sum of squares [35] (Fig. S5 online). As the number
of clusters increases, the within-cluster sum of squared errors
decreases gradually. The ‘‘elbow point” where the curve levels off
represents the optimal number of clusters, identifying four clus-
ters. Accordingly, cluster analysis was employed to classify the
19 ecosystem variables into four groups, with corresponding ESI
1525
values of 1.0, 1.5, and 2.5, respectively. Ecosystems with an ESI
value below 1.5 are categorized as ‘‘secure”, with subdivisions into
hyper-secure ecosystems (ESI < 1.0) and semi-secure ecosystems
(1.0 ≤ ESI < 1.5). In contrast, ecosystems with ESI ≥ 1.5 are classi-
fied as ‘‘insecure” and further divided into light-insecure ecosys-
tems (1.5 ≤ ESI < 2.5) and severe-insecure ecosystems (where
ESI ≥ 2.5).

2.4. Structural equation modeling

The structural equation model (SEM) is an effective approach to
elucidating the relationships among multiple variables. In this
study, we constructed piecewise SEM (pSEM) to evaluate the direct
and indirect effects of key ecosystem variables on species threat
rates in both secure and insecure ecosystems. pSEM offers advan-
tages over traditional SEM by enabling the simultaneous evalua-
tion of multiple interrelated causal hypotheses while
accommodating non-normal distributions commonly encountered
in ecological data [36]. Moreover, constructing the pSEM model
requires building a prior model based on existing knowledge.

To address spatial autocorrelation in the models, we incorpo-
rated simultaneous autoregressive models (SARs) into each path-
way of the pSEM [37]. SARs account for spatial autocorrelation
by utilizing neighborhood matrices that describe the relationships
between the residuals at each location and those at neighboring
locations [38]. Following the methodology outlined by García-
Andrade et al. [37], we determined the appropriate spatial weights
matrix for each pathway in the pSEM. Specifically, we fitted one
ordinary least squares (OLS) model and six SARs models using
two neighborhood distance matrices - minimum (d1) and maxi-
mum (d2) - with three weighting schemes: row standardized
(W), globally standardized (C), and variance stabilizing (S). The
best-fitting model for each pathway was selected based on the
lowest Akaike Information Criterion (AIC) values and the highest
R2 values (Table S4 online). Consequently, in the final pSEM con-
struction, we used the SARs model with the row-standardized spa-
tial weight matrix (W) and the maximum neighborhood distance
(d2), which minimized spatial autocorrelation in residuals as mea-
sured by Moran’s I.

Before modeling, all predictor variables were standardized
using the scale() function from the base package in R to ensure
the comparability of coefficients. We calculated the correlation
coefficients between the variables, ruling out the problem of mul-
ticollinearity (R2 < 0.8) (Table S2 online). Besides, the influence of
all predictor variables on species threat rates was assessed by con-
sidering spatial autocorrelation and calculating P-values using the
modified.ttest() function from the ‘‘spatialpack” package in R [39].
Additionally, SARs models were fitted using the nb2listw(), dnear-
neigh(), and knn2nb() functions from the ‘‘spdep” package, and
the errorsarlm() function from the ‘‘spatialreg” package [40]. The
pSEM analyses were performed using the ‘‘piecewiseSEM” (version
2.3.0.1) package in R (version 4.4.1). Finally, the overall fit of the
pSEM was evaluated using Fisher’s C test, with stepwise model
modifications made based on pathway significance (P < 0.05) and
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Fig. 2. (a) Identified thresholds and their bootstrapped confidence intervals. Each color represents a set of groups. Box plots display the median (solid line), interquartile range
(upper and lower edges of the box), and the 10th to 90th percentiles (whiskers). (b) The cross-relationships among the four ecosystem security levels. (c) Nonlinear
relationship between multiple ecosystem variables and ecological security index (ESI). Black dashed lines represent the smoothed trend fitted by a generalized additive model
(GAM) and blue solid lines represent the linear fit at both sides of each threshold. Inserted red numbers and the vertical dashed lines denote the identified thresholds. Violin
diagrams show the bootstrapped slopes at the threshold of the two regressions existing at each side of the threshold values (red: before the threshold; blue: after the
threshold). Asterisks indicate significant differences when conducting a Mann-Whitney U test between before and after the threshold where: *** P < 0.001.
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the goodness-of-fit of the model (P > 0.05). Following this, we ana-
lyzed the standardized coefficients for each pathway to interpret
the influence of independent variables on dependent variables.
3. Results and discussion

3.1. Classification of ecosystem security levels

Our results demonstrate pervasive nonlinear relationships
between multiple ecosystem variables and the ESI, indicating the
existence of transition thresholds and classifying ecosystems into
two distinct states: ‘‘secure” and ‘‘insecure”, each with two levels
per state (Fig. 2). Ecosystems with an ESI value below 1.5 are con-
sidered ‘‘secure”, signifying strong ecological resilience, i.e., their
ability to resist disturbances and maintain their original state
[41]. In secure ecosystems, disturbances are primarily driven by
climate change, as measured by changes in variables such as evap-
otranspiration, precipitation, and temperature (Fig. 2c1, c3, and
Fig. S6 c10 online). However, higher precipitation and soil nutri-
ents in these ecosystems directly support plant survival and
growth (Fig. 2c4, c5, c8). The interaction between soil moisture
and precipitation enhances water infiltration, regulates surface
runoff, and facilitates groundwater recharge, all of which are cru-
cial for terrestrial water cycles [42]. These favorable conditions
promote healthy vegetation growth and maintain the ecosystem’s
energy balance. Furthermore, the process of plant transpiration,
which releases water vapor into the atmosphere through leaf sur-
faces, reduces sensible heat flux and increases latent heat flux,
leading to a cooling effect and slower warming [43,44]. These pro-
cesses enable secure ecosystems to endure climate stress for a per-
iod through self-regulation and recovery mechanisms.

Ecosystems are classified as ‘‘insecure” with an ESI ≥ 1.5. Inse-
cure ecosystems are characterized by significant declines in plant
cover and productivity (Fig. 2c7 and Fig. S6 c19 online), which
directly impair the ecosystems’ ability to provide their essential
functions and services. Furthermore, the transition to insecure
ecosystems is marked by a shift in dominant vegetation types from
forests to grasslands and shrublands (Fig. S9b online), accompa-
nied by soil degradation characterized by nutrient-poor and sandy
soils with lower soil water-holding capacity (Fig. 2c4, c5 online)
[14]. This vegetation shift is ascribed to the deeper roots of shrubs,
which can access stable water in deeper soil layers, along with a
reduction in the overall sensitivity of vegetation to climatic fluctu-
ations (Fig. S6c16 online) [45]. Additionally, plants adapt by devel-
oping smaller, thicker leaves and closing their stomata to minimize
water evaporation in insecure ecosystems [1]. These adaptations
weaken plant photosynthesis, the main source of oxygen produc-
tion, thereby inhibiting plant growth and further destabilizing
ecosystems.

The interactions between net oxygen production and hydrolog-
ical (e.g., soil moisture and terrestrial water storage (TWS)) as well
as thermal cycles (e.g., soil temperature and heat fluxes) also sup-
port this notion, as depicted in Fig. 3. Both soil moisture and TWS
are closely associated with oxygen production (Fig. 3a–b), suggest-
ing that regions with decreased net oxygen production experience
a corresponding decline in the ecosystems’ ability to store water.
This reduction constrains plant growth and further decreases oxy-
gen production, ultimately undermining ecosystems’ ability to
support life [46]. In addition, as net oxygen production increases,
soil temperatures decrease due to higher transpiration rates, while
sensible heat flux decreases and latent heat flux increases, con-
tributing to temperature regulation (Fig. 3c–d). Conversely,
decreases in net oxygen production are accompanied by rising
temperatures, exacerbating thermal stress on the ecosystems.
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These feedback loops intensify net radiation and atmospheric
dryness, accelerating soil moisture loss [47,48], thereby establish-
ing a reinforcing cycle of warming and drying in insecure ecosys-
tems (Fig. 3e).

3.2. Global distribution of ecosystems security levels

The identified thresholds were applied to categorize ecosystem
security levels. Fig. 4 shows that the area of ecosystems considered
hyper-secure accounts for only 26.6% of the global land area and is
primarily distributed in South America, Siberia, Central Africa, and
the Tibetan Plateau. In contrast, ecosystem areas considered inse-
cure occupy 35.4% of the global land area, with 24.8% classified
as light-insecure and 10.6% as severe-insecure. These insecure
ecosystems are mainly located at the edge of deserts and are char-
acterized by negative oxygen fluxes [49], increased aridity, and
accelerated warming. Furthermore, figuring out how the future
changes in ecosystem security levels is crucial. We used the
ensemble means of the CMIP5 models (CMIP5-EM) to minimize
uncertainties from inter-model variability. Our findings indicate
that the spatial distributions and the area coverage of secure and
insecure ecosystems predicted by CMIP5-EM are consistent with
those indicated by observations (Fig. 4a–b and Fig. S7a online),
demonstrating the reliability of CMIP5-EM for future projections.
For a detailed discussion of the CMIP5-EM model, refer to Huang
et al. [34].

By comparing the areal changes of insecure ecosystems from
2000–2015 to 2085–2100 under the RCP8.5 scenario, we found
that the area percentages of semi-secure, light-insecure, and
severe-insecure ecosystems are projected to increase by 5.2%,
7.3%, and 6.2%, respectively (Fig. 4d). In addition, the net area
changes in hyper-secure and severe-insecure ecosystems are pro-
jected to be −3.8% and 5.3% of the global land area, respectively
(Fig. S7b online). We also noticed that the increase in severe-
insecure ecosystems is the most pronounced, reaching up to
15.9% of the global land area. By 2100, insecure ecosystems are
projected to encompass 40.4% of the global land area under the
RCP8.5 scenario.

3.3. Global distribution of threatened species and projected richness
loss across ecosystems security levels

Ecosystem transition deteriorate habitat conditions and pose a
threat to the survival of species. Fig. 5a–b illustrate the distribution
of threatened rates for birds and mammals, calculated as the ratio
of threatened species to total species (see Section 3 in Supplemen-
tary materials) across the four ecosystem security levels. It is clear
that most threatened bird species are concentrated in the Sahara,
West Asia, and India (Fig. 5a). Threatened bird species account
for 22.8% and 16.6% in light-insecure and severe-insecure ecosys-
tems, respectively. Furthermore, the situation for mammals is
more severe, with a global average threatened rate of 4.3%, which
is greater than that of 2.6% for birds. Specifically, the threatened
rates for mammals in light-insecure and severe-insecure ecosys-
tems are 17.3% and 11.9%, respectively (Fig. 5b). Additionally,
regions with a higher number of threatened species often coincide
with areas of high total species number (Fig. S8 online), particu-
larly in biodiversity hotspots such as Southeast Asia and the Ama-
zon [20]. We further projected species richness loss at the end of
this century under the RCP4.5 and the RCP8.5 scenarios, based on
the calculation of the net change in species richness relative to
1500 AD (see Section 4 in Supplementary materials) [23]. Our
results indicate that the global average species richness loss is
17.2% under the RCP8.5 scenario, which is higher than 12.6% under
the RCP4.5 scenario (Fig. 5c–d). Moreover, 14.3% of species richness
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Fig. 3. The hydrological and thermal changes associated with net oxygen production change in terrestrial ecosystems. (a) The inter-annual variability in the regional average
volumetric soil water within 60°S–60°N for 2000–2015 from the ERA5 dataset (blue line) with respect to the corresponding inter-annual variability in the net oxygen
production derived from the MODIS dataset. (b) shows the terrestrial water storage (TWS) for 2002–2015 from GRACE satellite observations (blue line), and two statistical
models of GRACE-REC (red line) and GRACE-RECprecip (black line) for 2000–2015 which are trained with GRACE observations. (c) Soil temperature (red line) for 2000–2015
from the ERA5 dataset. (d) Sensible heat flux (red, upward positive) and latent heat flux (blue, upward positive) for 2000–2015 from the ERA5 dataset. Shading denotes the
± 1 standard deviation range of the corresponding temporal variation. (e) A schematic diagram illustrates the characteristics of secure and insecure ecosystems. Green arrows
denote O2 production and red arrows denote O2 consumption. LE, Hs, C, N, and H2O represent the latent heat flux, sensible heat flux, soil organic carbon, soil total nitrogen,
and soil moisture, respectively.
loss occurs in severe-insecure ecosystems, likely due to the inher-
ently low species richness in these regions. Overall, insecure
ecosystems contribute to 51.6% of the species richness loss under
the RCP8.5 scenario, in contrast to 18.1% in hyper-secure ecosys-
tems, underscoring the disproportionate impact of ecosystem tran-
sition on species richness loss.
1528
3.4. Impact of ecosystem transition on threatened rates of birds and
mammals

To better understand how ecosystem transition affect threat-
ened species, we constructed a pSEM to investigate the direct
and indirect influences of key ecosystem variables on threatened
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Fig. 4. (a) Spatial distribution of the four ecosystem security levels based on observed ESI values for 2000–2015. (b) Area coverage (percentage) of the four ecosystem security
levels (60°S–60°N), based on observed ESI values for 2000–2015, CMIP5-EM ESI for 2000–2015, and CMIP5-EM ESI for 2085–2100. (c) The spatial distribution of projected
changes in subtypes from the CMIP5-EM and the RCP8.5 scenario are shown relative to the baseline period (observations, 2000–2015) for 2085–2100. The gray shading
denotes the baseline ecosystem security levels from 2000 to 2015. Changes include any shifts between adjacent and nonadjacent subtypes. For example, the ‘‘increased semi-
secure” category represents regions that changed from being hyper-secure to semi-secure. (d) The increased area coverage (percentage) of the different ecosystem security
levels is shown in (c).

Fig. 5. Spatial distribution of threatened species rates for birds (a) and mammals (b). The threatened rate is calculated as the ratio of the number of threatened species (birds
or mammals) to the number of total species (birds or mammals). The collection of data used here for birds and mammal species was up to 2013 and March 2018, respectively.
Spatial distribution of species richness loss for total species by the end of this century under the RCP4.5 (c) and RCP8.5 (d) scenarios. The total species richness loss rate is
calculated as the ratio of species to be lost relative to the total number of species. The inserted graphs show the threatened rates for birds and mammals, as well as species
richness loss across four ecosystem security levels (60°S–60°N). (Four colors represent four levels of ecosystems, see Fig. 4a).
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Fig. 6. Relationships between key ecosystem variables and species threatened rates. Piecewise structural equation models (pSEM) of birds (a, b) and mammals (c, d)
threatened rates in secure and insecure ecosystems. Solid lines indicate positive paths, dashed lines indicate negative paths, and gray dotted lines indicate non-significant
paths. The arrow width represents the size of path coefficients. The goodness-of-fit metrics of P-value > 0.05 indicate that the pSEM model is acceptable.
birds and mammals across secure and insecure ecosystems (Fig. 6).
Key ecosystem variables were selected based on low correlations,
while spatial autocorrelation was taken into consideration. The
best-fitting pSEM indicates that NDVI (−0.38) has a strong negative
effect on bird threatened rates in secure ecosystems, compared to a
weaker effect (−0.27) in insecure ecosystems (Fig. 6a–b). This find-
ing suggests that healthier vegetation is crucial for bird survival, as
it provides nesting habitats, shelter, and essential food resources.
In insecure ecosystems, however, the protective benefits of vegeta-
tion are diminished. The human footprint (0.05) shows a positive
effect on bird threatened rates in secure ecosystems, implying that
human activities such as land-use changes, deforestation, and
habitat destruction increase the risk to bird populations [26,27].
In contrast, the human footprint (−0.04) has a negative effect in
insecure ecosystems, potentially because the remaining bird spe-
cies have evolved to tolerate certain levels of human disturbance.

Furthermore, the temperature variable (0.24) is a primary dri-
ver influencing bird threatened rates in insecure ecosystems. Ris-
ing temperatures destabilize the environmental conditions that
birds depend on during critical periods, including breeding cycles
and migration routes [50], placing additional pressure on vulnera-
ble bird populations [25]. Climate disruption can cause mistimed
migrations, which reduce reproductive success and contribute to
population declines. Although some birds may adapt by seasonally
migrating to less disturbed areas where they can establish new
1530
colonies, the success of this process depends on the implementa-
tion of effective conservation strategies. HDI (0.07) also exhibits
a positive effect on bird threatened rates, indicating that regions
with higher human development, characterized by increased
industrialization, urbanization, and infrastructure expansion, face
greater threats to bird populations [20], reflecting the socio-
economic drivers behind species threats. Additionally, climatic fac-
tors like precipitation and temperature indirectly influence bird
threatened rates by positively impacting NDVI.

Regarding mammal threatened rates, NDVI (−0.03) does not
significantly affect them in secure ecosystems, in contrast to its
stronger impact on birds (Fig. 6a, c). However, NDVI (−0.30) exhi-
bits a significant effect in insecure ecosystems (Fig. 6d). This is
likely attributed to mammals’ increased reliance on vegetation
for shelter and protection from predators in environments with
scarce hiding places [51]. Moreover, herbivores competing for
dwindling resources may migrate in search of better habitats,
while carnivores follow their prey, further intensifying the stress
on mammals [52]. This trophic cascade amplifies pressures on
mammal populations [53]. In addition, mammals struggle to adapt
or migrate quickly enough during ecosystem transition, resulting
in higher mortality [50]. Although colonization may occur in cer-
tain cases, it is constrained by geographical isolation or competi-
tion with native species. To enhance the survival chances of
threatened species, it is essential to prioritize habitat connectivity
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and assist colonization efforts. As a result, these interactions reveal
how threatened birds and mammals are impacted in secure and
insecure ecosystems.

It should be noted that our study has certain limitations. First,
while we integrated multiple ecosystem variables and employed
threshold models to analyze ecosystem transition, other influential
factors like food web disruptions and eutrophication were not fully
accounted for in our analysis. Nevertheless, the threshold detection
approach has been extensively applied in ecological studies and is
regarded as robust [7,15,41]. Given the inherent uncertainty in the
threshold of ecosystem transition, minor perturbations near the
threshold can trigger a series of dramatic changes [9,54]. Second,
our study provides valuable insights into how ecosystem transition
threatens species richness loss, though it represents just one aspect
of ecosystem dynamics. Future research should combine our find-
ings with other ecological theories to better capture ecosystem
responses to environmental stressors. Lastly, oxygen dynamics,
shaped by photosynthesis and decomposition processes, require
holistic consideration to understand their role within ecosystems.
4. Conclusion

Our study introduces the concept of ecosystem transition,
emphasizing that species richness loss occurs abruptly as ecosys-
tems shift from secure to insecure states. By analyzing the relation-
ships between 19 ecosystem variables and the ESI, we identified
critical thresholds that classify ecosystem security levels. Our pro-
jections suggest that by 2100, the ecosystem areas considered inse-
cure will encompass 40.4% of the global land area under the RCP8.5
scenario, contributing to 51.6% of species richness loss. This finding
reveals the disproportionate impact of insecure ecosystems on the
decline of species richness, underscoring the heightened vulnera-
bility of species to environmental degradation.

Thus, these insights remind us of the necessity to develop
strategies aimed at preventing ecosystem transition, which is the
prerequisite for mitigating species richness loss. Restoration and
adaptation efforts should be targeted and tailored to specific
ecosystem needs, with nature-based solutions offering a promising
path to enhancing ecosystem resilience to climate change. In addi-
tion to the abrupt decline in species richness caused by ecosystem
transition, the resulting adverse impacts on ecosystem functions
and stability deserve further attention. Consequently, it is antici-
pated that our findings will stimulate research into the effects of
two-way interactions between ecosystem transition and species
richness loss.
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