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Abstract
Purpose of Review  Dust events are global meteorological disasters, affecting approximately 330 million people across 151 
countries, from sub-Saharan Africa to northern China and Australia, with profound impacts on ecosystems, human health, 
and socioeconomics. The WMO airborne dust bulletin 2023 indicates that, dust concentrations in the most severely affected 
regions worldwide exceeded long-term averages, causing significant impacts on the global environment, economy, and 
public health.
Recent Findings  In recent years, as climate change has led to an increasing frequency and intensity of extreme weather 
events, research on the interactions between dust aerosols and the climate system, as well as their impacts on human health, 
has gradually become a hot topic. Studies have revealed the critical role of direct radiative feedback from East Asian dust in 
exacerbating dust-related air pollution in northern China. Other research highlights the combined effects of Arctic Sea ice 
anomalies, La Niña events, and a warmer northwestern Atlantic in creating loose, dry surface conditions across Mongolia, 
along with the formation of the strongest Mongolian cyclone in the past decade, which provided favorable dynamical dis-
turbances and transport conditions for dust events. Furthermore, dust events have been shown to significantly increase the 
mortality risk from respiratory diseases, particularly chronic lower respiratory diseases and chronic obstructive pulmonary 
disease (COPD). Circulatory disease mortality risks, including ischemic stroke and hypertensive heart disease, have also 
risen. These findings underscore the importance of further exploring the interactions between dust aerosols and regional 
climate, as well as their multidimensional impacts on human health.
Summary  Dust events, as a global arid meteorological disaster, affect vast regions worldwide. In China, the severe spring 
dust storm of 2021 caused significant adverse impacts and economic losses across many northern cities. To enhance global 
awareness of dust events, strengthen international cooperation, and mitigate their impacts, the United Nations (UN) has 
designated 2025–2034 as the "UN Decade for Combating Sand and Dust Storms". Implementing effective dust control poli-
cies, building climate-resilient health systems, and enhancing efforts in risk mitigation, prevention, response, and recovery 
can significantly reduce health risks. This review aims to summarize recent advances in research on the impacts of dust on 
climate and human health. It contributes to expanding our understanding of the climatic effects of dust aerosols and provides 
crucial scientific evidence for addressing climate change and developing strategies to mitigate health risks associated with 
dust exposure.

Keywords  Dust events · Aerosol · Climate system · Radiative forcing · Health risk

Introduction

Dust events are major meteorological disasters that fre-
quently occur in arid and semi-arid regions, characterized by 
their sudden onset, short duration, and wide-ranging impacts 
[1, 2]. Dust aerosols, lifted from loose surface materials by 
wind action during dust events, can remain airborne for 
extended periods and travel great distances [3]. Dust aero-
sols, categorized into natural and anthropogenic types based 
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on their source regions and mobilization mechanisms, are 
among the most abundant aerosol types in the atmosphere, 
with an annual emission of approximately 1514–4313 Tg/yr 
[4–8], they contribute over 50% to the global aerosol mass 
[9–13]. Dust events have been shown to directly or indirectly 
impact agricultural production, human health, ecosystems, 
and weather and climate systems, thereby influencing vari-
ous aspects of human life [14–21]. Dust aerosols, in addi-
tion to absorbing and scattering atmospheric radiation and 
serving as cloud condensation nuclei, also influence climate 
change and precipitation patterns [22, 23]. Furthermore, dust 
events severely disrupt transportation and daily production 
activities and pose significant threats to public health [24].

Advances in numerical modeling have improved the 
accuracy of dust emission simulations, deepening our under-
standing of the climate impacts of dust aerosols [25–28]. 
Dust aerosols play a vital role in the climate system. As a 
significant type of aerosol in the atmosphere, they influence 
the radiative energy balance of the Earth-atmosphere system. 
Through shortwave and longwave radiative effects, dust par-
ticles alter this energy balance, affecting atmospheric ther-
modynamic processes and exerting a substantial impact on 
boundary layer height and thermal structure [29–35]. Addi-
tionally, dust serves as an important external source of iron 
to the oceans, influencing marine biogeochemical cycles and 
thereby regulating the atmospheric carbon cycle [36–38]. 
Dust aerosols are closely associated with circulation systems 
and atmospheric pollution processes on both regional and 
global scales [39–41], directly influencing regional climate 
change. For instance, the radiative effects of dust can mod-
ify energy distribution, influence local temperature, cloud 
formation, and precipitation patterns, and ultimately affect 
feedback processes within the climate system [42, 43].

On the other hand, dust aerosols significantly impact 
atmospheric environmental quality by influencing bound-
ary layer dynamics, which subsequently affects human 
health [44]. Exposure to dust aerosols is closely linked to 
acute and chronic health risks. During their transport, dust 
aerosols adsorb large amounts of heavy metals, pathogenic 
microorganisms, and pollutant gases, further enhancing their 
toxicity and exacerbating their health impacts. Dust aerosols 
pose threats to the human respiratory, cardiovascular, and 
immune systems [45–49]. The particulate matter (PM) in 
dust aerosols, particularly PM10 and PM2.5, can penetrate 
deep into the respiratory tract and deposit in the lungs, 
increasing the incidence of acute respiratory infections, 
chronic obstructive pulmonary disease (COPD), and asthma 
[50, 51]. During dust events, the mortality risk from car-
diovascular diseases, including ischemic stroke and hyper-
tensive heart disease, rises significantly [52]. Additionally, 
during long-range transport, dust particles are exposed to 
various aging processes, carrying and absorbing a significant 
amount of secondary aerosols, microorganisms, and toxic 

heavy metals [53]. This further increases the health risks 
associated with dust particle exposure, particularly for vul-
nerable groups with weaker immune systems, such as chil-
dren and the elderly [54]. Studies have shown that exposure 
to dust aerosols poses significant long-term health impacts 
on vulnerable populations. For instance, prenatal exposure to 
dust events has been linked to impaired cognitive function in 
children, posing a substantial threat to the long-term health 
and development of human society [55].

This study aims to comprehensively explore the impacts 
of dust aerosols on weather, climate, and human health, 
enhancing understanding and response strategies for dust 
events. Although the effects of dust have been widely stud-
ied, significant research gaps and challenges remain regard-
ing the bidirectional feedback mechanisms between dust 
aerosols and the climate system, as well as the associated 
health risks. Future research should integrate natural and 
anthropogenic factors more comprehensively and leverage 
technological innovation and application to mitigate the 
multifaceted impacts of dust events. Such efforts will pro-
vide valuable solutions for addressing climate change and 
enhancing disaster prevention and control capabilities.

Method

This literature review was conducted to synthesize cur-
rent evidence on the chemical concentrations of dust and 
its associated health and climate effects. The representa-
tive references are shown in Table 1, including the authors, 
year, research content, methods, and the respective fields 
of study. The review involved a search of several electronic 
databases, including PubMed, Web of Science, and Google 
Scholar, covering publications from 2000 to now. Search 
terms included key terms such as dust events, dust aerosols, 
radiative forcing, weather and climate, health risks, and 
related keywords were used.

Characteristics of Dust

Sources and Drivers of Dust

The sources of dust include both natural and anthropogenic 
dust emissions [56]. As early as the 1990s, research pointed 
out that classifying dust aerosols entirely as a natural source 
was inaccurate [57, 58]. Based on the source regions and 
emission mechanisms of dust, dust aerosols can be catego-
rized into natural dust (ND) and anthropogenic dust (AD) 
[7, 56]. ND primarily originates from arid and semi-arid 
regions (such as the Sahara Desert, Arabian Desert, and 
Gobi Desert) through wind erosion [59, 60]. Human land 
cover types (e.g., farmland, pastures, cities) are influenced 
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by human management practices [61]. AD is indirectly gen-
erated by wind erosion of land surfaces disturbed by human 
activities (human land cover types), typically in semi-arid, 
semi-humid, and humid regions [56]. AD can be further 
divided into indirect AD (caused by human activities such 
as harvesting, farming, grazing, and irrigation practices that 
lead to desertification or drying up of lakes, making the land 
more vulnerable to wind erosion) and direct AD (directly 
emitted dust from human activities like construction, demo-
lition, and vehicle emissions) (shown in Fig. 1) [6, 7, 62]. 
The Intergovernmental Panel on Climate Change (IPCC) 
(2017) stated that AD contributes to 30–70% of total dust 
concentration, which significantly impacts global dust levels. 
For example, due to agricultural expansion, dust loads in the 
western United States increased by 500% in the early twen-
tieth century [63]. Studies have shown that the reduction of 
grasslands exacerbated wind erosion, greatly increasing dust 
emission fluxes [64]. Chen et al. found that the area of poten-
tial AD sources slightly exceeds that of ND sources [56].

Dust emission is a critical step in the dust cycle, influ-
encing the long-range transport and deposition of dust 
particles, as well as the climate change induced by dust 
[65, 66]. Researchers continuously strive to improve 
ND emission schemes under various simplifications 
and assumptions [4, 25, 67–70]. Overall, ND emission 
schemes can be categorized into three types: empirical 
dust emission schemes [58, 71, 72], dust emission schemes 
with simplified physical processes [73, 74], and dust 
emission schemes with detailed microphysical processes 
[68, 75–77]. Furthermore, human activities worldwide 
also trigger dust emissions [7, 57], which are considered 
to arise from wind erosion processes that occur when 
land types are altered or disturbed by human activities 
[11, 18, 58, 77, 78]. Among these, indirect human dust 
emissions are driven by wind erosion caused by human-
induced changes in land surface types, and their emission Ta
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Fig. 1   AD emissions and their sources (from Chen et al. (2023))
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mechanism is similar to natural dust emissions [79]. On 
the other hand, direct human dust emissions result directly 
from human activities and are highly dependent on the 
intensity of these activities, which can be modeled using 
the STIRPAT model [56, 80]. Previous dust emission 
simulations have often relied on static land cover data, 
ignoring the dynamic changes in surface bare soil, which 
can lead to significant uncertainties in simulated dust flux, 
particularly for human-induced dust emission simulations 
[81, 82].

Dust storm events are primarily driven by surface and 
meteorological factors. Shao et al. suggested that global dust 
concentrations are on a decreasing trend [83], but future cli-
mate change and human activities, which alter the surface 
environment, may exacerbate desertification and expand dust 
sources, potentially increasing the frequency and intensity of 
dust events [84]. In the context of global warming, the pro-
cess of land desertification has influenced dust emissions[85, 
86]. Different land surface cover types affect the dust emis-
sion process through their impact on wind erosion [87–90]. 
For instance, the spatial differences in natural factors, such 
as regional topography, surface sediment composition, soil 
moisture, and vegetation cover, lead to significant differences 
in the spatial distribution of dust activities in western Inner 
Mongolia [91]. In recent years, large-scale vegetation resto-
ration projects in northern China have significantly reduced 
dust storm occurrences in the region [90]. The increase in 
surface vegetation cover has been the main reason for the 
significant reduction in dust activity in the Gobi Desert 
in recent years [92]. In southern Mongolia and along the 
China-Mongolia border, reduced vegetation cover and the 
intense development of Mongolian cyclones are considered 
the main causes of the severe dust storm events in northern 
China in March 2021 [93, 94]. Meteorological factors, as the 
main influences on the occurrence and development of dust 
storms, reflect the impact of large-scale pressure systems, 
wind fields, and climate change on dust activities [95–97]. 
For example, observations based on multiple data sources 
show that changes in air temperature, precipitation, and soil 
moisture benefit vegetation cover improvement, which in 
turn reduces the intensity and frequency of East Asian dust 
activities. The decreasing trend of strong winds associated 
with cold air mass intrusion from high latitudes plays a key 
role in the interannual reduction of dust storm frequency 
[98]. Climate warming, weakened cold air activity, and 
reduced frequency have led to a decrease in the frequency 
and intensity of dust storms in the eastern Hexi Corridor, 
with seasonal variations in atmospheric circulation being 
an important factor influencing the seasonal variation of 
dust activities [99]. Guan et al. analyzed the spatiotemporal 
distribution characteristics and influencing factors of dust 
storms in northern China from 1960 to 2007 using station 
data and vegetation index data, identifying maximum wind 

speed, average wind speed, and annual average precipitation 
as the three main factors controlling dust storm frequency 
[100].

Spatial and Temporal Distribution of Dust

Africa is the largest source of dust globally, followed by 
Asia. Due to the extensive spatial coverage and occurrence 
of dust events, research in this area has been challenging. 
However, recent satellite observations have provided an 
ideal tool for studying the global distribution of dust aero-
sols [101]. Previous studies have utilized satellite observa-
tions of dust-related phenomena and optical properties to 
reveal many important aspects of the dust cycle [102–105]. 
For instance, Proestakis et al. used data from the orthogo-
nal polarization cloud aerosol lidar (CALIOP) to capture 
seasonal dust event frequencies, dust optical depth (DOD), 
and particle depolarization ratio (PDR), revealing dust emis-
sions from the deserts of South Asia and East Asia and their 
potential transmission changes [106]. Kim et al. described 
the seasonal and vertical distribution of Asian and North 
Pacific dust aerosols using DOD data from multiple satel-
lites and ground measurements [107]. Song et al. analyzed 
dust records from CALIOP and the Moderate Resolution 
Imaging Spectroradiometer (MODIS), observing a decreas-
ing trend in dust emissions from the Gobi Desert (related to 
increased vegetation cover) and the Northwest Pacific Ocean 
(NPO) [104]. However, to fully understand dust transmis-
sion, researchers need to use satellite-observed DOD to 
obtain more accurate measurements of dust mass loadings 
[108], allowing for better estimation of the actual quantity 
of dust in the atmosphere [109] and its deposition into the 
oceans [110]. This advancement will improve the predictive 
capability of regional and global simulation models [111].

Transport of Dust

Studies have identified three major long-distance dust trans-
port belts globally: the transatlantic transport of African dust 
[108, 112], the transcontinental transport of North African 
dust across the Arabian Peninsula and the Middle East into 
Asia [113, 114], and the trans-Pacific transport of Asian dust 
[115, 116]. Early studies have shown that the dust flux from 
North Africa is 240 ± 80 Tg/yr, and it is transported across 
the Atlantic Ocean over long distances, reaching the United 
States, the Caribbean, and South America under favorable 
meteorological conditions [108, 117, 118]. Yu et al., using 
CALIOP observations and MERRA-2 reanalysis data, found 
that approximately 182 Tg of dust leaves the North African 
coast each year, with 132 Tg reaching the central Atlan-
tic and 43 Tg being transported to the Amazon rainforest 
[119]. Observational studies have shown that African dust 
aerosols are transported northeastward across the Eurasian 
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continent, where they are usually combined with East Asian 
dust aerosols, affecting the atmospheric environment of 
East Asia [114, 120]. Since the launch of CALIPSO, the 
satellite’s global observations of cloud and aerosol vertical 
profiles have further enhanced our understanding of long-
distance dust transport [121]. Huang et al. used CALIPSO, 
ground-based micro-pulse lidar (MPL), and standard ground 
observations to study the long-range transport and vertical 
distribution of Asian dust aerosols in the free troposphere 
during the Pacific Dust Experiment (PACDEX), revealing 
that dust aerosols from the Taklamakan and Gobi deserts 
were transported at altitudes of 8–10 km over the Pacific 
(Fig. 2) [122]. Additionally, dust from South Asia can be 
uplifted and transported to the Tibetan Plateau, contributing 
to accelerated glacier retreat [123, 124].

Proestakis et al., revealed the seasonal transport path-
ways of dust aerosols from the deserts of South Asia and 
East Asia, with the Taklamakan and Gobi deserts being the 
primary source regions. Dust activity is strongest during 
the spring and summer months [106]. Kim et al., analyzed 
the seasonal variation and vertical distribution of dust in 
Asia and the North Pacific using multi-source satellite and 
ground-based observations of dust optical depth, uncover-
ing the vertical gradient during trans-Pacific dust transport 
[107]. Dust emissions from East Asia can sweep across 
much of northern and eastern China, South Korea, and 
Japan, before being deposited into the Pacific Ocean [101, 
112, 122, 125–127], and can even be transported to the west-
ern United States [128–130].

Model simulations and reanalysis datasets have been 
widely used to describe the dust cycle. Chen et al. utilized 
the Weather Research and Forecasting model coupled with 
Chemistry (WRF-Chem) to study the contributions of the 
Taklamakan and Gobi deserts to East Asian dust loads. Their 

study found that the Taklamakan Desert has the highest dust 
emission capacity, approximately 70.54 Tg/yr in spring, but 
its contribution to East Asian dust loads is smaller than that 
of the Gobi Desert [66]. This finding is consistent with the 
results of Sun et al., based on the Modern-Era Retrospective 
analysis for Research and Applications (MERRA-2) [131]. 
Numerical models are ideal tools for studying the transport 
mechanisms of dust and have become essential for under-
standing the transport processes.

However, relying solely on model simulations intro-
duces significant uncertainty in the results. Therefore, 
observational dust transport data are needed to reveal the 
characteristics of Asian dust's trans-Pacific transport and 
to constrain the model simulations [18, 132]. Guo et al., 
used CALIPSO, AERONET, backward trajectory models, 
and the WRF-Chem model to investigate the transport pro-
cess of East Asian dust. Their study found that East Asian 
dust can be transported across the Pacific and even reach 
the western United States [128]. Liu et al., used the Aero-
sol Species Radiation Transport Model (SPRINTARS) and 
the Nonhydrostatic Model (NHM) to analyze the transport 
characteristics and mechanisms of anthropogenic aerosols 
from South Asia transported to the southern slopes of the 
Tibetan Plateau via southwest winds [133]. Sun et al., used 
multi-year MERRA-2 reanalysis data to study the contri-
butions of different Asian source regions to the total dust 
column and their contributions to downstream dust levels 
[131]. Based on CALIPSO lidar data, their research quanti-
fied the Asian dust cycle and clarified the dominant role of 
East Asian deserts in contributing to dust in mainland China 
and adjacent seas [115].

Recent studies show that the record-breaking African 
dust event of 2020 modulated large-scale circulation through 
radiative heating, triggering Rossby wave trains, weakening 

Fig. 2   Dust event originating 
from the Taklamakan Desert on 
May 7, 2007, transporting dust 
to the Pacific (from Huang et al. 
(2008))
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the Indian summer monsoon and North American moist con-
vection, and significantly reducing regional precipitation. 
This revealed the global transport mechanism of African 
dust and its widespread role in global climate change (Fig. 3) 
[134].

Feedback Mechanisms Between Dust 
and Weather/Climate

Dust aerosols, as a significant absorptive aerosol in the 
atmosphere, play a pivotal role in regulating the Earth's cli-
mate system, particularly its energy balance and dynamic 
processes. Since the 1990s, the rapid development of dust 
numerical models has greatly enhanced our understanding 
of the occurrence, development, transport, and dissipation 
of dust. Especially after the year 2000, as the volume of 
research increased, there has been remarkable progress in 
the quantitative assessment of dust’s radiative effects and 
climate feedback mechanisms [25, 135–137]. These studies 
have not only deepened our understanding of the impact of 
dust on the climate system but also provided strong support 
for predicting the spatiotemporal distribution of dust events 
and their potential effects on climate change.

The Impact of Dust on Radiation Budget

Dust aerosols significantly impact the atmospheric radia-
tion balance, boundary layer structure, and regional climate 
patterns through direct, indirect, and semi-direct radiative 
effects (Fig. 4) [22, 138, 139], with notable consequences 
for global weather and climate change [2, 140–142]. The 
direct radiative effect of dust aerosols is primarily through 

scattering and absorption of shortwave radiation, which 
reduces surface energy input, while absorption of long-
wave radiation heats the atmosphere, significantly altering 
energy transfer between the atmosphere and the surface 
[122, 143–145]. The particle size and abundance of dust 
aerosols influence the direct radiative effect. Kok et al. found 
that the global dust direct radiative effect is constrained 
between − 0.48 and + 0.20 W·m⁻2, suggesting that dust may 
lead to net heating of the planet [146]. During the day, dust 
particles mainly adjust shortwave radiation, whereas at 
night, they exhibit longwave radiation effects [147, 148]. 
Specifically, during the day, dust particles lower the surface 
heat flux through shortwave radiation, suppressing boundary 
layer development, weakening turbulent mixing, and hin-
dering the downward transport of upper-layer momentum, 
leading to reduced near-surface wind speeds and decreased 
dust resuspension and emission [29, 149]. At night, the dust 
layer creates a longwave radiation surplus at the surface, 
enhancing the warming effect, which weakens boundary 
layer stability and promotes the nighttime diffusion of dust 
aerosols [150–152]. The net shortwave radiative forcing 
of dust aerosols at the surface may exceed − 70 W·m⁻2 in 
areas with high dust concentrations (Aerosol Optical Depth 
greater than 0.7) [153]. Since dust scatters and absorbs long-
wave radiation, which weakens longwave radiation trans-
mission in the atmosphere, the scattering and absorption of 
longwave radiation at the top of the atmosphere determines 
the direct radiative effect of dust [154].

The indirect radiative forcing of dust aerosols occurs 
by altering the macro- and micro-physical properties of 
clouds, which in turn changes the radiative characteristics 
of the clouds [155–158], affecting the energy fluxes in the 
Earth-atmosphere system [159, 160]. For example, dust 

Fig. 3   Schematic of the Godzilla African dust transport and its rela-
tionship with precipitation in North America and India. The embed-
ded graph shows dust concentration (from the SEN1_AFD_Only 

experiment) and daily precipitation changes (CTRL minus SEN2_
AFD_OFF experiment) based on simulation results from the WRF-
Chem model (from Bi et al. (2024))
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significantly influences ice particle growth, precipitation 
rates, and the lifetime of high clouds through interac-
tions under specific meteorological conditions, playing an 
important regulatory role in global warming and climate 
change [161]. Huang et al. compared cloud characteristics 
under dusty and dust-free conditions in the same meteoro-
logical environment in Northwest China, finding that the 
injection of dust aerosols into clouds reduced the effective 
particle size of ice clouds and the optical depth of cirrus 
clouds by 11% and 32.8%, respectively [162, 163].

The semi-direct effect of dust aerosols results from the 
absorption of radiation by dust particles within clouds, 
leading to cloud heating, which causes cloud droplets to 
evaporate, thus reducing cloud cover and altering the ther-
modynamic processes in the atmosphere [164]. The dust 
aerosol layer can either stabilize or disrupt the boundary 
layer, depending on its location [165–167]. When dust 
is located beneath the cloud layer, it can enhance deep 
convection and cloud cover through increased water vapor 
convergence. However, when dust is positioned above the 
cloud layer, it weakens convective clouds [157]. In arid 
and semi-arid regions, when aerosols are present within 
or above the cloud layer, dust aerosols can lead to cloud 
evaporation [163, 168]. The semi-direct effect has been 
simulated using General Circulation Models (GCM) and 
high-resolution cloud-resolving models, as the inclusion 
of absorbing aerosols in radiative schemes inherently 
accounts for this effect [165, 169].

Impact of Dust on Regional Climate

Dust aerosol-cloud interactions play a significant role in 
regional climate, particularly in arid and semi-arid regions, 
where these interactions may exacerbate drought condi-
tions (Fig. 4) [157]. Research indicates that dust particles, 
by promoting ice cloud formation and enhancing convec-
tive processes, can also increase the occurrence of extreme 
precipitation events, such as urban extreme rainfall events 
[170]. One study, analyzing the 2018 dust storm-rain event 
in northwest India, found that dust aerosols, acting as effec-
tive ice nuclei, facilitated the development of deep convec-
tive clouds. This, in turn, enhanced the ice-water path and 
latent heat release, leading to intensified rainfall, provid-
ing observational evidence for aerosol-cloud-precipitation 
interactions [171]. Dust aerosols in northern India have also 
been found to contribute to the early onset of the Indian 
monsoon [123]. For example, the Tibetan Plateau serves as 
a transportation hub for dust aerosols, and their interaction 
with the plateau's heat pump effect plays a crucial regulatory 
role, influencing local and downstream weather and climate 
[172].

In addition, when dust aerosols are deposited on snow 
surfaces, they alter the snow's albedo, which accelerates 
snowmelt [173, 174]. For example, the snow darkening effect 
of dust and the direct radiative forcing both significantly 
impact the onset of the Indian monsoon, but their effects are 
opposite. The snowmelt effect of dust significantly weakens 

Fig. 4   The schematic diagram of dust-cloud-precipitation interaction in arid/semi-arid regions (from Huang et al. (2014))
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the Indian summer monsoon circulation and precipitation 
during the explosive phase [175]. Moreover, some studies 
have observed that dust aerosols, by lowering sea surface 
temperatures and lower-level humidity, increasing middle-
level moisture, and inducing positive relative vorticity and 
wind shear, play an important role in inhibiting the forma-
tion of tropical cyclones in the North Atlantic basin [176].

The Climate Feedback of Dust

The intensity and frequency of dust activity in East Asia are 
also believed to be linked to changes in large-scale atmos-
pheric circulation, such as cyclone frequency, East Asian 
monsoon strength, and the North–South Hemispheric Oscil-
lation patterns [86, 98, 177]. These large-scale circulation 
patterns not only influence the formation of dust weather 
systems but also significantly regulate dust transport paths 
and intensity. For example, the number of dust storm days in 
North China is positively correlated with the strength of the 
East Asian winter monsoon [178]; the negative phase of the 
Arctic Oscillation (AO) enhances atmospheric instability, 
making weather disturbances more likely to move latitudi-
nally, thereby increasing the frequency of spring dust storms 
[179]. Large-scale circulation factors not only provide a 
favorable background for the formation of weather systems 
that directly influence dust activity but also regulate the 
magnitude and direction of dust transport in the troposphere 
[180–182]. The Arctic Oscillation (AO) is the dominant pat-
tern of large-scale circulation in the high-latitude regions of 
the Northern Hemisphere during the winter months and has 
a significant impact on dust activity in East Asia [65, 179, 
183–185]. In addition to AO, changes in other planetary-
scale climate indices such as the North Atlantic Oscillation 
(NAO), Antarctic Oscillation (AAO), and El Niño-Southern 
Oscillation (ENSO) have also been shown to directly or indi-
rectly influence dust activity in East Asia [186–192]. For 
example, the Antarctic Oscillation, one of the major modes 
of Southern Hemisphere tropospheric circulation, plays an 
important role in influencing the frequency of dust storms 
in North China through a meridional teleconnection pattern 
from the Antarctic to the Arctic [187].

In the context of climate change, the abnormal sea ice 
conditions in the Barents Sea and Kara Sea during the win-
ter of 2020/21, which shifted from negative to positive, led 
to dramatic changes in polar cold air masses. This, in turn, 
triggered a strong dust storm event in March 2021, following 
an increase in soil and near-surface air temperatures [97]. 
Furthermore, the warmest Northwest Atlantic and the cold-
est East Pacific (La Niña) between 2011/12 and 2020/21 
contributed to reduced precipitation in Mongolia, leading 
to drought and dry soil conditions. Under the influence of a 
super-strong Mongolian cyclone, these conditions indirectly 

contributed to the occurrence of the intense dust storm event 
[193, 194].

Under the influence of global warming, the frequency, 
intensity, duration, and extent of drought events in arid 
regions have generally increased [195, 196], and droughts 
lead to more dust emissions [197], triggering intense 
drought-dust storm compound events [198]. Since the 1990s, 
dust storms have significantly increased under drought con-
ditions [199]. The dynamic mechanisms of dust aerosol 
interactions with the climate system are not yet fully under-
stood. Therefore, gaining a deeper understanding of the radi-
ative effects of dust aerosols and their feedback mechanisms 
is crucial for predicting and addressing climate change.

The Impact of Dust Storms on Health

During dust storm events, the concentration of particles in 
the atmosphere, especially inhalable particles (PM10 and 
PM2.5), significantly increases, causing substantial negative 
impacts on human health [200, 201]. Larger dust particles 
typically settle in the upper respiratory tract (nasopharyn-
geal and tracheobronchial regions), while smaller particles 
can penetrate into the deep lung tissue[202, 203]. Goudie 
summarized that exposure to dust particles is closely linked 
to respiratory diseases, cardiovascular diseases, valley 
fever, meningitis, conjunctivitis, and skin diseases [204]. In 
recent years, climate change has exacerbated the frequency 
of global dust storms, and the associated health issues have 
become increasingly prominent [205–207]. A search of the 
keywords "dust events + human health" in the Web of Sci-
ence shows a growing trend in related publications from 
2000 to 2021, with a peak in 2021, followed by a slight 
fluctuation and decline (Fig. 5).

Toxic Mechanism

Dust particles not only carry inherent toxicity but also 
serve as carriers of pathogens and heavy metals, posing 
health risks to populations during long-distance transport 
[208–210]. Toxicological studies indicate that dust par-
ticles, after long-distance transport from source regions, 
can carry higher loads of toxic substances, making them 
potentially more toxic than anthropogenic particles [211]. 
Dust particles can adsorb more heavy metals (such as Cr, 
As, Ni, Co, Mn, Zn), microorganisms, and atmospheric 
pollutants (SO₂, NO₂, O₃), further increasing health risks. 
Research shows that the concentration of metals in the 
atmosphere during dust storms is significantly higher than 
during non-dusty weather, and these heavy metals may 
enter the human body via the respiratory tract or skin, 
triggering respiratory, cardiovascular, neurological, and 
reproductive system diseases [212, 213]. For example, 
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Cr6+, As, and Ni have been found to pose high carcino-
genic risks [214]. Dust particles from soils and deserts 
contain a large number of disease-causing microorgan-
isms [215–217]. These microorganisms can survive in 
the air for hours to days after being suspended by wind 
erosion, and resist adverse conditions during transport, 
allowing them to travel long distances and enter the 
human body, accelerating respiratory infections, pneumo-
nia, and the spread of other infectious diseases [218–221]. 
Moreover, the abundance and diversity of bacteria in the 
air in arid regions is significantly higher than in semi-arid 
areas [221]. Pollutants in the atmosphere attach to dust 
particles during dust storm events and enter the human 
body, exacerbating respiratory and cardiovascular dis-
eases [222]. For instance, Raaschou-Nielsen et al. found 
that the increase in SO₄2⁻ and other secondary pollutant 
particle concentrations was significantly associated with 
an increase in natural mortality rates [223].

After long-distance transport, dust particles evolve into 
dust storms or dust clouds with particles smaller than 10 
microns, which can carry heavy metals, sulfates, organic 
compounds, and viruses into the respiratory tract and 
lungs. PM10 particles deposit in the trachea and bronchi, 
while PM2.5 can reach the alveoli, causing more severe 
harm. Studies by Huang et al., found that within a range 
without obvious cytotoxicity, dust PM2.5 and PM10 can 
damage the phagocytic function of alveolar macrophages, 
with a dose-dependent effect [224]. Moreover, dust envi-
ronments can disrupt the normal microbial ecological bal-
ance in the human body, increase susceptibility to patho-
gens, interfere with intracellular signaling pathways, and 
harm health [225, 226].

Acute Health Effects

The health impacts of dust aerosols can be categorized into 
acute and chronic exposure based on the exposure duration 
[227–229]. Short-term exposure to dust particles can lead to 
acute health risks, primarily associated with upper and lower 
respiratory tract diseases, including fever, cough, and other 
respiratory symptoms. During dust events, the intensifica-
tion of air pollution significantly increases mortality rates 
[230–233]. Studies show that during dust storms, mortality 
and hospitalization rates related to respiratory and cardio-
vascular diseases, as well as overall mortality rates, signifi-
cantly increase [232, 234–236], while the risk of pulmonary 
embolism also rises [50].

Zhang et al. found that the excess mortality risk associ-
ated with dust storms in China for ischemic stroke, intrac-
erebral hemorrhage, hypertensive heart disease, myocardial 
infarction, acute myocardial infarction, acute ischemic heart 
disease, respiratory diseases, chronic lower respiratory dis-
eases, and chronic obstructive pulmonary disease (COPD) 
ranges from 3.33% to 12.51% [234]. A meta-analysis indi-
cated that, within 3 days after dust events, mortality from 
circulatory diseases increased by 2.23%, and from respir-
atory diseases by 3.99% [237]. Research also shows that 
increased exposure to Asian dust storms is associated with 
a rise in overall mortality and cerebrovascular diseases 
among individuals aged 65 and above [235]. During dust 
storm migrations, the proportion of patients seeking treat-
ment for cardiovascular diseases, ischemic heart disease, 
and cerebrovascular accidents increased by 26%, 35%, and 
20%, respectively, compared to pre-dust storm levels [238]. 
Additionally, a systematic review showed that, compared to 

Fig. 5   The annual number of 
publications retrieved from 
the Web of Science database 
using the keywords "dust 
events + human health" from 
2000 to 2024
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non-dust weather, the overall mortality rate on dust storm 
days increased by 0.27% [202]. Short-term exposure to dust 
storms is associated with an increase in inflammatory and 
coagulation biomarkers such as MDA, vWF, fibrinogen, and 
WBC count in young people [239, 240], and has a negative 
impact on lung function in adolescents, with a stronger cor-
relation in asthmatic patients [241]. Dust storms also signifi-
cantly increase the number of respiratory disease patients 
[242, 243]. A study in Africa showed that dust damages 
the pharyngeal mucosa, promoting bacterial invasion, and is 
significantly related to seasonal meningitis incidence, sug-
gesting the inclusion of dust data in epidemiological and 
forecasting models to improve public health response capac-
ity [244]. Research in the U.S. reported cases of pneumonia 
occurring several days after exposure to dust storms, even 
leading to death [245]. Additionally, dust storms in the U.S. 
led to a 7.4% and 6.7% increase in non-accidental mortal-
ity 2 and 3 days later, respectively [48]. Exposure to Asian 
dust storms was significantly associated with increased total 
mortality and cardiovascular disease mortality in Taiwan, 
China [246]. Furthermore, studies have found that dust 
storms are linked to the occurrence of eye watering [247]. 
A study in Japan indicated that short-term exposure to dust 
storms is associated with increased risks of cardiovascu-
lar (3-day lag), cerebrovascular (same day), and respiratory 
(3-day lag) diseases in elderly populations, with individuals 
with pre-existing respiratory conditions or diabetes having 
a higher risk [248].

Chronic Health Effects

Long-term exposure to dust particles can lead to chronic dis-
eases. Both natural and anthropogenic dust contribute to an 
increase in environmental PM2.5 concentrations. Long-term 
exposure to PM2.5 has been significantly correlated with 
an increase in the incidence of diabetes [249], particularly 
among middle-aged and older adults, where it is associated 
with a higher risk of diabetes and elevated blood glucose 
levels[250]. Additionally, long-term exposure to dust par-
ticles is strongly associated with elevated blood pressure 
and increased hypertension prevalence in children and ado-
lescents [251]. During Asian dust events, there is a marked 
increase in the number of patients experiencing itchy eyes, 
and adult chronic cough patients often experience worsen-
ing symptoms and increased allergic reactions [252]. Panel 
studies have shown that adults with asthma, cough-variant 
asthma, or atopic cough exposed to Asian dust experience a 
dose-dependent exacerbation of coughing [253]. Research 
by Hasunuma et al., also demonstrated a significant relation-
ship between dust exposure and the exacerbation of asthma 
symptoms in children, suggesting that long-term use of pre-
ventive medication may help alleviate respiratory symptoms 

triggered by Asian dust, providing an effective preventive 
strategy [254].

Dust storms also influence the frequency and sever-
ity of allergic rhinitis [255]. A study in the United States 
showed that the frequency of dust storms correlates with 
the incidence of valley fever, a fungal infection caused by 
soil-based fungi [256]. Long-term health impacts associ-
ated with dust storms include low birth weight, with infants 
weighing less than 2.5 kg, gestational age over 37 weeks, 
and preterm births [257]. In West Africa, exposure to dust 
storms is associated with increased infant mortality [258]. 
Exposure to dust storms during the critical period of fetal 
brain development, particularly during the sixth and seventh 
months of pregnancy, has adverse effects on the cognitive 
function of the next generation [259]. During dust events, 
the significant rise in PM10 concentrations is closely linked 
to poor pregnancy outcomes [260]. Dust storms are also cor-
related with an increase in the incidence of measles during 
the spring [261]. Furthermore, several studies have reported 
a significant association between Sahara dust exposure and 
the exacerbation of asthma, chronic obstructive pulmonary 
disease (COPD), and hospitalization for cardiovascular and 
cerebrovascular diseases [45, 262, 263]. Sahara dust storms 
are also linked to respiratory diseases and increased mortal-
ity from severe cardiovascular and ischemic events, particu-
larly among vulnerable populations [202].

The intensification of global droughts and the increased 
frequency of extreme weather events due to climate change 
pose significant threats to human life and health worldwide. 
Therefore, it is crucial to further investigate the health 
impact mechanisms of dust storms. This will help better 
understand the potential health risks posed by dust storms 
and provide scientific evidence for formulating more effec-
tive strategies to mitigate and prevent their adverse health 
effects.

Future Research Directions

In the context of climate change, the frequency, intensity, 
and extremity of dust events are expected to increase, posing 
significant challenges for future disaster prevention and miti-
gation efforts. To address these complexities, future research 
should focus on the following directions:

1.	 Quantifying the Climatic Effects of Dust

Utilize high-resolution climate models and satellite remote 
sensing to quantify the shortwave and longwave radiative 
effects of dust and their impacts on regional and global climate 
systems. Further explore the nonlinear interactions between 
dust events and regional climate systems under climate 
change. Evaluate the coupling effects of dust with atmospheric 
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circulation patterns (e.g., ENSO, NAO) and their long-term 
regulatory impacts on the global climate system.

2.	 Understanding Dust-Climate Interaction Mechanisms

Investigate the mechanisms underlying the interactions 
between climatic conditions, desertification, and dust events. 
Analyze the relationships between historical climate changes, 
desertification, and dust storm events. Assess the combined 
effects of future climate changes and human activities on 
desertification and dust events, providing scientific guidance 
for global ecological governance.

3.	 Building Dust Monitoring and Forecasting Systems

Integrate diverse datasets to establish a comprehensive, 
high-resolution dust monitoring network capable of real-time 
tracking of dust storm formation, evolution, and dispersion. 
Combine numerical modeling with artificial intelligence to 
develop precise forecasting systems that capture the spatiotem-
poral evolution of dust events. Use satellite remote sensing, 
radar, and atmospheric sounding technologies to create real-
time monitoring and early warning systems, ensuring timely 
dissemination of dust storm information to reduce impacts on 
production, transportation, and public life.

4.	 Refined Identification and Decision Support

Conduct research on precise identification and forecast-
ing of dust storm disasters to enhance prevention measures. 
Develop accurate identification algorithms and regional risk 
management systems to assist governments in formulating 
evidence-based strategies, thereby reducing the social and 
economic losses caused by dust events.

5.	 Health Risk Assessment Framework and Indicators

Quantify the extent and scope of health risks associated 
with dust events based on their frequency and intensity, and 
utilize GIS technology for spatial visualization to support 
disaster prevention and management. Construct comprehen-
sive assessment frameworks that consider the vulnerability of 
affected populations (e.g., age structure) and the resilience of 
social, economic, and ecological systems, providing a holistic 
reflection of the hazards and health risks posed by dust events.

Conclusion

The occurrence of dust events results from the complex 
interactions within the Earth-atmosphere system. Dust 
aerosols significantly impact regional and global climate 

systems through direct, indirect, and semi-direct radiative 
effects. Meanwhile, climate change further influences the 
intensity and frequency of dust events by exacerbating 
land desertification and altering wind field conditions, 
while atmospheric circulation systems extend their trans-
port range and impact. The bidirectional feedback mecha-
nisms between dust and the climate system play a critical 
role in regulating climate change, but their dynamic pro-
cesses require further investigation.

During dust events, atmospheric particulate matter 
(such as PM10 and PM2.5) concentrations rise, causing 
acute and long-term health effects. Short-term exposure 
increases the incidence and mortality rates of respira-
tory and cardiovascular diseases, exacerbating conditions 
such as asthma and allergic rhinitis. Long-term exposure 
is closely linked to risks of pulmonary fibrosis, pneumo-
coniosis, and chronic diseases, while also facilitating the 
spread of certain infectious diseases. The heavy metals 
and pathogens adsorbed by dust particles further amplify 
health risks.

This review systematically summarizes the impacts 
of dust events on the climate system and human health, 
while highlighting promising future research directions. 
Investigating the underlying mechanisms, formulating sci-
entific response strategies, and developing adaptive poli-
cies to effectively mitigate the destructive impacts of dust 
events on public health and well-being remain vital areas 
of study.
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