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a b s t r a c t

Epidemic prediction is a crucial foundation of disease control policy-making. Owing to the 
high population connectivity of current epidemics, it is essential to capture the spatial 
transmission of infectious diseases. However, most models currently used in epidemic 
prediction are single-point models, and they can only capture the time-dynamic increase 
of cases in limited areas. In this study, we develop a two-dimension epidemic prediction 
model by introducing diffusion processes, which take spatial transmission epidemics into 
account. We utilize mathematical theorems to prove a well-posed solution of the model. 
In addition, we also consider various influencing factors that affect the spread of epi-
demics, and introduce multiple parameterization schemes. Results suggest that this two- 
dimension model provides more precise predict the spatial and temporal distribution of 
confirmed cases. The regional average prediction score of COVID-19 in July 2022 in 
Lanzhou is 76.5 % and COVID-19 from May 1st to May 31st, 2023 in China is 70.7 %, 
respectively. Our results offer a scientific foundation for further study on the prediction of 
spatial epidemics, which contributes to an in-depth understanding of epidemic dynamics 
and provides valuable reference for the formulation of public health strategies and 
policies.

© 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi 
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Infectious diseases have posed a significant threat to human health and social development (Sun et al., 2016). In the 
context of climate change, the changing development pattern of infectious diseases will directly or indirectly affect the 
outbreak and spread of many infectious diseases (Wu et al., 2014). In the spring of 2009, a novel influenza A (H1N1) virus 
emerged in Mexico, resulting in approximately 18,000 deaths globally (Wang et al., 2014). After that, the Ebola virus 
outbreak in West Africa between 2013 and 2016 led to the infection of over 28,000 people, with a death toll exceeding 11,000 
individuals (Garske et al., 2017). In 2012, Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) was detected in 
Saudi Arabia, resulting in more than 500 deaths in less than 3 years (Corti et al., 2015). In March 2020, the World Health 
Organization (WHO) officially declared the outbreak of COVID-19 as a global pandemic, with over 775 million confirmed 
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cases as of March 31, 2024 (https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports). On July 
23, 2022, the WHO declared the monkeypox outbreak was a global health emergency, with a cumulative total of 85,000 
confirmed cases (Nuzzo et al., 2022; Zhang et al., 2024). Although there have been many significant achievements in the 
prevention and control of infectious diseases, these diseases still pose unpredictable risks (Heesterbeek et al., 2015).

Epidemiological model is a crucial approach for predicting the spread of infectious diseases (Chen et al., 2020). It unveils 
dynamic mechanisms of transmission and epidemiological characteristics of infectious diseases, and guides effective 
prevention and control strategies (Li et al., 2017). The susceptible-infectious-removed (SIR) and susceptible-exposed- 
infectious-removed (SEIR) epidemiological models are the two most widely-used dynamic models (Wu et al., 2020). 
Confronted with high population connectivity, localized outbreaks are possible to evolve into global pandemics (Huang, 
Huang, et al., 2020). Consequently, predicting the distribution of infectious diseases is of vital importance, whereas 
spatial epidemic modeling is particularly effective in describing the dynamic evolution of epidemics (Earn et al., 2000). Two- 
dimension epidemiological model enables the estimation of the spatial distribution of epidemics and the transmission 
across various spatial and temporal scales, thereby helping to make public health policies (Sun et al., 2007).

A precise prediction system should include the influence of environmental factors, such as temperature, humidity, and 
air quality (Lian et al., 2020; Liu et al., 2021). Chowdhury et al. (2018) found that there was a significant positive correlation 
between increasing temperature and the incidence of malaria, and enteric fever increased with rainfall. In 2020, Huang, 
Huang, et al. (2020) pointed out that approximately 73.8 % of the COVID-19 cases were concentrated in regions with ab-
solute humidity between 3 g/m3 to 10 g/m3. It means that humid conditions may affect the spread of COVID-19 pandemic. 
Ma et al. (2020) pointed out the daily mortality of COVID-19 is negatively with absolute humidity. In addition, infectious 
diseases vary with geographic location, and local ecological changes can lead to the increase of epidemic intensity (Wilson, 
2010). For example, the fungus Coccidioides immitis, which triggered epidemics in Central and South America, South-
western United States and Mexico, multiplies on the surface of arid and semi-arid areas characterized by alkaline soil, hot 
summers and short moist winters (Flynn et al., 1979).

In addition, a reliable and accurate prediction system also needs to consider the impact of human factors, such as 
population density, population mobility and control measures. With the rapid development of transportation systems, 
transportation networks accelerate the spread of disease (Xu et al., 2013). When people move from one region to another, 
they serve as a part of global dispersal process (Wilson, 2010). High-speed rail and aviation associated with Wuhan led to a 
25.4 % and 21.2 % increase in the number of new confirmed cases of COVID-19, respectively (Zhu & Guo, 2021). And in-
ternational travelers result in dengue's rapid and large-scale spread by carrying the disease into non-endemic regions 
(Liebig et al., 2019). The spread of COVID-19 in China suggests that timely government control can prevent hundreds of 
thousands of confirmed cases (Tian et al., 2020). Thus, control measures and travel restrictions are essential in the early 
stage of epidemic outbreaks, which may influence the spread speed and scale of diseases (Liu et al., 2024). Wang et al. (2020)
suggest that self-quarantine at an outbreak's early stage, is conducive to prevent the transmission of infection.

Based on the second version of the Global Prediction System for Epidemiological Pandemic (GPEP-2) developed by Huang 
et al. (2020, 2023a, 2023b), a two-dimension diffusion model was developed in this study. This two-dimension diffusion 
model characterizes the spread of epidemics in different regions. We combine three parameterization schemes in the 
prediction system, including control measures, vaccination, and seasonal changes in infection rates, to simulate the spatio- 
temporal evolution of actual epidemics. The model further improves prediction accuracy, and provides a foundation for 
high-resolution accurate prediction and early warning of global epidemics. Analyzing the diffusion of epidemic in different 
regions promotes information sharing and cooperation among regions, thus providing relatively more scientific reference 
for the development of control measures and resource allocation.

2. Data

Epidemic data of COVID-19 in Lanzhou City, Gansu Province and Suzhou City, Jiangsu Province were obtained from the 
Health Commission of Lanzhou City (https://wjw.lanzhou.gov.cn/) and the Chinese Center for Disease Control and Pre-
vention (CDC, https://www.chinacdc.cn/), respectively. The time range of epidemic date in Lanzhou is from July 6th to July 
28th, 2022 and in Suzhou is from February 14th to March 7th, 2022. Daily data collected include the number of newly 
confirmed cases, asymptomatic cases, asymptomatic cases transferred to confirmed cases, recovered cases, and death cases. 
The number of confirmed cases includes the number of people who transferred from asymptomatic to confirmed cases, and 
we can get the number of new infected cases by subtracting the number of asymptomatic transferred cases. The epidemic 
data in China after 2023 are derived from the national fever clinic monitoring data provided by the CDC Bureau of the 
Chinese Health Commission, including the total number of fever clinics in all regions of the country, the number of positive 
fever clinics and the proportion of positive fever clinics monitoring data.

3. Two-dimension epidemic model

3.1. Model design

The two-dimension model equations, which incorporate the diffusion process, are based on the GPEP-2 proposed by 
Huang et al. (2020, 2023a, 2023b). The GPEP-2 model defines seven disease states, including susceptible (S), protected 
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(P), exposed (E, infected cases in a latent period), infected (I, infected cases that have not been quarantined), quarantined (Q, 
confirmed and quarantined cases), recovered (R), and mortality (M) cases. Then, by introducing the different diffusion 
terms, we have the following two-dimension model equations: 

∂S(x; y; t)
∂t

= −
β(x; y; t)I(x; y; t)S(x; y; t)

N(x; y; t)
− α(x; y; t)S(x; y; t) +∇⋅(DS(x; y)∇(S(x; y; t))); (1) 

∂E(x; y; t)
∂t

=
β(x; y; t)I(x; y; t)S(x; y; t)

N(x; y; t)
− γ(x; y; t)E(x; y; t)+∇⋅(DE(x; y)∇(E(x; y; t))); (2) 

∂I(x; y; t)
∂t

= γ(x; y; t)E(x; y; t) − δ(x; y; t)I(x; y; t)+∇⋅(DI(x; y)∇(I(x; y; t))); (3) 

∂Q(x; y; t)
∂t

= δ(x; y; t)I(x; y; t) − λ(x; y; t)Q(x; y; t) − κ(x; y; t)Q(x; y; t); (4) 

∂R(x; y; t)
∂t

= λ(x; y; t)Q(x; y; t)+∇⋅(DR(x; y)∇(R(x; y; t))); (5) 

∂M(x; y; t)
∂t

= κ(x; y; t)Q(x; y; t); (6) 

∂P(x; y; t)
∂t

= α(x; y; t)S(x; y; t)+∇⋅(DP(x; y)∇(P(x; y; t))): (7) 

where the sum of seven categories in all grids was equal to total population (N) at any time, and it can be expressed as 
follows: 

S(x; y; t)+ E(x; y; t) + I(x; y; t) + Q(x; y; t) + R(x; y; t) + M(x; y; t) + P(x; y; t) = N(x; y; t): (8) 

The above presented model contains the following assumptions: 

(1) Assuming that the population is diffusion mixed during the epidemic, and D(x; y) represents the diffusion rate.
(2) It is evident in the equations that local quarantined cases and mortality cases cannot move to other places, which 

means that they are no longer able to spread viruses. In contrast, the other five categories including susceptible, 
protected, exposed, infected, and recovered exhibit different diffusion abilities as follows:

DS > DE > DP > DR > DI; (9) 

The coefficients α; β; γ; δ; λ and κ in equations (1)–(7) represent protection rate, infection rate, inversion of the average 
latent period, rate at which infected people enter quarantine, time-dependent recovery rate, and time-dependent mortality 
rate, respectively. The sum of N in equation (8) is assumed to be constant, which means that birth and death rates are not 
considered. Compared to traditional SEIR model, the improved model equations (1)–(7) introduce two new states of dis-
eases: protected (P) and quarantined (Q) cases. Considering the increasing of people's self-protection awareness during the 
epidemic, there is a group of individuals (i.e., protected cases) who have a far lower chance of being infected with viruses 
than the susceptible individuals. Besides, it is impossible to detect and quarantine all confirmed cases due to the complexity 
of reality, and “Q” only represents isolated confirmed cases.

3.2. Process of epidemic diffusion

An epidemic process refers to a process that pathogens are discharged from infectious sources, invade susceptible 
population through certain transmission routes, form new infections, and subsequently propagate. Unlike individual 
phenomenon in the process of infection, an epidemic process represents a collective phenomenon occurring within pop-
ulations. An epidemic process must have three basic links, including sources of infection, routes of transmission and sus-
ceptible population. These three interconnected components collectively impact the development of epidemics. The 
absence of any one of these links would hinder the transmission of infectious diseases among people. In addition, the 
epidemic intensity of infectious diseases is also constrained by natural and social factors. However, it is difficult to describe 
such a complex process with mathematical formulas. For simplicity, we will focus on elucidating the diffusion process.

The diffusion rate D(x; y) in equation (9) is assumed as follows: 

D(x; y)=D0(x; y) + D1(x; y) + D2(x; y) + D3(x; y) + D4(x; y); (10) 
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where D0(x; y) represents the impact of pollution on the epidemic process of infectious diseases. The role of respiratory 
viruses in the pathogenesis of severe respiratory infections is an issue of great importance. Airborne transmission, including 
droplet, droplet nucleus and dust, is the key to respiratory infections (Tellier et al., 2019). The main pathway of exposure 
from air pollution is through the respiratory tract. Droplet transmission occurs when an infected person exhales, sneezes or 
coughs, releasing pathogens which are then inhaled by others. People living in high concentration of pollution are reduced 
the resistance to viral and bacterial infections, resulting the increase of epidemic diffusion scale. Thus, we used the con-
centration of PM2.5 as an alternative indicator in this model.

The D1(x; y) in equation (10) represents the impact of natural factors, which is mainly related to local climate and 
geographical conditions. For airborne infectious diseases, there is obvious seasonality with a high incidence in winter and 
spring, and their outbreaks are cyclical. Furthermore, natural factors can alter epidemic characteristics of infectious diseases 
by influencing human living habits and body resistance. For example, people stay indoors more during hot summers and 
cold winters, and there may be an increase in the incidence of certain infectious diseases. This trend could be attributed to 
factors such as proximity of individuals and reduced ventilation (Lian et al., 2023).

The D2(x; y) in equation (10) represents the impact of residential environment on the epidemic process of infectious 
diseases. In crowded residential areas, close contact between people is relatively more frequent, which facilitates the 
transmission of viruses and bacteria. Moreover, regions with crowded living conditions and high population density are 
prone to a high incidence of infectious diseases, as large population size and high concentration of people lead to an 
increased risk of epidemic transmission.

The D3(x; y) in equation (10) indicates the impact of economic and medical conditions on the transmission of infectious 
diseases. In certain regions, limited health education leads to inadequate disease awareness, and the lack of knowledge in 
turn hinders epidemic control. As a result, it is easy to control infectious diseases in regions with superior medical facilities 
and systems, while it is difficult to control diseases in areas with scarce medical resources. These regions may face issues 
such as inadequate vaccine and medication supplies, a shortage of medical personnel, and outdated health facilities. These 
issues exacerbate the epidemic together.

The D4(x; y) in equation (10) represents the impact of local population mobility and transportation conditions on the 
epidemic process of infectious diseases. In areas with high local population mobility, the probability of contact between 
susceptible and infected individuals increases, and it favors the spread of infectious diseases. It is worth noting that large- 
scale cross regional population mobility during holidays accelerates the spread and prevalence of infectious disease. 
Additionally, the mobility can lead to cross-regional transmission of viruses or other pathogens, particularly to areas that 
originally had low rates of infectious diseases. It thereby exacerbates the spread of epidemics in broad regions (Li et al., 
2023).

4. Well-posedness of solution

It can be observed from equations (1)–(7) that only equations (1)–(3) are coupled by S, E and I, and the last four equations 
are single-variation partial differential equations essentially. Consequently, the well-posedness of equations (1)–(3) and four 
others will be discussed separately in the following.

Assuming that equations (1)–(3) satisfy the homogeneous Dirichlet boundary condition (non-homogeneous boundary 
conditions and other boundary conditions have similar conclusions), which is 

S(x; y; t)= E(x; y; t) = I(x; y; t) = 0; (x; y) ∈ ∂Ω; t > 0; (11) 

with the following initial condition, 

S(x; y;0)= S0(x; y); E(x; y;0) = E0(x; y); I(x; y;0) = I0(x; y); (x; y) ∈ Ω; (12) 

where Ω ∈ R2 is the bounded region in two-dimension plane, and ∂Ω is the boundary. S0(x;y), E0(x;y), and I0(x; y) are the 
bounded nonnegative functions in Ω. According to Theorem 1.1 in William E Fitzgibbon's research (Fitzgibbon et al., 2021), 
the well-posedness of systems (1)–(3) can be achieved as the following theorem 1 (Supplementary Material). 

Theorem 1. Based on the definite solution conditions of (11) and (12), there is a unique global weak solution (solution in the 
square integrable space) for systems (1) - (3), and the solutions S(x;y;t), E(x; y; t) and I(x; y; t) are uniformly bounded on t ∈ ℝ+.

In addition, based on systems (1)–(3) discussed above and assuming the other four single variable equations (4)–(7)
satisfied the same initial condition and boundary condition like (11) and (12), equations (4) and (6) are initial value problems 
for first-order linear ordinary differential equations essentially. It is easy to use the method of constant variation to obtain 
the expression of the solution, and it can be proven that the solution has an upper bound controlled by a known function 
(initial value and external forcing term), indicating the existence and uniqueness of the solutions (Supplementary Material). 
Equations (5) and (7) have similar forms and are special cases of equation systems (1)–(3). Therefore, according to Theorem 
1, the definite solution problem of equations (5) and (7) is well-posedness.

The above discussion indicates that the two-dimension epidemic model (1)–(7) we constructed is well-posedness under 
given initial and boundary conditions. The detailed proof process can be found in the Supplementary Material.
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5. Parameterization schemes

Parameterization is a mathematical process that expresses the state quantities of a system, process or model as a 
function of some independent variables called parameters. This method was utilized in atmospheric sciences initially 
(Stensrud, 2009). Considering the unpredictability of the real world, where various situations may arise unpredictably, 
integrating parameterization into epidemic models enables a relatively more comprehensive representation of infectious 
disease transmission. Through different parameterization schemes, we can get comparatively better prediction results in 
different situations of the real world. As shown in Fig. 1, we have constructed the following parameterization schemes in the 
two-dimension model.

5.1. Parameterization scheme for vaccination

Vaccines are crucial tools in pandemic response and protection against severe diseases, which also provide protection 
against infection and transmission (Zou et al., 2022). When a community has a high vaccination rate, the spread of viruses is 
significantly reduced, as most people viruses encounter are immune. The more people who are vaccinated, the lower the 
risk of virus exposure for those who cannot be vaccinated. Therefore, constructing a vaccine parameterization scheme is 
helpful for predicting infectious diseases. At the onset of the epidemic, we assume that vaccinations have been completed, 
which can already achieve the simulation effect. P(0) and S(0) represent the initial number of protected and susceptible 
individuals, respectively. In this parameterization scheme, vaccination transforms the susceptible individuals of S(0) into 
protected group of P(0). The parameterization scheme is constructed as follows: 

P(0)= S(0)⋅Vr⋅Ve; (13) 

S(0)= S(0) − S(0)⋅Vr⋅Ve; (14) 

where Vr represents vaccination rate, and Ve represents protection rate of vaccines.

5.2. Parameterization scheme for control measures

Owing to the continuous mutation of viruses and the difficulty of large-scale vaccination, control measures such as 
reducing human interactions are still the most effective methods to prevent the development of epidemics. We developed a 
parameterized scheme of different control measures to accurately simulate and predict the outbreak of epidemics (Huang 
et al., 2020, 2021). This parameterization contains four coefficients, including Days con, E0, Infection attenuation rate and 
Diffusion attenuation rate. Since the first confirmed case is often detected several days after infection, we assume that 
Days con represents the time from the beginning of epidemics to the time when government departments start taking 
control measures. Furthermore, there are already several infected people at the first time of the government report, we 
therefore use E0 to represent the number of initially exposed cases. Infection attenuation rate represents attenuation rate of 

Fig. 1. Schematic diagram of the parameterization scheme of vaccination (a), control measures and seasonal change in temperature (b).
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infection, and Diffusion attenuation rate represents attenuation rate of diffusion. Once government initiates strong control 
measures, the infection rate and diffusion rate of epidemics decline exponentially over time. The parameterization scheme 
is constructed as follows: 

β(t)=
{

β0 t < Days con
β0⋅Infection attenuation ratet; t ≥ Days con ; (15) 

D(t)=
{

D t < Days con
D⋅Diffusion attenuation ratet; t ≥ Days con ; (16) 

where β0 and D represent historical infection rate or base infection rate, and basic diffusion rate, respectively.

5.3. Parameterization scheme for seasonal changes

Many environmental factors that vary with the seasons also affect the development of epidemics, and temperature is a 
major factor in the environment. In the real world, there is a basic infection rate β0 and basic diffusion rate D1 that influ-
encing the diffusion of epidemic. In addition, the viruses can maintain different activities at different temperature, resulting 
the infection rate change with season. In this study, we constructed a parameterization scheme for the effect of temperature 
on the infection rate to incorporate the factor of temperature into the model. The actual infection rate β(t) and diffusion rate 
D1(t) will change with temperature in different seasons. Then the parameterization scheme is constructed as follows: 

β(t)= β0(t) + β1F(T2m); (17) 

D1(t) =D1 + a1F(T2m); (18) 

where F(T2m) is the probability distribution function (PDF) of local temperature at 2m above ground level obtained by 
Huang et al. (2020). They found that 60 % of the confirmed COVID-19 cases occurred in regions where the air tempera-
ture ranged from 5 ◦C to 15 ◦C. The parameter β1 and parameter a1 are obtained through nonlinear fitting. As the probability 
of virus transmission varies in different temperature regions, we calculated global distribution of annual PDF of temperature 
using reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research 
(NCEP/NCAR).

6. Determination of model coefficients

On account of the complexity of the real world as well as the concealment and mutation of viruses, it is difficult to obtain 
an accurate set of infectious disease model parameters. Many researchers used empirical parameters for sensitivity ex-
periments, aiming at exploring the impact of different parameters on the development trend of infectious diseases. 
Nevertheless, statistical-dynamic forecasting method has been used widely in atmospheric sciences (Huang & Chou, 1990; 
Huang & Wang, 1991), and it improves the accuracy of weather and climate prediction. We can obtain parameters that are 
comparatively closer to the real world, and simulate the epidemic development trend through this method.

Firstly, we refined the latest epidemic data into high resolution, and collected comparable data from similar outbreak 
scenarios to invert basic coefficients in the epidemic prediction model. Then, we set an initial value and a bound for each 
coefficient in the two-dimension epidemic model. In this step, we used the date collected from similar epidemic outbreaks 
to invert basic coefficients, and basic coefficients are used as the initial value in the epidemic model of the latest outbreak. In 
the next step, the latest epidemic data and coefficient optimization algorithms (such as least squares) were used to invert 
each coefficient in real time. In the above two inversion, the minimum variance sum of obtained time series parameter and 
actual data was adjusted through iterative calculation, so that the initial values of the coefficients were adjusted and kept 
close to the real value. Finally, we got a set of coefficients that were close to the real world, which were substituted into the 
epidemic model to predict the development of epidemic trends. The initial values of coefficients and initial number of 
individuals in various disease states may affect the accuracy of inverted coefficients. It is necessary to combine empirical 
assumptions and change the initial value many times to perform inversion for accurate and stable results. In addition, it is 
useful to empirically determine initial values of coefficients in the epidemic model, and use parallel methods in program 
algorithms to improve the speed of inversion and prediction. Adopting efficient numerical methods and optimization al-
gorithms, it is possible to significantly enhance the computational speed and predictive accuracy of the model. The inte-
gration of these methods ensures the effectiveness and stability of the model in practical applications, which is crucial for 
epidemic analysis and management.

7. Process of system-prediction

The prediction process includes data collection, data processing, basic coefficients inversion and assimilation, simulation 
and prediction, as well as accuracy verification. Fig. 2 is a schematic diagram of the system-prediction process. Through 
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precise data handling and model validation, this prediction process provides a solid foundation for dynamic analysis of 
epidemics.

Data collection: When an epidemic breaks out in a country or region, epidemic data are collected from the website of the 
local Health Commission. Social data include population size (https://hub.worldpop.org/), gross domestic product (Zhao 
et al., 2017) and urbanization levels (https://lbs.amap.com/). The meteorological data, such as 2m temperature and dew-
point temperature data, are sourced from the ERA5 reanalysis dataset provided by the European Centre for Medium-Range 
Weather Forecasts (ECMWF, https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form).

Data processing: Owing to the epidemic data we collected are always in the city-level or province-level, we need to refine 
and process it to fine-scale level. The process primarily involves spatially epidemic data and covariates like population, 
temperature, and dew point temperature as inputs (see Fig. 3).

The number of daily cases in a given region is relatively small compared to the total population. Therefore, we assume 
that the number of cases yi in a given region follows a Poisson distribution: 

yi ∼ Pois(μi); (19) 

where μi is expected confirmed cases, μi is equal to the sum of the incidence numbers at all grid points in the region(μi =
∑ni

j=1popi;jβi;j), ni is the total number of grid points in region i, and popi;j, βi;j denotes the population size and incidence rate in 
grid j = 1;…;ni, respectively.

Then, the logarithmic value of the incidence rate βi;j is considered to have a functional relationship with the covariate: 

log
(

βi;j

)
= β0 +

∑Q

q
βqcov(q)i;j + ξ; (20) 

where β0 represents intercept, cov(q)i;j denotes covariate values in grid j of region i, with coefficients βq(q = 1;…;Q), Q is the 
number of covariates, and ξ is a Gaussian random field.

Basic coefficients inversion: Similar epidemic data and coefficient optimization algorithm are used to invert basic co-
efficients of the two-dimension epidemic model.

Multi-source dynamic ensemble prediction (MDEP): When there is only one infectious source, the traditional infectious 
prediction models can achieve reliable prediction results. However, due to the complexity of the real world and the 
concealment of viruses, there is often more than one infectious source, that is, the development of the epidemic will change 
over time, and initial prediction results cannot represent real development. Therefore, Huang et al. (2023b) introduced an 
ensemble prediction method of weather forecasting (Zhu, 2005) into the infectious disease model, dynamically adjusting 
the model parameters based on the true development of epidemics. By summing up initial prediction results with dynamic 
prediction results, the integration result can be used as the final prediction result, thus obtaining accurate prediction results.

Simulation and prediction: Fitting simulate data with reported data, we invert basic coefficients and parameters in the 
parameterization scheme in the previous step. Besides, we use corresponding parameterization schemes for different re-
gions. Then, we obtain predicted results through integration.

Fig. 2. Schematic diagram of two-dimension diffusion system prediction process.
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Accuracy verification: We compare prediction results with reported data to test prediction accuracy. By verifying the 
accuracy of the model, we can revise the algorithm well and improve the parameterization scheme, thus leading to a more 
accurate prediction system. We adopt the following two methods to evaluate the predictive ability of the model. The first 
method is based on relative error (RE). We assess the model's predictive accuracy at the macro level, calculating the 
discrepancy between predicted and actual numbers of infected individuals. This approach enables a rigorous assessment of 
the model's effectiveness in estimating the scale of infections. 

RE=
1
T

∑T

t=1

⃒
⃒
⃒
⃒
Rs − Rt

Rt

⃒
⃒
⃒
⃒× 100%; (21) 

MS=1 − |RE|; (22) 

where MS (Macro Score) represents the prediction score of the sum of cumulative infected cases for epidemic prediction, 
and this score evaluates overall accuracy of predictions across various outbreaks. Additionally, RE denotes the relative error 
between cumulative predicted data and actual data for each outbreak, where “Rs” stands for predicted values, “Rt” rep-
resents actual values observed, and “T” denotes the number of samples considered in the analysis.

Fig. 3. Potential covariates used in disaggregation downscaling model. Population density (a, the blank space represents missing data, but it belongs to Chinese 
territory), 2m dewpoint temperature (b) and 2m temperature (c).
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The second method is the bias score, which was previously used to measure the prediction bias of a model for a certain 
level of precipitation. On the grid points of the region, we set the value numerically equal to the ratio of the total number of 
grid points that meet the infection MS in the predicted region to the corresponding total number of grid points in the actual 
situation. This is used to evaluate the spatial prediction performance of the two-dimension diffusion model in the region. 

BS=
hits

hits + misses
× 100%; (23) 

where BS (Bias Score) represents the prediction score at region level for epidemic prediction, hits and misses denote the 
number of grid points with MS greater than or equal to set score (60 %) on each grid point and the number of grid points with 
MS less than set score on each grid point, respectively.

8. Application of prediction modeling to COVID-19

8.1. Prediction of cases in Suzhou City

On February 14th, 2022, a local outbreak of COVID-19 occurred in Suzhou City, Jiangsu Province of China. On the first day, 
there were 8 confirmed and 4 asymptomatic infections. The local government implemented timely and proactive control 
measures to mitigate further spread of the epidemic. As of March 7th, the epidemic was under control and approaching its 
end, with a cumulative total of 141 confirmed cases.

We simulate this epidemic on an ideal grid, assuming Suzhou as a square area with [0, 52] × [0, 52]. We uniformly 
distribute the total population of Suzhou to the internal grid points of the square area except for the boundary, assuming 
that the 12 infected individuals on the first day are distributed on a grid point. Then we introduce the parameterization 
scheme of control measures into the model to simulate the evolution of the epidemic, and the simulation results are shown 
in Figs. 4 and 5. In terms of the temporal evolution trend of the number of confirmed cases illustrated in Fig. 4, the 
simulation results demonstrate a good concordance with the actual development. Therefore, it is credible to use diffusion 
models to simulate real development of infectious diseases. The model achieves reliable results in predicting the total 
number of infected individuals. As of March 7th, the average relative error between predicted results of cumulative infected 
cases and actual data of COVID-19 is 7.5 %. Additionally, analyzing the spatial distribution of confirmed cases, as shown in 
Fig. 5, we find that the COVID-19 first spread and developed in the initial grid. On account of the existence of diffusion terms 
in the model, the distribution of confirmed cases is spatially multi-point over time. Moreover, the number of confirmed 
cases at the initial infection spatial location shows a trend of increasing at first and then decreasing. If control measures and 
preventive measures are taken in the early stages of infection to control the spread of infectious sources, the extent and 
development intensity of infectious disease transmission will decrease significantly (S1, S2).

Fig. 4. Comparison of prediction results and reported data of daily (a) and cumulative (b) confirmed cases in Suzhou, Jiangsu Province from February 14th to 
March 7th in 2022. Red circles represent the curve of reported data of the epidemic, and solid blue lines represent the curve of prediction of the epidemic.
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8.2. Prediction of cases in Lanzhou City

A sudden outbreak of COVID-19 occurred in Lanzhou City, Gansu Province of China in July 2022. The Health Commission 
of Lanzhou City reported for the first time on July 8th, 2022, with 4 positive cases and 1 asymptomatic case, and the onset 
date of the first positive case is July 6th. As is well known, the onset date is several days earlier than the reported date. Thus, 
we collect daily number of newly diagnosed cases rather than reported cases in Lanzhou City from July 6th to July 28th in 
this research. The time evolution trend is shown in Fig. 6. Since the first positive case appeared on July 6th, the development 
of the epidemic in Lanzhou has been divided into multiple stages. Firstly, the development of the epidemic in Lanzhou was 
in the early stage, with no more than 100 daily new cases. Subsequently, there was a significant increase in daily new 
diagnosed cases from July 17th, reaching a maximum of 260 cases on July 21st. In the early stage of epidemic, we could 
discover one source of infection and made prediction based on limited data. However, there are multiple transmission 
chains in Lanzhou and the infection rate has changed over time. Therefore, the MDEP method must be employed for 
prediction.

The prediction results of the number of daily newly diagnosed cases is shown in Fig. 8a, which includes the first pre-
diction results, the second prediction results and the dynamic integration results. The first wave of predictions yielded 
reliable results before July 15th, which is consistent with the actual development trend. Since July 16th, there has been a 
significant increase in the number of daily newly diagnosed cases, indicating the possibility of new potential infection 
sources. Therefore, we started dynamic prediction on July 16th. We conducted a new round of prediction, and integrated 
two prediction results to obtain final prediction results. The integration results are in good agreement with actual daily 
number of newly diagnosed cases, and the accuracy is significantly increased. Meanwhile, in terms of the evolution trend of 
the cumulative number of confirmed cases, the integration results are relatively consistent with actual development 
(Fig. 8b). The model can basically predict the development trend and achieve good results. The prediction score of MS 
(Fig. 10a) is 83.4 % on July 10th and 92.5 % on July 28th. The increase of prediction score indicates that the MDEP method can 
predict the impact of potential infection sources and the prediction results of cumulative cases become comparatively more 
accurate.

In terms of the spatial distribution of diagnosed cases, they are mainly concentrated in Chengguan District (Fig. 7). There 
were some diagnosed cases in Yuzhong County and Anning District over time, but no large-scale spread occurred. A sudden 
break occurred in Chengguan District on July 16th, with a significant increase in daily new diagnosed cases. We divide 
infection cases into grid points and use models for spatial prediction, and prediction results are shown in Fig. 9. The overall 

Fig. 5. Spatial distribution of the number of infected individuals simulated in an ideal grid. (a: February 18th; b: February 23rd; c: February 28th; d: March 7th).
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distribution of predicted results is almost consistent with that of actual development, and local prediction is also close to 
actual cases. As of July 28th, the predicted score of BS can reach 76.4 %, which means that good results have been achieved in 
both spatial distribution prediction and local prediction (Fig. 10b upper). When we set the MS of each grid is greater than 
50 %, 60 % and 70 %, respectively. At first, the daily region-level prediction score shows different results. Nevertheless, the 
same daily BS were consistently generated since July 22nd (Fig. 10b bottom), which means the MDEP significantly increase 
the prediction score of epidemic prediction. The spatial prediction score shows a downward trend over time, indicating that 
the model can currently achieve good results in short-term prediction, while long-term prediction effect still needs to be 

Fig. 6. Daily number of positive cases (blue line) and cumulative number of positive cases (orange line) of COVID-19 reported by fever clinics in China from 
March 1st to June 6th.

Fig. 7. Spatial distribution of cumulative number of positive individuals on July 7th (a), July 14th (b), July 21st (c), and July 28th (d).
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improved. In the future, long-distance diffusion and local development limitations will be introduced into the model to 
obtain relatively more accurate spatial prediction results.

Fig. 8. Comparison of prediction results and reported data of daily (a) and cumulative (b) positive cases in Lanzhou City. Solid blue lines represent the curve of 
reported data of the epidemic.

Fig. 9. Spatial distribution prediction of cumulative number of positive individuals on July 7th (a), July 14th (b), July 21st (c), and July 28th (d).
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8.3. Prediction of COVID-19 diffusion in China

Since the outbreak of COVID-19, the Chinese government always insists on prioritizing the physical health and life safety 
of the people, and has invested heavily in epidemic control, vaccine development and patient care. In the context of mass 
vaccination of the population and decreased pathogenicity of COVID-19, the Chinese government started adjusting control 
measures. Since January 8th, 2023, the management measures of COVID-19 in China have been changed from category B 
infectious disease with management of category A to category B disease with management of category B (http://www.nhc. 
gov.cn/xcs/). Although the pathogenicity of COVID-19 has declined, COVID-19 did not disappear completely. This means that 
people are likely to be infected if the protection of vaccines declines. From April to May in 2023, as human mobility rapidly 
increased during International Labour Day vacation, the spread of COVID-19 accelerated significantly, leading to a resur-
gence in the number of infections (Fig. 11). As nucleic acid testing is no longer routinely conducted, the quantification of 
positive cases is now primarily through fever clinics. The data show the development trend of COVID-19 infection in China, 
but they do not represent the actual number of confirmed cases.

We collect data on positive cases in fever clinics of different provinces across China from March 1st to June 6th, 2023, and 
the time evolution trend is shown in Fig. 11. From March 1st to April 20th, the incidence of positive cases remained relatively 
low and exhibited stable development, while the number of positive cases in fever clinics began to significantly increase 
from April 23rd. On May 20th, the daily number of new positive cases achieved its peak. By June 6th, the number of daily 
new positive cases was less than 15000 cases. The cumulative number of positive cases in fever clinics nationwide reached 
870,948. In terms of spatial distribution, as shown in Fig. 12, the number of new confirmed cases has existed in fever clinics 
of all provinces in mainland China since April 23rd, 2023, and the epidemic was in the primary development stage. As of May 
14th, 2023, the epidemic had widely spread across the country and the epidemic was in the primary outbreak stage. 
Compared with April 23rd, the number of new confirmed cases in the mid-May phase of the epidemic in China showed a 
significant increasing trend, with the number of confirmed cases increasing by nearly 12 times. During the outbreak stage in 
mid-May, the number of new confirmed cases in South China accounted for 59.31 % of all regions, while that in Northwest 

Fig. 10. Macro-level (a) and region-level (b: upper) prediction score of cumulative number of positive cases in Lanzhou and daily region-level prediction score 
(b: bottom) of the MS calculated by cumulative cases on each grid set as greater than 50 %, 60 % and 70 %, respectively.

Fig. 11. Daily number of positive cases (a) and cumulative number of positive cases (b) of COVID-19 reported by fever clinics in China from March 1st to June 
6th.
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China was 1.84 %. It indicates that there is a spatial difference in the distribution of the number of confirmed cases, and the 
geographic scope and number of outbreaks spreading expand significantly (Fig. 12). In terms of spatial distribution, the 
number of confirmed cases continued to expand in eastern China, where there are more cases, while in northwestern China, 
where there are fewer confirmed cases, the coverage of confirmed cases remained relatively stable. The epidemic spread 
from eastern and southern China to most parts of China, with relatively more spread in Guangdong Province and its 
neighboring areas, as well as in some economically developed areas, and less spread in western China and remote areas of 
northern China. The spatial distribution of the epidemic not only reflects the influence of population mobility and 
geographic factors, but also may be related to economic development and accessibility of public health facilities in different 
regions.

We use a downscaling approach to decompose epidemic data to a resolution of 1◦ ×1◦, covering the entire country. Since 
the development trend of the epidemic from March to May is relatively stable and the growth of positive cases is slow, we 
choose May 1st for prediction, with a duration of 30 days. As shown in Fig. 13, the system has reliable predictions of various 
local epidemics in China. The actual development trend of epidemics closely aligns with our projections, and final pre-
dictions correspond well with actual reported data. It can be found that in the evolution trend of the cumulative number of 
confirmed cases, the model is relatively consistent with actual development, and they are highly overlapped in the first 25 
days. By the 30th day, predicted results are more than the actual number of positive cases. This indicates that when data are 

Fig. 12. Spatial distribution of cumulative number of positive individuals on April 23rd (a), April 30th (b), May 7th (c), May 14th (d), May 21st (e), and May 28th 
(f) in 2023.

Fig. 13. Comparison of prediction results and reported data of daily (a) and cumulative (b) positive cases in China's fever clinics from May 1st to May 31st in 
2023. Solid blue lines represent the curve of reported data of the epidemic, and solid orange lines represent the curve of prediction of the epidemic.
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representative, the model can predict the trend of development and obtain good results. The general prediction accuracy of 
prediction results is more than 80 % (Fig. 15a), and the model can achieve relatively more accurate predictions in a short 
period.

In terms of spatial distribution, predicted results are shown in Fig. 14. We find that the general distribution area of the 
predicted results is almost consistent with the actual results, and local development is close to the actual situation. As of 

Fig. 14. Spatial distribution prediction of cumulative number of positive individuals on May 1st (a), May 10th (b), May 20th (c) and May 31st (d).

Fig. 15. Macro-level (a), region-level prediction score (b: upper) of cumulative number of positive individuals and daily region-level prediction score (b: 
bottom) of the MS calculated by cumulative cases on each grid set as greater than 50 %, 60 % and 70 %, respectively.
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May 31st, the predicted score of BS reaches 70.7 % (Fig. 15b upper). When we set the MS of each grid is greater than 50 %, 60 % 
and 70 %, respectively. The daily region-level prediction scores all show good results in the first fifteen days (Fig. 15b 
bottom). It indicates that using diffusion models to predict real epidemics can provide comparatively more accurate 
epidemic analysis information for government departments, thus helping them to take targeted response measures in 
advance. Future work will specifically optimize for data fluctuations to enhance prediction accuracy.

9. Conclusions

We introduce diffusion terms into the second version of the GPEP-2, consider the interaction terms among grid points to 
the mathematical equation system, and extend the traditional prediction model to two dimensions. The new model not only 
considers the development of local epidemics, but also considers the outward spread of virus carriers, which is relatively 
more consistent with the actual development and spread of epidemics. We use mathematical methods to prove the well- 
posedness of the model, and conclude that the corresponding definite solution problem for each term of model is well- 
posedness. In addition, we conduct an ideal experiment on a regular grid to simulate the COVID-19 outbreak in Suzhou. 
The model achieves good results in predicting the cumulative number of confirmed cases, and the feasibility of the model in 
grid is verified. Meanwhile, we construct various parameterization schemes to simulate the spatial and temporal evolution 
of real epidemics, considering factors like the distribution of susceptible populations, medical resources, population density, 
and weather factors. We use the model to predict the evolution of the cumulative number of infected cases in Lanzhou and 
the cumulative number of positive cases of fever clinics in China, achieving reliable prediction results, and realize spatial 
visualization. This provides a research basis for high-resolution and accurate prediction, as well as early warning of future 
global epidemics. Through predicting the temporal evolution trend of epidemics in local region and the spatial development 
distribution across China, we can provide relatively more scientific references for the formulation and implementation of 
control measures.

Atmospheric sciences have been conducting numerical simulation predictions for many years, and it is one of the best 
subjects for numerical simulation predictions. The statistical-dynamic prediction method in atmospheric sciences provides 
an effective method to accurately invert coefficients. By inverting various parameters in epidemic model, we can conduct a 
prediction which is relatively closer to the development of real epidemics. Nevertheless, this method has not been used in 
public health previously. Therefore, the introduction of research methods from atmospheric sciences into the prediction of 
infectious disease modeling can provide substantial support for epidemic prevention.

10. Discussions

However, there are still limitations that need to be improved in our prediction system. Firstly, the model is sensitive to 
initial values and predicts poorly when the initial values are not accurate. Secondly, the data we currently obtain are mainly 
based on regional levels, and the accuracy of spatial downscaling of epidemic data should be improved to make refined 
predictions. In future research, we will add more covariates related to infectious diseases to improve the performance of the 
model and reduce the sensitivity of forecasts in the region to prior changes. On account of the differences in data observed at 
different spatial scales, we suggest establishing and maintaining a comprehensive and reliable database of classified in-
fectious diseases. It would be invaluable to researchers and policymakers in addressing the global threat posed by viruses. 
There is no doubt that the application of statistical dynamic prediction methods in atmospheric sciences to parameter 
inversion in infectious disease model prediction is a major innovation in public health. However, the statistical process is 
limited by historical data. When historical data are scarce, parameters obtained may have significant deviations. Therefore, 
we will incorporate data assimilation methods in atmospheric sciences to process initial values and parameters in the 
future. Additionally, we need to combine artificial intelligence methods such as machine learning to obtain a set of stable 
coefficients that are close to the actual situation.

Currently, our prediction system incorporates three parameterization schemes, including control measures, vaccination 
and seasonal changes of infection rate, considering factors that affect the development and changes of infectious diseases. 
However, the development and changes of infectious diseases in the real world are complex. For example, most respiratory 
infectious diseases exhibit periodicity, with epidemic peaks appearing at regular intervals. In consequence, we need to add 
more parameterization schemes, such as periodic fluctuations of infectious diseases and large-scale population movements, 
to improve the universality and accuracy of the system for global prediction. Moreover, we establish a model at fine res-
olution, which can be coupled with various models, e.g., bioaerosol transport and climate system models. By coupling the 
model with climate system, we can better integrate infectious diseases with climate change, and provide relatively more 
accurate predictive warnings in the context of climate change.
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