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A B S T R A C T

Cloud top and base height (CTH and CBH) are essential in understanding the role of clouds on the weather and 
climate systems and improving radiation and precipitation simulations. However, inferring accurate cloud 
heights from passive satellite observations remains more challenging, especially for CBH. This study developed 
an effective and convenient method for estimating cloud heights for different cloud types on a global scale. The 
method is based on the mean lapse rate from surface to cloud top (Γct), the lapse rate within (Γcb1) and below 
cloud (Γcb2), which are calculated from collocated active and passive satellite observations. The CTH and CBH 
can be easily derived based on cloud top temperature (CTT), surface temperature (ST), surface height (SH), Γct, 
Γcb1 and Γcb2. The lapse rate method was applied to polar-orbiting and geostationary passive satellites and the 
performances were evaluated using cloud heights measurements from CloudSat and CALIPSO satellite. Overall, 
our retrieval results can achieve high accuracy and stability in estimating both CTH and CBH. For example, our 
CTH results have significantly improved the retrieval accuracy, with mean bias error (MBE) is 0 km and R is 0.96, 
and the absolute bias error (MAE) and root mean square error (RMSE) are reduced from 1.12 km and 1.72 km to 
0.85 km and 1.33 km, respectively, compared with the MODIS CTH product. Our CBH retrieval results based on 
MODIS CTT and ST also agree well with CloudSat and CALIPSO observations, the R is 0.91 and the MAE, MBE 
and RMSE are 0.73 km, 0 km and 1.26 km, respectively. The cloud geometric thickness derived from the cloud 
heights retrieval results also agrees well with the active satellite observations (MAE = 0.97 km, MBE = 0 km, 
RMSE = 1.44 km and R = 0.91). In addition, the good performance of cloud heights retrieval during night and for 
geostationary satellites can further illustrate the excellent accuracy and strong applicability of the lapse rate 
method. Specifically, compared with SatCORPS Himawari-8 product, the MAE and RMSE of CTH (CBH) are 
reduced by 41.5 % (44.2 %) and 39.4 % (36.6 %), respectively. These statistical results confirm that our method 
has comparable performance to other algorithms (e.g., machine learning and other empirical methods), in the 
meantime, exhibiting the advantages of simplicity and less input parameters. In addition, the lapse rate method 
can also be employed to provide a supplemental criterion on determining cloud layers from radiosonde data.

1. Introduction

Cloud heights, including cloud top height (CTH) and cloud base 
height (CBH), as important macroscopic parameters reflecting the cloud 
vertical distribution, have a very important impact on radiation balance 
and water cycle (Li et al., 2011; Simpson et al., 2000; Yan et al., 2016). 
For example, the radiative effects of clouds at different altitudes exhibit 
significant differences, low clouds typically reflect solar radiation 
resulting a cooling effect, whereas high cirrus clouds tend to warm the 

surface by preventing longwave radiation from emitting outward (Liou, 
2002; Luo et al., 2023). Under the background of climate change, the 
increase in CTH also contributes to the positive longwave cloud feed
back (Zelinka et al., 2012). Additionally, high CTH can serve as an in
dicator of deep convective precipitation in tropical regions (Biondi et al., 
2013). Besides CTH, cloud base height is also the main factor in 
modulating the cloud radiation effects, especially for the downwelling 
radiation at the surface (Xu et al., 2021; Yeo et al., 2018). The breakup 
and coalescence of raindrops are related to the distance between the 
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cloud base and surface, thus CBH is also of great importance on pre
cipitation characteristics (Adhikari et al., 2017). Moreover, accurate 
CBH knowledge is also crucial for aviation safety (Mecikalski et al., 
2007). Therefore, deriving precise CTH and CBH information will 
significantly improve our understanding for the role of clouds in Earth’s 
weather and climate change, as well as the simulations of radiation and 
precipitation in climate models (Cesana et al., 2019; Rajeevan and 
Nanjundiah, 2009; Viúdez-Mora et al., 2015).

Until now, the direct measurements of cloud height information can 
be obtained through ground-based instruments (e.g., lidar, cloud radar 
and ceilometer), but the limited spatial coverage prevents broader ap
plications. Satellite remote sensing is the advanced method of obtaining 
cloud observations at global scales. Active space-borne instruments, 
such as Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) on 
the CALIPSO satellite and Cloud Profiling Radar (CPR) on the CloudSat 
satellite, can provide accurate cloud height measurements on a global 
scale (Winker et al., 2009). However, due to their narrow scanning 
swath, the observations are limited by restricted spatial coverage and 
longer revisit periods (Stephens et al., 2002). In contrast, passive sat
ellites offer the advantage in providing long-term, large spatial coverage 
and high temporal resolution observations, which are vital for the 
development of high spatiotemporal resolution cloud height products. 
Therefore, developing accurate cloud heights retrieval algorithms based 
on passive satellite observations is very desired and valuable.

Over the past few decades, several algorithms for CTH retrieval have 
been developed, including infrared windows method, the split-window 
method, the CO2-slicing method and oxygen A-band method 
(Heidinger and Pavolonis, 2009; Menzel et al., 2008; Rozanov and 
Kokhanovsky, 2004). Many passive sensors have provided operational 
CTH products, such as MODIS (Baum et al., 2012), the Advanced 
Himawari Imager (AHI) on board the Himawari-8 (H8) satellite 
(Iwabuchi et al., 2018) and the Advanced Geostationary Radiation 
Imager (AGRI) onboard Fengyun-4 A (Min et al., 2017). With the 
improvement of computational resources, some machine learning 
methods have been employed in estimating CTH for passive satellites. 
For instance, Min et al. (2020) and Yang et al. (2022) have achieved 
more accurate CTH retrieval using the gradient boosting decision tree 
(GBDT) and Extreme Gradient Boosting (XGBoost) models, respectively, 
compared to the operational H8 product. The potential of convolutional 
neural network in effective retrieval of CTH has also been demonstrated 
(Håkansson et al., 2018; Wang et al., 2022; Zhao et al., 2023b). In 
addition, lapse rate is also an important information to estimate CTH. 
Sun-Mack et al. (2014) proposed an approach for determining the low 
CTH using regional apparent boundary layer lapse rates derived from 
collocated CALIPSO and MODIS data.

Due to the inability of spectral signals to penetrate cloud layers, 
obtaining accurate CBH is more challenging. By using methods such as 
spectral matching or cloud type matching, CBH from active satellites can 
be extrapolated to a larger passive observation range (Barker et al., 
2011; Miller et al., 2014; Sun et al., 2016). Another commonly used 
approach involves converting the cloud water path (CWP) into the cloud 
geometric thickness (CGT), and the CBH can be derived based on the 
difference between CTH and the CGT (Hutchison, 2002; Hutchison et al., 
2006; Noh et al., 2017). Hutchison (2002) assumed that the relationship 
between CWP and CGT is primarily determined by cloud type, and used 
empirical cloud water content (CWC) for six cloud types. Noh et al. 
(2017) investigated the vertical variation of CWC, resulting in a more 
precise relationship between CWP and CGT. Tan et al. (2023) further 
considered the effects of more factors on the mean CWC, and the mean 
bias of retrieved CBH was reduced to 0.11 ± 1.93 km. Recently, the 
application of machine learning methods has also significantly improved 
the accuracy of CBH estimation. Tan et al. (2021) and Lin et al. (2022)
developed CBH retrieval algorithms for single-layer clouds during day
time based on random forest and the Gradient Boosted Regression Trees 
(GBRT) models, respectively, and the retrieval results were in better 
agreement with active satellite observations. By using thermal infrared 

measurements, the all-day available algorithms based on random forest 
model (Shao et al., 2023) and convolutional neural network (Wang 
et al., 2023) have also been developed.

The above methods offer us numerous valuable references. However, 
due to the uncertainties of radiative transfer model in cloudy skies, the 
presence of temperature inversions, theoretical assumptions and so on 
(Hamann et al., 2014; McKee and Cox, 1976), there are still significant 
biases in these operational passive CTH products, especially for high and 
thin clouds (Baum et al., 2012; Huo et al., 2020b). The CTH derived from 
passive sensors tended to be lower than those from active satellites and 
ground-based radar (Huo et al., 2020b; Tan et al., 2019). In addition, the 
extrapolation method for CBH estimation is only applicable to relatively 
flat and uniform clouds, and is also limited by the extrapolation distance 
(Lu et al., 2021; Mülmenstädt et al., 2018). And the CWP-based method 
is not applicable during nighttime, as the CWP is generated based on 
solar channels. The machine learning methods do greatly improve the 
accuracy of the CTH and CBH retrieval. However, these algorithms 
typically necessitate the numerous spectral information and auxiliary 
meteorological field information as input, which may lead to limitations 
in the application of the algorithm to other passive satellites (Lin et al., 
2022; Min et al., 2020).

Here, we apply the lapse rate information to estimate the CTH and 
CBH for passive satellites. This method is further improved based on our 
previous study (Li et al., 2013) and is expected to obtain more accurate 
cloud height information for different cloud types. The lapse rate 
method has the advantages of simplicity, fewer input parameters, high 
accuracy and wide applicability, and it can work both during day and at 
night. Thus, it may serve as a valuable supplement to currently available 
retrieval techniques based on passive sensors. This paper is organized as 
follows:The brief introduction of datasets used in this study is given in 
Section 2. Section 3 presents the theoretical description and construc
tion of the lapse rate method used in the paper. Section 4 demonstrates 
the application of the method and analyses its performance. The con
clusions and summary are presented in Section 5.

2. Data

2.1. MODIS data

The Moderate Resolution Imaging Spectroradiometer (MODIS) 
imager on the Aqua satellite was launched in 2002. This instrument can 
provide long-term observations on a global scale, with 36 spectral bands 
with wavelengths in the range of 0.4 μm to 14.4 μm. It includes almost 
all the important bands from visible to infrared (King et al., 2003; 
Platnick et al., 2003), and may cover the globe every one to two days 
with high spatial resolution from 250 m to 1 km (2 bands at 250 m, 5 
bands at 500 m, and 29 bands at 1 km). In this study, the operational 
Aqua-MODIS Collection 6.1 Level 2 cloud products (MYD06_L2) were 
used. Specifically, parameters with a spatial resolution of 1 km, 
including surface temperature (ST), cloud top pressure (CTP), cloud top 
temperature (CTT), CTH and cloud optical thickness (COT) were used. 
The latest version of MODIS product uses the CO2-slicing technique 
(Menzel et al., 2008) for CTP retrieval of mid- to high-level clouds, and 
the CTP is converted to CTH and CTT with the National Centers for 
Environmental Prediction Global Data Assimilation System (NCEP 
GDAS). For low clouds, however, the 11-μm infrared window technique 
is used to derive the CTH (Baum et al., 2012).

2.2. CloudSat and CALIPSO satellite data

Along with Aqua-MODIS, the CloudSat and CALIPSO satellites are 
both members of the A-train satellite constellation; the CloudSat satellite 
carries a 94GHz cloud profiling radar (CPR), and the CALIPSO satellite 
carries a two-wavelength Cloud–Aerosol Lidar with Orthogonal Polari
zation (CALIOP) (Stephens et al., 2008; Winker et al., 2009). The CPR 
can penetrate optically thick clouds that can attenuate lidar signals, 
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while lidar can detect optically thin clouds that are not detected by cloud 
radar. Thus, in this study, we used the 2B-GEOPROF-LIDAR dataset, 
which combines the advantages of CPR and CALIOP to accurately 
describe information on the vertical structure of clouds in the atmo
sphere on a global scale (Mace and Zhang, 2014; Mace et al., 2009). In 
this dataset, each profile consists of 125 height layers and can provide up 
to five layers of cloud boundary information. In the presence of multi- 
layered clouds, cloud properties retrieval from passive radiometers is 
highly uncertain (Naud et al., 2007; Teng et al., 2023). Therefore, 
following the previous studies (Lin et al., 2022; Tan et al., 2021), only 
the CBH and CTH of single-layer cloud samples identified by the 2B- 
GEOPROF-LIDAR product were used as the reference values to 
construct the method and validate the retrieval results.

2.3. Geostationary satellite data (H8 and GOES-13)

The method has also been extended to geostationary satellites. As the 
new-generation geostationary satellite, Himawari-8 was launched on 7 
October 2014 and located at 140.7◦E above the equator. The AHI on 
board H8 can capture information from 16 spectral channels, with the 
central wavelength ranging from 0.47 to 13.3 μm, including 3 visible, 3 
near-infrared, and 10 thermal channels (Bessho et al., 2016). The Geo
stationary Operational Environmental Satellite-13 (GOES-13) launched 
on 24 May 2006, is a geostationary satellite operated by the National 
Oceanic and Atmospheric Administration (NOAA). It is located at 73◦W 
above the equator, and the GOES N–P Imager aboard the satellite is a 5 
channel (1 visible, 4 infrared) imaging radiometer. The Satellite Cloud 
and Radiation Property Retrieval System (SatCORPs) Clouds and the 
Earth’s Radiant Energy System (CERES) Geostationary Satellite (GEO) 
Edition 4 dataset can provide hourly cloud physics and radiative prop
erties of multiple geostationary satellites. In this study, the Himawari-8 
and GOES-13 cloud products retrieved by SatCORPs algorithms sup
porting the CERES project were employed (Minnis et al., 2008). Simi
larly, the parameters including CTP, CTT, CTH, CBH and COT were 
extracted.

2.4. Other auxiliary datasets

As the geostationary satellite products employed in this study are 
unable to provide surface temperature for cloudy pixels, thus the surface 
temperature from ERA5 reanalysis was employed as a supplementary 
data source. ERA5 is the fifth-generation atmospheric reanalysis of the 
European Centre for Medium-Range Weather Forecasts (Hersbach et al., 
2020). In this study, ERA5 hourly surface temperature with a horizontal 
resolution of 0.25◦ was used. The linear and inverse distance weighted 
interpolation algorithms were applied respectively to achieve temporal 
and spatial matching between ERA5 data and geostationary satellite 
observations. Table 1 summarizes the information of all the datasets 
used in this study and their corresponding parameters.

3. Methodology

3.1. Method description

The basic idea of our method is to use lapse rate information to es
timate CTH and CBH based on passive satellites. The CTH retrieval re
quires calculating the mean lapse rate from the surface to the cloud top, 
defined as the ratio of the temperature difference to the height differ
ence. In addition, the lapse rate within cloud (from cloud base to cloud 
top) and below cloud (from surface to cloud base) are needed for the 
CBH retrieval.

In order to ensure the accuracy of the lapse rate method, the first step 
is to understand the factors that influence the lapse rate. Previous studies 
have shown that using a fixed lapse rate to retrieve CTH is apparently 
not feasible everywhere (Dong et al., 2008), and the derived mean 
boundary lapse rate exhibits considerable spatial variability and pro
nounced seasonal fluctuations across most of the globe (Sun-Mack et al., 
2014). There are also obvious regional differences in the lapse rates 
within and below the cloud (Li et al., 2013). Furthermore, the cloud type 
plays a crucial role in estimating CBH, and the algorithms usually exhibit 
enhanced performance when cloud type information is incorporated 
(Forsythe et al., 2000; Liang et al., 2017). Especially, using GPS Radio 
Occultation and CloudSat observations, Yang and Zou (2013, 2017)
have indicated that the lapse rate within clouds depends on cloud types. 
Clouds can influence the atmospheric thermal states through latent heat 
release and radiative heating (Haynes et al., 2013). Different types of 
clouds have different physical properties. Factors such as cloud height, 
cloud optical thickness, cloud phase, cloud effective radius and cloud 
droplet concentration can affect the cloud radiation effects (Chen et al., 
2000; Hartmann et al., 1992; Li et al., 2020; Zhao et al., 2023a), which 
also affect the temperature variations below and within the clouds, and 
hence the lapse rate. Also, different types of clouds are usually domi
nated by different physical processes (e.g., condensation growth, 
deposition and freezing). These processes can result in differences in the 
release of latent heat (Jakob and Schumacher, 2008), which further 
affects the lapse rate. In fact, due to the complexity and diversity of 
clouds in the real atmosphere, many other factors may also influence the 
lapse rates (e.g., atmospheric humidity and composition). Nevertheless, 
some variables cannot be observed in real time and splitting the samples 
too finely can result in an insufficient sample size and reduced stability 
of the method. As results, the effects of longitude, latitude, cloud type 
and season on the lapse rate were eventually accounted for when con
structing the method.

For the CTH retrieval method, the mean temperature lapse rate from 
surface to cloud top (Γct) can be defined as (Sun-Mack et al., 2014): 

Γct =
(
Tsuf − Tct

)/(
Zct − Zsuf

)
(1) 

where Tct is the CTT derived from passive satellites, Zct and Zsuf are the 
CTH and surface elevation from active satellite, respectively. Tsuf is 
surface temperature derived from passive satellite (for MODIS) or ERA5 
reanalysis data (for geostationary satellites). In this study, it should be 
note that the mean lapse rate is derived from the cloud top and surface 

Table 1 
The details of datasets used in this study.

Products Variables Temporal Coverage Spatial resolution Temporal 
resolution

Functions

2B-GEOPROF-LIDAR CTH; CBH; Cloud layer number; 
surface elevation

2007–2012, 2015–2017 1.4 × 1.7 km Orbital Profiles As target for method construction 
and validation

MYD06 ST; CTT; CTH; CTP; COT 2007–2010 1 km Orbital View 
field

As input for method construction 
and validation

SatCORPS CERES GEO 
Edition 4

CTT; CTH; CTP; COT; CBH 2015–2017 for H8 and 
2010–2012 for GOES-13

6 km for H8 and 8 
km for 

GOES-13
1 h As input for method construction 

and validation

ERA5 ST 2010–2012, 2015–2017 0.25◦ 1 h
As input for method construction 

and validation
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temperatures, rather that the air temperatures at surface and cloud top 
in the standard definition of the lapse rate. Subsequently, the CTH can be 
calculated by means of the following equation: 

Zct = 1
/

Γct*
(
Tsuf − Tct

)
+Zsuf (2) 

Furthermore, the temperature difference between the cloud top and 
surface (Tsuf − Tct) can be divided into two components. The first is the 
temperature difference between cloud top and base (within cloud), the 
other is the temperature variation between the cloud base and the 
ground (below cloud). As shown in the following equation (Li et al., 
2013): 

Tsuf − Tct = Γcb1(Zct − Zcb)+Γcb2
(
Zcb − Zsuf

)
(3) 

where Γcb1 represents the lapse rate within cloud, and Γcb2 is lapse rate 
below the cloud. Zcb and Zct minus Zcb are cloud base height and cloud 
geometric thickness derived from 2B-GEOPROF-LIDAR product. In order 
to retrieve the CBH, eq. (3) can be transformed as follows: 

Zcb − Zsuf = (1/Γcb2)*
(
Tsuf − Tct

)
− ( Γcb1/Γcb2)*(Zct − Zcb) (4) 

The least squares fitting method allows the optimum estimates of the 
coefficients a = 1/Γcb2 and b= − Γcb1/Γcb2 to be obtained. The CBH can 
then be calculated using the following equation: 

Zcb =
(
a*

(
Tsuf − Tct

)
+ b*Zct +Zsuf

)/
(1+ b) (5) 

It should be noted that we also introduced residual term (ε) as a 
correction factor to improve the accuracy of our method. Firstly, for 
each training sample, the estimated CTH and CBH can be obtained using 
eqs. (2) and (5). The residuals represent the deviations between esti
mated cloud heights and active satellite observations in the training 

dataset. Furthermore, the CTH residual can be fitted as a function of 
( Tsuf − Tct), and the CBH deviations can be fitted as a function of CTH 
and ( Tsuf − Tct). Then, we can obtain the fitting coefficients for CTH 
residual and CBH residual. Finally, the CTH and CBH can be inferred by 
following equations: 

Zct = 1
/

Γct*
(

Tsuf − Tct
)
+Zsuf + ε

(
Tsuf − Tct

)
(6) 

Zcb =
(
a*

(
Tsuf − Tct

)
+ b*Zct +Zsuf

)/
(1+ b)+ ε

(
Tsuf − Tct, Zct

)
(7) 

After testing, we found that the residual term can improve the ac
curacy of our method. Consequently, for cloudy pixels, if the corre
sponding Γct is known, the CTH can be calculated by Tsuf, Tct and Zsuf 
using eq. (6). And then the CBH can be calculated from the Tsuf, Tct, Zsuf, 
the retrieved CTH and the coefficients a and b, where a and b are related 
to the Γcb1 and Γcb2.

3.2. Data processing

The flowchart of our data processing is shown in Fig.1. From the 
preceding theoretical description, it is apparent that the crucial point of 
the lapse rate method is to deduce the optimal values of lapse rates 
(including: Γct, Γcb1 and Γcb2). To develop the retrieval method for 
MODIS, four years (2007–2010) of MODIS and 2B-GEOPROF-LIDAR 
data were combined. And, the MODIS pixel closest to the CloudSat 
footprint within 1 km distance was selected. In addition, due to the high 
spatiotemporal variability of clouds, the time difference between the 
two observations was limited to 90 s.

After that, the cloud samples were randomly assigned into two 
groups, with 90 % used as the training dataset for method construction 
and 10 % as the validation dataset for evaluation of cloud heights 

Fig. 1. The methodological workflow of our data processing section.
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retrieval. Similar with Zhao et al. (2022), the cloud type classification is 
based on the joint distribution of cloud optical thickness (COT) and 
cloud top pressure (CTP). We therefore divided the samples in the 
training dataset into subsets (36 × 72 × 6 × 7 × 4) based on latitude, 
longitude, COT, CTP and season. Then, the samples in each subset were 
used to determine the representative coefficients. For CTH retrieval, we 
can obtain the Γct for each collocated cloudy pixel using eq. (1). After 
testing, we found that the mean Γct of all samples in each subset was 
more suitable as the representative Γct. For CBH retrieval, the fittest 
values of coefficients a and b in each subset can be obtained by eq. (4)
using least square method. Moreover, the fitted coefficients of the CTH 
and CBH residuals in each subset can be obtained, allowing the con
struction of the coefficient lookup tables for the cloud heights retrieval. 
Subsequently, for cloud heights retrieval of validation samples, CTH and 
CBH can be retrieved using eq. (6) and (7), with ST, CTT and coefficients 
for the given latitude, longitude, COT, CTP and season.

Fig. 2 shows the spatial distribution of three lapse rates coefficients 
(Γct, Γcb1 and Γcb2), as well as their joint histograms of CTP and COT. The 
Γcb1 and Γcb2 are calculated using the coefficients a (1/Γcb2) and b 
(− Γcb1/Γcb2). As in previous studies, the Γct exhibits significant spatial 
variations, with values ranging from 1 to 11 K/km (Sun-Mack et al., 
2014; Wu et al., 2008). The higher values were mainly located in typical 
stratocumulus regions and Tibetan Plateau region (Fig. 2a). Further
more, there are significant differences in Γct across different cloud types 
(Fig. 2d). Similarly, the lapse rate within (Γcb1) and below cloud (Γcb2) 
also have obvious spatial variations. For the Γcb1, larger values are 
observed at lower latitudes and smaller values at higher latitudes. 
However, for the Γcb2, which has smaller values at lower latitudes, with 
a minimum value of about 4 K/km. From 30◦ to the poles, it increases 
approximately with latitude. Moreover, both Γcb1 and Γcb2 vary some
what between the various cloud types. As mentioned earlier, these dif
ferences can be attributed to variations in the cloud physical properties 
and different physical processes. The cloud heating rate and radiation 
fluxes are sensitive to changes in the cloud properties. Increasing the ice 
water content can result in an increase in longwave heating at cloud base 
and cooling near cloud top, and the liquid water content also alters the 
longwave hearting rate (Mather et al., 2007). In addition, differences in 
atmospheric temperature and water vapor profiles can lead to signifi
cant differences in cloud radiative effect (McFarlane et al., 2007; Yan 
et al., 2016). For lapse rate within cloud, our results are consistent with 
the observations of Yang and Zou (2013, 2017), with smaller values for 
low clouds, larger values for high clouds, and a slight increase with 

altitude. It is important to acknowledge that the lapse rates involved in 
this study represent only a statistical outcome and may not fully reflect 
the actual atmospheric environment. To summarize, all three lapse rates 
differ in spatial distribution and cloud type. Therefore, it is reasonable 
and necessary to consider the factors that may affect these lapse rates.

3.3. Evaluation metrics

Several error metrics were used to evaluate the performance of our 
method, including: mean absolute bias error (MAE), mean bias error 
(MBE), root mean square error (RMSE) and Pearson correlation coeffi
cient (R). They are calculated as follows: 

MAE =
1
n
∑n

i=1
∣yi − xi∣ (8) 

MBE =
1
n
∑n

i=1
(yi − xi) (9) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − xi)

2
√

(10) 

R =

∑n

i=1
(yi − y)(xi − x)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2 ∑n

i=1
(yi − y)2

√ (11) 

in which n is the sample number, yi is ith retrieval result, xi is ith 
observation value. The y and x are the mean value of retrieval results 
and observations, respectively. Among them, a higher R, a lower MAE 
and RMSE, and a closer MBE is to 0 indicate better agreement between 
retrieved and observed results with less error.

4. Results

4.1. Overall performance of the method based on MODIS

We initially applied our cloud top and base height retrieval methods 
to the CPR-CALIOP-MODIS collocated validation dataset for method 
performance testing. The retrieval results were evaluated using 
CloudSat-CALIPSO product.

Fig. 3 shows the comparisons of CTH derived from MODIS product 
and new method (that is, lapse rate method) with CloudSat-CALIPSO 

Fig. 2. Geographical distribution of (a) the mean lapse rate (Γct), (b) the lapse rate within (Γcb1) and (c) below clouds (Γcb2). (d-f) are their joint histograms of cloud 
top pressure and cloud optical thickness.
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(hereafter, CC) measurements at daytime. And the corresponding eval
uation metrics are also provided in the upper left corner of the relevant 
subplot. The density scatter plots of CC compared with MODIS and lapse 
rate method are shown in the first and second columns, respectively. It 
can be found that for all validation samples without regard to cloud 
types, the MAE of MODIS is 1.12 km, the MBE is − 0.63 km, and the 
RMSE and R are 1.72 km and 0.94, respectively (Fig. 3a). In general, the 
MODIS underestimated CTH, particularly for samples with CTH 
exceeding 10 km, which is similar with previous studies (Min et al., 
2020; Zhang et al., 2020), and the underestimation of CTH is primarily 
attributable to the limitations of passive sensors in detecting high opti
cally thin clouds (Baum et al., 2012; Holz et al., 2008; Weisz et al., 
2007). Fig. 3b indicates that our retrieval results exhibit a better con
sistency with the CC observations, with more samples clustered around 
the 1:1 line. The MAE, MBE, RMSE, and R values are superior to those of 
MODIS product, with values of 0.85 km, 0 km, 1.33 km and 0.96, 
respectively. Our lapse rate method effectively mitigates the MODIS 
underestimation in CTH, with an MBE improvement of 0.63 km. Our 
retrieval results also have comparable accuracy to the results of 

Håkansson et al. (2018), who developed a neural network approach for 
CTH retrieval from MODIS, and the MAE and RMSE of their results for 
all cloud samples are 0.98 km and 1.84 km, respectively. The probability 
distribution of the CTH deviation also indicates that our method is more 
accurate in estimating CTH, with the probability of deviation within ±1 
km improved from 61 % to 72 % (Fig. 3c). It is worth noting that there 
are some samples with significant overestimation or underestimation in 
both the MODIS CTH product (Fig. 3a) and our retrieval results (Fig. 3b). 
The uncertainty in the spatiotemporal match of different sensors may 
result in large errors in MODIS CTH products. Large MODIS CTH de
viations means large CTT deviations, resulting in the bias for the above 
samples remaining relatively large in our results.

Here, we also further evaluate the performance of our method for 
different cloud types. As a sample, the validations for high optically thin 
clouds (1.3 < COT<3.6 and 180 hPa < CTP < 310 hPa) and high opti
cally thick clouds (60 < COT<380 and 50 hPa < CTP < 180 hPa) are 
shown in Fig. 3d-f and Fig. 3g-i, respectively. It is crucial to highlight 
that cloud types were classified according to the physical characteristics 
from MODIS product. There are significant underestimations of MODIS 

Fig. 3. Pixel-by-pixel comparisons of (a) MODIS CTH, and (b) our CTH retrieval results with CloudSat-CALIPSO measurements for all validation dataset samples at 
daytime. The colors indicate the number of samples. (c) The probability distribution of CTH differences between CC measurements and MODIS product (blue line), 
and our retrieval results (red line). Positive (negative) values indicate that a given dataset provides larger (smaller) CTH values than those of CC. The second row (d-f) 
is same as first row but for cloud samples with 1.3 < COT<3.6 and 180 hPa < CTP < 310 hPa, and the third row (g-i) is the result for cloud samples with 60 <
COT<380 and 50 hPa < CTP < 180 hPa. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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for both types of samples, particularly in the case of high optically thin 
clouds, with MBE of − 0.75 km and R of 0.68. When using the lapse rate 
method, we find significant improvements in MAE, MBE, RMSE, and R 
for both types of samples. For high optically thick (thin) clouds, the MAE 
and RMSE are reduced 0.48 km (0.32 km) and 0.58 km (0.25 km). The 
distribution of deviations also suggests that our method effectively 
mitigates the CTH underestimation, with the probability peak occurring 
near 0 km, and the MBE values are all 0 km. In summary, the CTH ob
tained by the lapse rate method is in good agreement with those of CC 
observations, with small MAE, RMSE and large R, indicating that the 
lapse rate method is more accurate and stable compared with MODIS 
CTH product.

Furthermore, we also evaluated the accuracy of the CBH retrieval 

based on our method. Due to the lack of the operational cloud base 
height product from MODIS, only the comparisons of the retrieved CBH 
with the CC observations are shown in Fig. 4. The first row presents the 
overall results for complete samples, while the second and third rows 
present the results for two specific cloud types. Fig. 4a demonstrates that 
the lapse rate method generally performs well in CBH estimation, and 
the most of samples are around the 1:1 line. The values of MAE, MBE, 
RMSE and R are 0.73 km, 0 km, 1.26 km and 0.91, respectively. In 
comparison, Tan et al. (2023) developed a CBH retrieval method by 
introducing the effective CWC variable. According to their results for 
MODIS single-layer non-precipitation clouds, the MBE is 0.11 km and R 
is 0.87. Wang et al. (2023) developed a deep learning model to estimate 
MODIS CBH using six thermal infrared radiances, COT, CTH, land cover, 

Fig. 4. Comparisons of CBH retrieval results with CC measurements at daytime. (a) Density scatter plot for all validation samples. (b) The probability distribution of 
CC CBH (blue line) and retrieved CBH (red line). The second row (c-d) is same as first row but for high optically thin clouds (1.3 < COT<3.6, 180 hPa < CTP < 310 
hPa). The third row (e-f) is the result of cloud samples with 60 < COT<380 and 440 hPa < CTP < 560 hPa. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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altitude and lifting condensation level, and the MBE, RMSE and R of 
their results for single-layer clouds are − 0.22 km, 1.19 km and 0.94, 
respectively. This shows that the lapse rate method using only a few 
variables exhibits comparable performance compared to other algo
rithms. The negligible differences in the CBH probability distribution 
between CC products and our retrieved results can further demonstrate 
the excellent performance (Fig. 4b).

As a sample, the lapse rate method also performs well for high 
optically thin clouds (1.3 < COT<3.6, 180 hPa < CTP < 310 hPa), the 
CBH estimations agree well with CC observations, with R of 0.74 and 
MBE of 0 km (Fig. 4c). The probability distribution of our results and CC 
observations are similar (Fig. 4d). For cloud samples with 60 <
COT<380 and 440 hPa < CTP < 560 hPa, the MAE and RMSE of 
retrieved CBH are 0.41 km and 0.71 km, respectively (Fig. 4e). The 
probability distribution is shown in Fig. 4f, it can be found that our re
sults slightly overestimate the probability of CBH occurring in the 1–2 
km range. Overall, the lapse rate method has high accuracy and stability, 
and provides good performance for all samples and two specific types of 
samples.

The lapse rate method is also available during nighttime. It should be 
noted that the MODIS COT product is generated based on solar channel 
information, and is not available at night. Consequently, different from 
the daytime case, the nighttime samples were divided into 36× 72 × 7 ×
4 subsets based on latitude, longitude, CTP, and season. Thereafter, the 
most appropriate coefficients were obtained for each subset, which were 
then employed to retrieve the cloud top and base height. And the 
retrieval results during nighttime in 2007 is shown in Fig. 5.

Similarly, MODIS tends to underestimate CTH, especially for high 
clouds (Fig. 5a). The values of MBE and RMSE are − 1.03 km and 2.63 
km, respectively. The lapse rate method also performs well in estimating 
CTH at night, and the results agree better with observations. All four 
statistical metrics have improved, with MAE, MBE, RMSE and R values 
of 1.13 km, 0 km, 1.82 km and 0.92, respectively (Fig. 5b). As illustrated 
in Fig. 5c, the probability of the deviation being within ±1 km increased 

from 54 % to 64 %, and our method effectively alleviates the underes
timation of MODIS CTH. The retrieved CBH also agrees well with the CC 
product, despite a certain degree of bias (MAE = 1.21 km and RMSE =
2.00 km). Furthermore, the probability distribution of estimated CBH is 
also in good agreement with observations (Fig. 5e).

It’s worth noting that the CBH measurements of CC may be affected 
by surface clutter and precipitation. Previous studies have shown that 
CC has difficulty in detecting CBH of low clouds due to surface clutter, 
and underestimates cloud occurrence at lower altitudes (Bertrand et al., 
2024; Cho et al., 2015). In addition, radar echo signal of precipitation 
can cause CPR to report a lower CBH than the “true” CBH (Noh et al., 
2017). As only CC product are currently suitable as reference values, this 
may cause some bias in our results. Here, the collocated CloudSat- 
MODIS samples were further matched with the ground-based observa
tions at SGP site, and CBH comparison results are shown in Fig. S1. The 
precipitation flag from the 2C-PRECIP-COLUMN product was used to 
identify precipitation. For the non-precipitation case, it can be found 
that due to ground clutter, CC may overestimate the near-surface CBH, 
and further overestimate probability within 1–2 km (Fig. S1a-b). Since 
our method used CC CBH as reference values, it shows similar biases to 
the CC CBH below 2 km. Above 2 km, CC agrees better than our results 
with ground-based observations (Fig. S1c-d). For the precipitation case, 
precipitation causes CC to underestimate the high level CBH, and CC 
CBH are all concentrated near 1 km, thereby significantly under
estimating the probability within 2–5 km and overestimating the prob
ability within 0.75–1.25 km (Fig. S1e-f). Compared to CC, our results 
alleviate the significant CBH underestimation. The scatter plot also 
shows our results are more consistent with the ground-based observa
tions, with less bias (Fig. S1g-h).

Here, our CBH results in Fig.4–5 contain both precipitation and non- 
precipitation cloud samples. Although the overall MBE of our results is 0 
km, there is an overestimation for low cloud bases. As we mentioned 
above, this overestimation is largely due to the anomalously low CC CBH 
of precipitation samples. Fig. S2 shows that for precipitation samples in 

Fig. 5. The method validations of (a) MODIS CTH, (b) retrieved CTH and (d) retrieved CBH at nighttime. (c) is the probability distribution of CTH differences 
between CC measurements and MODIS product (blue line), and our results (red line). (e) is probability distribution of CBH. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig.4a, our CBH results are usually larger than those from CC (MBE =
0.54 km). For non-precipitation samples in Fig.4a, the overestimation 
for low cloud base is significantly alleviated (Fig.S2c). Moreover, the 
bias in MODIS CTT may also contribute to the overestimation of CBH. It 
is worth noting that the CC CBH of precipitation samples is anomalously 
low, which means that our results may be closer to the “true” values.

In addition, when we filter out precipitation samples from both the 
training and validation sets, the CBH retrieval results are shown in 
Fig. S3. It can be found that both the underestimation and over
estimation for low cloud base heights in our results are significantly 
alleviated. Especially, the retrieved CBH are more consistent with the 
observations at night, with MAE reducing to 1.16 km and R improving to 
0.86. During daytime, we have classified samples using COT and CTP, 
which improved the retrieval accuracy. This may also cause our accu
racy to be less sensitive to precipitation removal. Previous studies have 
shown that COT is crucial in estimating CBH (Lin et al., 2022; Noh et al., 
2017; Tan et al., 2021). The absence of MODIS COT during nighttime 
prevents the data from being divided according to COT and obtaining 
corresponding lapse rate, which has reduced the accuracy of CBH 
retrieval at night. Therefore, high-precision nighttime cloud optical 
thickness product for passive satellites would contribute to better per
formance of our lapse rate method.

The CGT is also a very important macro-physical property, and it 
affects the probability and intensity of precipitation, as well as liquid 
size and precipitation rate (King et al., 2015; Yan et al., 2016). The CGT 
estimation can be derived from retrieved CTH and CBH, and its com
parison with CC is shown in Fig. 6. The estimated CGT also agrees well 
with observations (R = 0.91). The overall deviation is also relatively 
small, with MAE and RMSE of 0.97 km and 1.44 km, respectively. Tan 
et al. (2023) also obtained the CGT estimations for MODIS using an 
effective CWC lookup table, with MBE and R values of − 0.36 km and 
0.83, respectively. Yang and Cheng (2020) used a regression model to 
calculate CGT based on COT, cloud effective radius, and CTT. Their 
model performed best on the ocean, with the RMSE and R2 of 1.74 km 
and 0.7. Using Orbiting Carbon Observatory-2(OCO-2) hyper-spectral 
oxygen A-band (O2A) observations, Li and Yang (2024) developed a 
CGT retrieving method for single layer liquid clouds, achieving R and 
MBE values of 0.78 and − 0.16 km for marine clouds after removing 
outliers. Compared with other methods, our CGT results show a certain 
improvement in accuracy, nevertheless, the distributions of CGT derived 
from lapse rate method and CC observations also indicate that our re
sults underestimate the probability of CGT in the range of 0–500 m and 
overestimate the probability in the range of 500–1500 m (Fig. 6b). Our 
CGT results are based on CTH and CBH retrievals, and we find that the 
overestimation of CTH retrievals is the main reason for the above 

phenomenon. For some samples with observed CGT between 0 and 500 
m, we have overestimated their CGT to be between 500 and 1500 m.

In addition, we have also extended the derived lapse rate to daytime 
cloud heights retrieval for MODIS in 2016, and the validation of our 
retrieval results is shown in Fig. S4. It can be found that the retrieval 
results of the CTH, CBH and CGT are also in good agreement with the CC 
product. Furthermore, the accuracy all remains consistent with previous 
results, which demonstrates the versatility and credibility of our 
method.

4.2. Specific performance of the method during the daytime

The absence of MODIS nighttime COT affects the accuracy of our 
method. Therefore, in this section, only daytime samples were selected 
to analyze the specific method performance for different seasons, re
gions and cloud types. The validation results for CTH and CBH in each 
season are shown in Fig. 7. Our lapse rate method performs well in both 
CBH and CTH estimation throughout the year, with strong stability 
across different seasons. Compared with the MODIS CTH product, the 
CTH retrieval results based on the lapse rate method demonstrate 
greater consistency with observations across all four seasons, exhibiting 
smaller errors and larger correlation coefficients. In particular, the 
negative bias of MODIS CTH (MBE <0 km) is significantly alleviated, 
and the MBE of the retrieved CTH is almost always 0 km (Fig. 7b). The 
retrieved CBH is also in good agreement with observations and has 
robust stability, with R exceeding 0.9 and MAE below 0.8 km in all four 
seasons. The MBE of retrieved CTH and CBH are very close to 0 km, 
resulting in their almost non-display on the Fig. 7b.

Fig. 8 shows the spatial performance of the MODIS CTH product, and 
the lapse rate method in estimating CTH and CBH. At first glance, the 
global MAE and RMSE distributions all have similar distribution pat
terns. The deviation of MODIS CTH is relatively larger in the equatorial 
regions, where high clouds are frequent existed. The ascending branch 
of the Hadley circulation can transport abundant water vapor to high 
altitudes, resulting in the formation of high clouds (Chi et al., 2024), and 
MODIS generally underestimates the CTH of these high clouds. The 
MODIS product uses a combination of the CO2-slicing technique and the 
11-μm infrared window (IRW) technique to retrieve CTH (Baum et al., 
2012). The CO2-slicing technique uses the measured radiance and clear- 
sky radiance from two neighboring wavelengths to derive CTP, and then 
CTH and CTT is derived from atmospheric profile data. The IRW method 
assumes that clouds are black bodies, and the measured 11-μm infrared 
brightness temperature is used to derive CTH by comparing with the 
brightness temperature profile derived from the NCEP GDAS (Baum 
et al., 2012). The uncertainty in theoretical assumption, atmospheric 

Fig. 6. Comparisons of CGT derived from lapse rate method with CC measurements at daytime. (a) Density scatter plot for all validation dataset samples, and (b) The 
probability distribution of CGT from CC measurements (blue line) and lapse rate method (red line). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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temperature profile and radiative transfer model may affect the accu
racy of CTT and CTH retrieval (Menzel et al., 2008). For the MODIS 
product, samples with a large CTH bias means a large CTT bias. Since the 
CTT is required to retrieve cloud heights, the errors in the CTT will be 
propagated into the CTH and CBH retrievals. In the typical stratocu
mulus cloud regions, both MAE and RMSE are relatively small, with 
MAE typically being less than 0.7 km. In addition, MODIS exhibits 
smaller CTH than radar-lidar measurements in most areas (MBE <0 km) 
except several stratocumulus cloud regions.

The statistical metrics of retrieved CTH have similar spatial distri
bution patterns to that of MODIS CTH, however, the specific values of 
the deviations have been reduced globally. According to Fig. 8d-e, the 
MAE and RMSE of retrieved CTH from our method have both decreased 
significantly, with the mean values reduced from 1.1 km and 1.7 km to 
0.8 km and 1.3 km, respectively. Differences of statistical metrics be
tween different regions have also been reduced, indicating a more stable 
spatial performance of the lapse rate method. The underestimation in 
CTH is also significantly alleviated (Fig. 8f), with the mean value of MBE 
is 0 km. The results of the CBH retrieved by lapse rate method are 
comparable to those reported by Wang et al. (2023), who developed a 
deep learning algorithm using thermal infrared radiances, cloud prop
erties, land cover, altitude and lifting condensation level. Fig. 8g-i shows 
that the errors of retrieved CBH are relatively larger in the Intertropical 
Convergence Zone (ITCZ), where high optically thin clouds often occur. 
For those thin clouds, MODIS significantly overestimates the CTT (Holz 
et al., 2008). In most of the other regions, the deviations of the CBH 
estimations are small, especially in the subtropical stratocumulus re
gion. Furthermore, the MBE is nearly 0 km on a global scale. In 
conclusion, the above results demonstrate that the lapse rate method has 
relatively high accuracy and stability in both CTH and CBH retrieval at 

the global scale, and the retrieved CTH is more accurate compared with 
MODIS CTH product. The corresponding number of validation samples 
for each grid is shown in Fig. S5. It can be found that there is no clear 
correspondence between the performance of our method and sample 
size, indicating that the better performance of our method is not due to 
more samples.

Furthermore, we also evaluated the performance of the lapse rate 
method on different cloud types. The MAE, RMSE and MBE for 42 cloud 
regimes sorted by CTP and COT are shown in Fig. 9. The distribution 
patterns of MAE and RMSE for MODIS CTH product are basically the 
same. In general, the deviation is smaller for middle and low clouds with 
larger optical thicknesses. It is evident that MODIS has large deviations 
for cloud samples with high CTP (CTP > 440 hPa) and low COT 
(COT<3.6), and the largest MAE and RMSE can reach 4.89 km and 5.59 
km, respectively (Fig. 9a-b). Combined with the corresponding negative 
MBE values, it suggests that the MODIS severely underestimates the CTH 
for these cloud types. For example, the samples identified by active 
satellite as high clouds may be misjudged by MODIS as lower clouds. 
This is due to that both the IRW method and CO2-slicing method tends to 
determine CTH from the radiation center of the cloud layer, which might 
be lower than the actual cloud top (Huo et al., 2020a). For optically thin 
clouds, the difference between cloud radiance and clear-sky radiance is 
small, and the assumption that clouds are black bodies may not be true. 
Moreover, the longwave radiation emitted from the ground can pene
trate clouds and affect satellite radiation measurements (Sassen and 
Campbell, 2001). All of these can lead to deviations in MODIS CTH. In 
addition, 41 of the 42 cloud types exhibit negative MBE (Fig. 9c), which 
also indicates that the MODIS underestimation of CTH is widespread. In 
comparison, the statistical metrics of retrieved CTH based on lapse rate 
method have similar distributions to those of MODIS, but the specific 

Fig. 7. Assessment of MODIS CTH product, retrieved CTH and retrieved CBH across different seasons. (a), (b), (c) and (d) are MAE, MBE, RMSE and R, respectively. 
The MBE of retrieved CTH and CBH are very close to 0 km, resulting in their almost non-display on the Fig. 7b.
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values are much improved (Fig. 9d-f). The maximum values of MAE, 
RMSE are reduced to 2.03 km and 2.75 km, respectively. A total of 30 
types of samples exhibited an MAE of less than 1 km, while MODIS only 
has 9 types. The RMSE for 34 types of samples is less than 1.5 km (only 
16 types for MODIS), and MBE values for all cloud types are nearly 0 km, 
significantly mitigating the underestimation of MODIS CTH. It is note
worthy that the MAE and RMSE of the retrieved CTH are significantly 
reduced for each cloud type when compared to the MODIS product.

According to Fig. 9g-i, the retrieved CBH from lapse rate method 
exhibits a good consistency with active observations, with MAE of 27 
cloud types less than 1 km and most MBE values are very close to 0 km. 
The errors for middle and low optically thick clouds are the smallest, 
with MAE less than 0.5 km. The deviation of CBH is relatively larger for 
the samples misidentified by MODIS as low optically thin clouds. The 
deviations in MODIS CTT (CTH) can lead to deviations in the retrieved 
CTH, and then the deviations of MODIS CTT and retrieved CTH would 
affect the CBH retrieval. Through the above analysis, it can be found that 
the lapse rate method also has relative better performance in both CTH 
and CBH retrieval for different cloud types.

A suitable typhoon event has also been selected to demonstrate the 
concrete performance of our method. Fig. 10 shows across-section 
comparison results during the Hurricane Igor. The gray shading repre
sents cloud layers derived from the joint CloudSat and CALIPSO product, 
and the results from MODIS CTH product and the lapse rate method have 
also been labelled with distinct markers. Additionally, the inset map of 
Fig. 10 shows the MODIS CTH image on 16 September 2010 at 1710 
time, and the green line indicates the CloudSat scanning track. In the 
cross-section shown in Fig. 10, the MODIS CTH product (black dots) 
typically underestimates the CTH, and the estimated CTH based on lapse 
rate method (blue triangles) is more consistent with the CPR-CALIOP 
observations. Our method performs better in both single-layer and 
multi-layer clouds.

The retrieved CBH (red triangles) also shows good agreement with 

the active measurements, even providing perfectly consistent values for 
deep convective clouds with large geometrical thicknesses. Some pre
vious CBH retrieval algorithms are usually not directly available for 
deep convective clouds, and lifting condensation levels have been 
additionally used to determine the CBH of deep convective clouds (Tan 
et al., 2021; Tan et al., 2023). However, the errors of CBH for multi-layer 
clouds are still relative larger, with the retrieved values are normally 
between the upper-layer CBH and the lower-layer CBH. Our method is 
developed by only single-layer clouds, and the MODIS cloud product 
exhibits larger errors when multilayer clouds are present. Currently, 
cloud property retrieval algorithms for passive radiometers typically 
assume that all cloud pixels are single-layered and homogeneous (Baum 
et al., 2012; Letu et al., 2019; Platnick et al., 2017). When multilayer 
clouds are present, the optically thick upper cloud would prevent sat
ellites from detecting the signals of lower clouds, and the lower water 
clouds also make the detection of upper optically thin ice clouds difficult 
(Wang et al., 2019; Watts et al., 2011). These may have resulted in the 
inaccuracy cloud height retrieval results for the multilayer clouds.

4.3. Applications on geostationary satellites

In this section, we further extended the method to cloud height re
trievals of geostationary satellites (H8 and GOES-13). It’s important to 
note that the lapse rate information is derived from the collocated 
active-passive satellites data. Factors such as spectral measurement, 
observation geometry, instrument resolution and retrieval algorithms all 
contribute to the differences in the accuracy of different satellite prod
ucts, which will be reflected in the lapse rate. Therefore, the lapse rate 
was reconstructed separately when applying the method to other passive 
satellites. However, the fundamental idea of our method remains 
completely consistent. The collocated H8 and CloudSat samples during 
2015 to 2017 were randomly divided into training and validation 
datasets for method construction and validation, respectively. The AHI 

Fig. 8. Global distributions of MAE (a, d, g), RMSE (b, e, h), and MBE (c, f, i) in 5◦ × 5◦ grids. The first row is the results of MODIS CTH product, the second row is the 
results of CTH retrieval, and the third row is the results of CBH retrieval.
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pixels closest (within 8 km) to the CloudSat footprint within a time 
difference of ±5 min were taken as a matching point with observations. 
For the SatCORPs GEO datasets used in this study, the nighttime COT 
can be derived by infrared split-window technique (Minnis et al., 2011), 
so the results in this section are for the whole day.

Fig. 11 shows the validation results of our method on H8 satellite. It 

can be found that the SatCORPs H8 CTH product has significant biases 
(MAE = 1.76 km and RMSE = 3.12 km) compared with the active ob
servations (Fig.11a). The SatCORPs products use the CERES Ed4 
retrieval algorithms, which determines CTH using a set of parameteri
zations based on cloud emissivity, cloud effective temperatures and COT 
(Minnis et al., 2011). The cloud thickness is computed using empirical 

Fig. 9. The joint histogram of CTP and COT for (a, d, g) MAE, (b, e, h) RMSE, and (c, f, i) MBE. The first row is the results of MODIS CTH, the second row is the results 
of CTH retrieval, and the third row is the results of CBH retrieval. The number in each box expresses the value of the corresponding metric.

Fig. 10. The inter-comparisons of MODIS CTH product, and our CTH and CBH results with CC for a hurricane scene on September 16, 2010 (17:10 UTC). The gray 
shading indicates cloud layers derived from CC. The MODIS CTH (black dots), retrieved CTH (blue triangles) and CBH (red triangles) are also displayed. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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formulas based on COT and cloud effective temperatures, and then the 
CBH is estimated by subtracting cloud thickness from CTH (Minnis et al., 
2021). In general, there is an underestimation in CTH, particularly for 
high clouds, with the MBE of − 1.15 km. The SatCORPs H8 CBH product 
also exhibits an obvious bias, with an overestimation of the low CBH and 
an underestimation of the high CBH (Fig. 11d). The values of MAE, 
RMSE and R are 1.81 km, 2.95 km and 0.67, respectively. In comparison, 
the lapse rate method performs well in both CTH and CBH estimations, 
with most of the samples clearly concentrated around the 1:1 line. For 
CTH retrieval, our method effectively alleviates the underestimation for 
high clouds. All four statistical indicators show significant improvement, 
with the values of MAE, MBE, RMSE and R are 1.03 km, 0 km,1.89 km 
and 0.93 respectively (Fig. 11b). Our results are slight superior to the 
accuracy reported by Min et al. (2020), who developed a gradient 
boosting decision tree (GBDT) model to derive CTH for the AHI, and the 
MAE, MBE and RMSE of their results for single-layer clouds are 1.47 km, 
0.65 km and 2.39 km, respectively. Based on the Extreme Gradient 
Boosting (XGBoost) model, Yang et al. (2022) also constructed a CTH 
retrieval algorithm for AHI using substantial number of spectral infor
mation and atmospheric parameters, and our results are also 

comparable to their accuracy of single-layer clouds (MAE = 1.02 km, 
MBE = − 0.22 km and RMSE = 1.7 km). A marked improvement in the 
accuracy of retrieved CBH can also be found in various height ranges, 
our retrieval results have smaller errors (MAE = 0.99 km, MBE = 0 km 
and RMSE = 1.87 km) and higher consistency (R = 0.88) (Fig. 11e). The 
probability of the CBH deviation can also demonstrate the excellent 
performance of the lapse rate method, with approximately 71 % of the 
samples having an absolute error of less than 1 km, significantly better 
than the 53 % for the H8 product (Fig. 11f). In comparison, our method 
has comparable performance with that of Tan et al. (2021), who pre
sented a CBH estimation method for Himawari-8 using random forest 
algorithm, and their retrieval results for single-layer non-precipitation 
clouds had the best performance with the MBE of − 0.2 km.

The validation of CGT estimation derived from CTH and CBH is also 
shown in Fig. 11g-i. Compared with the statistic results of the CGT 
derived from SatCORPs H8 product (MAE = 1.30 km, MBE = − 0.75 km, 
RMSE = 1.95 km and R = 0.85), our CGT results have smaller errors, the 
values of MAE, MBE, RMSE and R are 0.78 km, 0 km, 1.26 km and 0.93 
(Fig. 11h). The CGT derived from lapse rate method mitigates the un
derestimation in CGT, and more samples having an absolute error of less 

Fig. 11. The validation of CTH, CBH and CGT from SatCORPs H8 product and our retrieval results using active satellite observations for (a) H8 CTH, (b) retrieved 
CTH, (d) H8 CBH, (e) retrieved CBH, (g) H8 CGT and (h) retrieved CGT. (c) The probability distribution of CTH differences between observations and H8 CTH (blue 
line), and retrieved CTH (red line). (f) and (i) are same as (c) but for CBH and CGT, respectively. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)
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than 1 km (Fig. 11i). Tan et al. (2023) also obtained the CGT estimations 
for AHI by using the effective cloud water content lookup table, and the 
MBE and R of their single-layer clouds results are − 0.45 km and 0.81, 
respectively. It can be found that the lapse rate method also has a su
perior performance in estimating CGT. Here, it is noteworthy that the 
accuracy of CGT is even higher than that of CTH and CBH. This may be 
attributed to the error cancellation in CTH and CBH, resulting in a more 
accurate estimation for CGT.

Similarly, we have also extended the lapse rate method to the GOES- 
13 satellite, the results are shown in Fig. S6. Similarly, the GOES-13 data 
closest (within 8 km) to the CC within a time difference of ±10 min was 
taken as a matching point with observations. The cloud height product 
of GOES-13 used in this paper has a similar performance to the H8 
product, as they are both derived from SatCORPs algorithm. In general, 
GOES-13 has larger errors than H8 due to fewer observation channels. 
Similarly, the lapse rate method also performs well on GOES-13 satellite, 
with both CTH and CBH demonstrating high consistency with active 
observations. There are also significant improvements in the statistical 
metrics of cloud height estimations. The MAE, MBE, RMSE and R of 
retrieved CTH (CBH) are 1.20 km (1.17 km), 0 km (0.01 km), 2.11 km 
(2.03 km) and 0.91 (0.84), respectively. The CGT estimation derived 
from retrieved CTH and CBH also agrees well with active observations 
(R = 0.92), and has smaller errors (MBE = 0 km and RMSE = 1.32 km). 
In conclusion, the lapse rate method maintains high accuracy and sta
bility when applied to different passive satellites.

5. Conclusions and summary

Accurate cloud height information is the basic requirement for un
derstanding the role of clouds on the Earth’s climate system and is a 
prerequisite for improving radiation and precipitation simulations. At 
present, the operational CTH products from passive satellite measure
ments are typically significantly biased, and due to obscuration of 
clouds, accurate CBH products are also highly scarce. In this study, we 
have developed an effective method to retrieve CTH and CBH for passive 
sensors based on lapse rate information. Firstly, we constructed a 
collocated active-passive observation dataset by data matching, and the 
optimal lapse rate information for different environmental conditions 
and cloud types were obtained by combining cloud heights from active 
satellites and temperature information from passive satellites. After that, 
the mean lapse rate information from the surface to the cloud top (Γct) 
was utilized to determine the CTH, while the lapse rates within (Γcb1) 
and below cloud (Γcb2) were employed to estimate the CBH. Finally, the 
retrieval accuracy of the lapse rate method was independently evaluated 
using active observations.

The retrieval results show that the lapse rate method can achieve 
high accuracy in estimating both CTH and CBH for MODIS. Compared 
with MODIS CTH product, our algorithm clearly alleviates the CTH 
underestimation, and all statistical metrics have been improved. With 
MAE and RMSE decreasing from 1.12 km and 1.72 km to 0.85 km and 
1.33 km, respectively. And the MBE and R improved from − 0.62 km and 
0.94 to 0 km and 0.96, respectively. The retrieved CBH is also in good 
agreement with those from active measurements (R = 0.91), with small 
deviations (MAE = 0.73 km, MBE = 0 km and RMSE = 1.26 km). In 
addition, the CGT derived from the retrieved CTH and CBH also agrees 
well with observations, with MAE and RMSE of 0.97 km and 1.44 km, 
respectively. Our method is robust and performs well across different 
seasons, regions, and cloud types, and the retrieved CTH is consistently 
more accurate than MODIS product. Compared with some previous 
studies that are only available during the daytime, our method also 
shows good performance in the retrieval of CTH and CBH at nighttime.

The lapse rate method can also be easily applied to other passive 
sensors. We have extended the method to cloud height retrieval for both 
the H8 and GOES-13 satellites, and the results are highly accurate and 
stable. The MAE and RMSE of H8 CTH (CBH) retrieval results are 
reduced by 41.5 % (44.2 %) and 39.4 % (36.6 %), respectively, 

compared with the SatCORPS H8 product. Meanwhile, the correlation 
coefficient of CTH (CBH) has also increased from 0.83(0.67) to 0.93 
(0.88), and the H8 CGT derived from the retrieved CTH and CBH also 
demonstrated a robust accuracy (MBE = 0 km and R = 0.93). In addi
tion, the lapse rate method also performs well on GOES-13 satellite. In 
summary, our lapse rate method demonstrates high retrieval accuracy 
and stability in estimating cloud heights during both daytime and 
nighttime, and has obvious potential for application to other satellites. 
Lapse rate method is also very convenient, as CTH and CBH can be 
retrieved based on only several variables from passive satellites. In the 
meantime, the performance of our method is also comparable to that of 
machine learning methods that use a substantial number of spectral 
signals and atmospheric parameters.

Nevertheless, as we mentioned earlier, the lapse rate method pro
posed in this study also has some limitations and uncertainties. Firstly, 
the retrieval bias of properties (e.g. CTT and ST) from passive sensors 
can affect the accuracy of our method. In the MODIS product, CTT and 
CTH are correspond to each other, so the CTH bias can be used to 
represent the CTT bias. When samples are constrained with CTH bias 
less than 2.5 km, the retrieval accuracy improves significantly, with the 
RMSE of CTH (CBH) retrievals reducing from 1.33 km (1.26 km) to 0.82 
km (1.03 km) at daytime. Specifically, the presence of multilayer clouds 
would significantly affect the retrieval of cloud top properties from 
passive sensors (Chang and Li, 2005; Min et al., 2017), which further 
affects the performance of our method. In particularly, previous studies 
have shown that subvisible cirrus clouds with small optical thickness 
and strong radiative effect are widely found in the atmosphere (Sun 
et al., 2015; Sun et al., 2011). These clouds are usually undetectable by 
passive sensors, significantly affecting the retrieval of cloud top and 
surface temperature from passive observations (Sun et al., 2011), and 
hence the accuracy of our method. Although some previous studies have 
developed multilayer cloud detection algorithms based on multi- 
channel information or machine learning methods (Tan et al., 2022; 
Wang et al., 2019), and have derived the cloud properties of specific 
overlapping cloud types using the combined microwave and visible- 
infrared measurements (Huang et al., 2006) or multispectral measure
ments (Huang et al., 2005; Teng et al., 2023), these methods still have 
some limitations. Therefore, the detection and properties retrieval of 
multilayer clouds have so far remained highly desirable but extremely 
challenging. Future studies should focus on the development of more 
accurate algorithm for detection and properties retrieval of multilayer 
clouds by combining active satellites observations, multispectral mea
surements and meteorological conditions. Moreover, precipitation can 
also affect the CBH estimations. However, passive satellites continue to 
present difficulties in accurately identifying precipitation (Kühnlein 
et al., 2014; Min et al., 2019). Recently, some studies have developed 
highly accurate precipitation identification and quantitative precipita
tion estimation algorithms by combining cloud properties, meteoro
logical factors, and visible/infrared spectral signals (Li et al., 2021; Zhu 
and Ma, 2022). These algorithms will contribute to the future 
enhancement of lapse rate method by distinguishing precipitation 
clouds from non-precipitation clouds and retrieve their cloud height 
separately.

At present, radiosondes can provide reliable measurements of the 
relative humidity (RH) and air temperature (T) at numerous global 
stations, allowing for the vertical distribution of clouds to be deter
mined. The method of using relative humidity thresholds to detect cloud 
vertical structure from radiosonde observations has been widely applied 
(Wang and Rossow, 1995; Zhang et al., 2010). However, relying solely 
on the humidity threshold indicator may lead to misjudgments of cloud 
layers, and fixed humidity thresholds are also not suitable for different 
regions globally (Costa-Surós et al., 2014). In fact, there are significant 
differences in temperature changes inside and outside of cloud layers. 
Chernykh and Eskridge (1996) presented a method to determine cloud 
boundaries using the second derivatives of RH and T. In this investiga
tion, our results have also revealed significant variations of the lapse 
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rates inside and outside of clouds, along with distinct spatiotemporal 
distribution patterns. It means that the lapse rate method can serve as a 
supplemental criterion to the existing relative humidity threshold 
method to identify more accurate cloud boundaries for radiosonde 
observations.
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