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A B S T R A C T

We propose a theory of atmospheric oxygen footprint barrier effect. This effect is specifically characterized as the 
influence exerted by the atmospheric oxygen content upon climate forcing. Under low oxygen content and low- 
density atmosphere, shortwave scattering from oxygen molecules is less frequent, resulting in a substantial in
crease in surface shortwave temperature forcing. Whether the significant changes in the oxygen footprint indi
cate the accelerated change in soil quality over the Tibetan Plateau is largely unknown. Here, we combine six soil 
quality index methods with more than forty environmental factors, including climatic, plant, soil and microbial 
properties, to explore the determinants of soil quality along a 2200 km grassland transect over the Tibetan 
Plateau. We find that there is a significant reduction in the oxygen footprint during the period from 2006 to 
2099, and this finding is based on the projection of the ensemble mean of Fifth Coupled Model Intercomparison 
Project (CMIP5) models, under representative concentration pathways (RCPs) RCP4.5 and RCP8.5, respectively. 
The standardized total effects of climatic, plant, soil and microbial property on the soil quality was − 0.48, 0.87, 
0.96, and 0.11, respectively. The surface temperature acts as a major climatic factor that regulates soil quality 
changes through modifying biological (effect-size: 0.20) and physiochemical (effect-size: 0.91) pathways. 
Consequently, in the context of soil quality change, biological mechanisms are the main drivers and physi
ochemical mechanisms are the results. On these grounds, we develop a novel conceptual framework to identify 
the crucial role of soil quality in arid-cold ecosystems under climate change.

1. Introduction

Oxygen footprint (Of) is defined as the ratio of oxygen consumption 
(Oc) to oxygen production (Op) (Han et al., 2021). Under the high 
(RCP8.5) emission scenarios, Han et al. (2021) found significant linear 
regression (P < 0.01) positive relationships between Of and air tem
perature, potential evapotranspiration, precipitation, and dryland areas, 
respectively. When Op is unsustainable (for example, water limitation to 
plant growth) combined with Oc (for example, extensive fossil-fuel 
combustions), this scenario will accelerate land ecosystem imbalance 
(Han et al., 2022). Soil degradation (Table 1) caused by land ecosystem 
imbalance may lead to the loss of soil organic carbon, affecting the 
photosynthesis rate of vegetation capable of absorbing CO2 and emitting 
O2. This alters atmospheric Of and creates positive feedback that 

expedites global warming. As a result, global land surface temperatures 
increase as O2 content decrease, which may enhance the warming 
forcing of CO2, and ultimately restrain soil ecosystem growth (Poulsen 
et al., 2015; Huang et al., 2020).

Soil is a complex system (Ladyman et al., 2013; Weil and Brady, 
2017), not only because soil is the intersection of the atmosphere, the 
hydrosphere and the biosphere (Lehmann et al., 2020), but also because 
soil is relevant to biological, physical and chemical processes that are 
critical to plant growth. Soil is also key to sustainability, as it supports 
vital ecosystem services and human well-being (Bünemann et al., 2018). 
Plant growth needs nutrients, primarily soil nitrogen, to meet the stoi
chiometric requirements for plant productivity linked to carbon fixation 
(Wieder et al., 2015). Thus, this multifunctionality of soils at many 
scales and locations is also addressed when soil quality is described as 
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the capacity of soil to sustain above- and below-ground biomass, to 
enhance air and water quality, and to promote animal and human health 
(Karlen et al., 1997). On this basis, researchers should consider soil 
quality as a major driver that contributes to the global biodiversity 
targets and the sustainable development goals (Lehmann et al., 2020), 
not just as a property to be measured (Andrews et al., 2002; Vasu et al., 
2016; Yu et al., 2023).

Soil quality assessment is to understand the state of the soil and 
develop measures for protection and rational utilization. However, due 
to climate change, soil quality assessment in natural/semi-natural 

ecosystems is often affected (Qiao et al., 2022). Consequently, climate 
change, which regulates soil physical, chemical and biological proper
ties that are crucial for the change of soil quality. We believe that 
incorporating the soil quality (include site-specificity) into Earth System 
Models allows for better predictions of land–atmosphere feedback. Thus, 
changes in soil quality must consider climatic drivers (Karlen et al., 
2003). Although surface heat links air temperature and soil moisture and 
is one of the dominant drivers of the soil quality changes, the role of 
surface heat as soil moisture dynamics in land–atmosphere interactions 
has not been extensively studied (García-García et al., 2023), due to the 
tight coupling between surface heat and air temperature at climate 
temporal scales (García-García et al., 2023). However, the relationship 
between surface heat and air temperature is largely affected by changes 
in soil water content, aerodynamic conductance land cover and associ
ated changes in soil properties (García-García et al., 2023). Though 
trends differ among meteorological stations, higher warming rates of 
soil than that of air have been observed in Europe (García-García et al., 
2023), Germany (Dorau et al., 2022), and China (Zhang et al., 2016).

During the last few decades, the evaluation of soil quality by mi
crobial (microorganisms’ composition, activity and biomass), physical 
(bulk density, porosity and texture) and chemical (soil carbon, nitrogen, 
pH) properties has been studied intensively (Vasu et al., 2016; Yu et al., 
2023), however, our understanding of the major soil quality drivers 
across a wide range of geographic scale is still inadequate, as current 
research is dominated by site-level studies (Yu et al., 2018; 2018b; 
2023). In addition, it is a grand challenge to investigate the crucial role 
of warming (for example, the greenhouse effect caused by fossil fuel 
combustion) in determining soil quality changes (Huang et al., 2016; 
2018; 2020). Moreover, soil quality in turn may also mediate the climate 
through the vegetation photosynthesis associated with atmospheric 
oxygen fluctuations (Han et al., 2022). It is important to note that at
mospheric oxygen fluctuations are characterized by oxygen production 
and consumption processes (Huang et al., 2018). The oxygen production 
process is associated with the cooling effect, but the oxygen consump
tion process is linked to the warming effect (see ‘Plain Language Sum
mary’ and Methods in Section 2.2). Hence, it is urgent to conduct a 
comprehensive study of soil quality at broad geographic scales to sys
tematically analyze these potential mechanisms and environmental 
factors.

In this work, we focus on understanding the characteristics, drivers, 
and transitions of soil quality across 2200 km alpine grasslands on the 
Tibetan Plateau. For this purpose, we collected microbial data (for 
example, total phospholipid fatty acids, 6.83 ~ 82.37 nmol g− 1), soil 
data (for example, soil organic carbon, 1.1 ~ 118 g kg− 1), plant data (for 
example, net primary productivity, 38 ~ 488 g m− 2 yr− 1) and climatic 
data (for example, surface temperature, − 3.40 ~ 4.86 ◦C) from a total of 
30 sites. Our results demonstrate that the barrier effect of atmospheric 
oxygen footprint has an impact on the changes of soil quality. The ob
jectives of this study were to (1) propose a novel perspective regarding 
the “oxygen footprint barrier effect” to serve as an indicator for the 
assessment of climate change; (2) investigate the influences of climate 
change on soil quality in arid-cold grasslands.

2. Materials and methods

2.1. Study area

The Tibetan Plateau (70-105◦E, 25-40◦N) is the highest and largest 
plateau in the world, with broad elevational and environmental gradi
ents and minimal human disturbance (Yang et al., 2008). The Tibetan 
Plateau has an annual mean rainfall of less than 450 mm and covers 
approximately 60 % of alpine grasslands, which are mainly composed of 
alpine meadow and alpine steppe (Jiao et al., 2021). It has the largest 
high-altitude mountain permafrost in the world, covering an area of 
1.06 × 106 km2 and accounting for about 74 % of soil carbon (Wu et al., 
2021). Meanwhile, permafrost on the Tibetan Plateau is undergoing a 

Table 1 
The relationship between major soil parameters and soil quality.

Main parameters Description

Soil texture and 
aggregate

• Soil texture, which refers to the ratio and combination of 
particles of diverse sizes in the soil like sand, silt and clay, 
has a significant relationship with soil aggregates. For 
instance, soils with a higher clay content are inclined to 
form more stable aggregates as clay particles have a 
stronger adsorption capacity and can bond smaller 
particles together.

• Aggregates are capable of adsorbing and conserving 
nutrients such as nitrogen. They behave like a “nutrient 
reservoir”, gradually discharging nutrients when plants 
require them. Microorganisms are vigorous in the micro- 
environment within the aggregates and are implicated in 
the material transformation and nutrient cycling processes 
in the soil.

• Larger and stable aggregates can oppose erosion by rain 
and runoff, diminishing the risk of soil loss. During 
drought periods, they provide necessary moisture for 
plants. Thus, soil aggregate helps with the even 
distribution of water and avoids local waterlogging or 
excessive drought (Bünemann et al., 2018; Cen et al., 
2024).

Soil organic carbon • Firstly, soil organic carbon (act as a cementing agent) 
contributes to the formation of stable soil aggregates, 
which enhance soil porosity and improve water and air 
movement within the soil profile.

• Secondly, it also promotes microbial activity, because soil 
microorganisms depend on soil organic carbon as an 
energy source, and their activities contribute to nutrient 
cycling and decomposition processes that are crucial for 
soil quality.

• Thirdly, soil organic carbon helps to buffer against changes 
in soil pH, maintaining a more stable and suitable soil 
environment for plant growth and microbial processes 
(Chen et al., 2022; Zhang et al., 2024).

Soil bulk density • Reflecting soil compactness. A higher soil bulk density 
typically implies that the soil is more compact. Compact 
soil constrains the growth and elongation of roots, 
influencing the uptake of water and nutrients by plants.

• Assessing soil aeration and water permeability. Soil with a 
lower bulk density has larger porosity and better aeration 
and water permeability, facilitating the exchange of 
oxygen and the infiltration of water in the soil (Martín 
et al., 2017; Panagos et al., 2024).

Soil total nitrogen • Supplying nitrogen for plant growth. Nitrogen is a crucial 
element of vital organic substances in plants, such as 
chlorophyll, nucleic acids, and proteins. The total nitrogen 
in soil offers a source of nitrogen for plants, facilitating 
their growth, reproduction and development.

• Affecting soil fertility. The amount of total nitrogen in soil 
is one of the significant indicators for assessing soil 
fertility. A greater nitrogen content typically implies a 
more robust nitrogen supply capacity of the soil, which is 
conducive to sustaining soil fertility (Chen et al., 2024; 
Misbah et al., 2024).

Soil acid-base scale • An appropriate pH contributes to the formation and 
stability of soil colloids, thereby facilitating a good soil 
structure. In acidic soils, magnesium and calcium may be 
lacking, while alkaline soils can restrict the availability of 
boron and copper. Therefore, understanding and 
managing soil pH is crucial for maintaining soil quality 
(Wang et al., 2024).
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temperature rise at a rate about twice the global average. The thickness 
of the active layer and the average annual soil temperature have 
increased markedly since the mid-1950 s, causing a reduction in alpine 
permafrost of ~ 23.8 % (Wu et al., 2021). Thus, this area serves as an 
ideal location to explore key drivers of soil quality on a broad geographic 
scale. Notably, the climate on the plateau is dry and cold, with a 
northwest (~84 mm yr− 1) to southeast (~593 mm yr− 1) precipitation 
gradient, and the average annual air temperature in this region ranges 
from − 4.9 to 6.9 ◦C (Ding et al., 2016). The alpine grassland is one of the 
most fragile and sensitive ecosystems to anthropogenic climate warm
ing, and it has shifted from alpine steppe in the northwest to alpine 
meadow in the southeast (Yang et al., 2009). Of the two main grassland 
covers, the alpine steppe is dominated by Carex moorcroftii and Stipa 
purpurea, while the alpine meadow is dominated by K. tibetica, K. humilis 
and Kobresia pygmaea (Chen et al., 2019). The soil orders in this area 
include Chernozem, Kastanozem, Calcisol, and Cambisol according to 
the World Reference Base for Soil Resources (Shi et al., 2004).

2.2. The CMIP5 models simulation

Based on the terrestrial net ecosystem productivity (NEP), net pri
mary productivity (NPP) and soil heterotrophic respiration (Rh), at
mospheric oxygen production (Op) is derived from the mean of nine 
CMIP5 models results (Fig. 1). Since the CMIP5 historical results end in 
2005, we extend them to approximately 2100 by combining them with 
the corresponding RCP8.5 and RCP4.5 scenarios (Han et al., 2022). NPP 
and Rh data are obtained from GFED4 at a spatial resolution of 0.25◦. 

We calculate the Op based on the following linear regression (Huang 
et al., 2018): 

Op = {(NPP − Rh) = NEP } × 2.667 (1) 

here, oxygen molar mass is 32 g per mole, carbon molar mass is 12 g per 
mole, and the ratio is 2.667. The Op content (1 Gt = 1015 g) is calculated 
based on the area-weighted sum of Op flux (kg m− 2; 1 kg = 103 g). 
Further details of these methods of Op can be found in Huang et al. 
(2018).

Meanwhile, atmospheric oxygen consumption (Oc) is mainly driven 
by fossil fuel combustion (FFC), livestock respiration (LR), human 
respiration (HR), and wildfires (WF) as follows (Liu et al., 2020): 

Oc = FFC+ LR+HR+WF (2) 

Data on fossil fuel combustion are obtained from the PKU-CO2 and 
the Emissions Database for Global Atmospheric Research (EDGARv5.0). 
Livestock respiration (sheep, pigs, horses, ducks, buffalo, chickens, 
cattle and goats) is calculated according to gridded data of livestock 
population (GLW 3), and human respiration is derived from daily total 
energy expenditure and population density, which further depended on 
the sex ratio and age structure of each grid cell. Wildfires data are ob
tained from the global fire emissions database version 4 (GFED v4) at a 
spatial resolution of 0.25◦ (Fig. 1). Further details of these methods of Oc 
can be found in Wei et al. (2021) and Liu et al. (2020).

On these grounds, oxygen footprint (Of) based on the ratio between 
Oc and Op is calculated as follows (Han et al., 2021): 

Fig. 1. Illustration of the oxygen footprint methodology and procedural steps of this study. CDIAC, Carbon Dioxide Information Analysis Center; EDGAR, Emissions 
Database for Global Atmospheric Research; ODIAC, Open-sourceData Inventory for Anthropogenic CO2; PKU-CO2, Peking University-CO2. “Smiling face” implies 
that the variables are generated as outputs in the modelsunder diverse scenarios. See details in Liu et al., 2020 and Huang et al., 2018.
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Of =
Oc
Op

(3) 

In this study, oxygen footprint, a key driver of the anthropogenic 
climate changes, is characterized by the annual changes of atmospheric 
oxygen consumption and oxygen production from 1900 to 2099, 
respectively.

2.3. Climatic data

We collected climatic properties data consistent with the location of 
plant, soil and microbial properties that occurred in 2013–2014. The 
GLDAS, that is, global land data assimilation system, uses ground- and 
satellite-based observational data products to generate land surface state 
and flux fields by combining land surface modeling and data assimila
tion (Rodell et al., 2004). All the variables used were obtained from the 
dataset of Land Information System GLDAS 2.1 land surface model 
(Noah version 3.3) monthly mean output at https://ldas.gsfc.nasa. 
gov/data. All the GLDAS database were used at a spatial resolution of 
1.0◦ × 1.0◦. The input longwave and shortwave data were derived from 
the Air Force Weather Agency (AFWA) radiation data. We analyzed the 
annual mean values of the data and used them as the land surface and 
meteorological indicators. Further details of the methods for climatic 
data can be found in (Han et al., 2022).

2.4. Plant-soil-microbial data

We collected data from 30 sites data, including 18 steppe sites and 12 
meadow sites (Supplementary Table S1 and Table S2), that were from 
field sampling during the 2013 and 2014 growing seasons from early 
July to early September (Chen et al., 2019). At each site, field sampling 
was random established five (each 1 m × 1 m) quadrats at four corners 
and one center of a 10 m × 10 m plot. For each quadrat, the mean 
coverage of each species was then determined by clipping the above- 
ground biomass at ground level to the above-ground net primary pro
ductivity (ANPP) (Chen et al., 2019). Soil samples at a depth of 10 cm 
were collected from three sampling quadrats along a diagonal direction 
in the plot. The soil bulk density samples were collected with 100 cm3 

containers and oven-dried at approximately 105 ◦C to obtain their 
masses, and the soil acid-base scale was measured by a pH electrode in a 
2.5:1 water:soil suspension (PB-10, Sartorius, Germany) (Chen et al., 
2019). Phospholipid fatty acids (PLFA) were extracted from fresh soil 
following the protocol provided by Bossio, D. A and Scow, K. M (Bosso 
and Scow, 1998), which were used to appraise the abundance of fungi 
and bacteria, as well as the change of fungi/bacteria ratio. The activities 
of the C-acquiring enzyme, N-acquiring enzyme, and P-acquiring 
enzyme were analyzed by constructing calibration curves for each 
sample through a fluorometry technique (Chen et al., 2019). Except for 
total carbon (TC) (soil organic carbon plus soil inorganic carbon) (Yu 
et al., 2014) and total carbon:total nitrogen ratio (CN) (ratio of total 
carbon to total nitrogen) (Batjes, 1996), methodological details of the 
remaining plant, soil, and microbial datasets are available from previous 
studies (Chen et al., 2019). See Fig. 3 for environmental factors 
abbreviations.

2.5. Biotic and abiotic analysis

Given plant, soil and microbial properties as well as climatic prop
erties are the key parameters of the changes in soil quality, to facilitate 
our interpretation, this study classified all ecosystem factors into four 
properties to explore their critical roles in regulating soil quality: plant 
properties (CS, CF, CG, CIA, EVI, RB, ANPP and NPP), soil properties 
(BD, Sand, Silt, Clay, pH, CN, TN, TC, SIC and SOC), microbial properties 
(lnCP, lnNP, lnCN, Penzy, Nenzy, Cenzy, FB, BPLFA, FPLFA and TPLFA), 
and climatic properties (WS, TF, SUSH, SULH, ST, SH, RZSM, PRES, PRE, 
PET, DHFS, DEBS, AT and ALB). Fig. 3 shows the indicators of four 

groups, that is, microbial, soil, plant and climatic properties, as well as 
their extended names, acronyms, and significant changes under different 
land covers.

2.6. Developing the soil quality index

Although many conceptual frameworks have been proposed to assess 
the changes of soil quality, there are no universal standardized tech
niques to evaluate soil quality over broad environmental gradients 
(Bünemann et al., 2018). Soil quality index (SQI) is an efficient tool or 
method for evaluating soil quality, featured with ease of use, flexibility 
in quantification, and close relevance to soil management practices. SQI 
refers to a measurement or calculation that evaluates and quantifies the 
overall condition of soil (Andrews et al., 2002). It takes various factors 
related to the soil into consideration, such as physical properties like 
texture and structure, chemical properties like pH and soil organic 
carbon, and biological properties like the phospholipid fatty acids and 
enzyme activity (Bünemann et al., 2018). As a result, SQI has been 
successfully used to evaluate soil quality at many sites and scales (Liu 
et al., 2018).

Three dataset methods were used to identify appropriate soil in
dicators: (i) the total dataset method, (ii) the minimum dataset method, 
and (iii) the revised minimum dataset method (Yu et al., 2018). Firstly, 
independent-samples t test was performed on twenty soil indicators (soil 
and microbial properties) to assess the effect of different land covers on 
these indicators. Only the soil indicators confirming significant (P <
0.05) differences were chosen as members of total dataset method. 
Secondly, a principal component analysis (PCA) was performed on the 
total dataset method to identify these potential indicators, following the 
traditional procedure for minimum dataset method. The traditional 
procedure for a minimum dataset typically involves several sequential 
steps: (a), for each soil factor, only attributes with high loading were 
retained for the minimum dataset; (b), when more than one attribute 
was kept under a single soil factor, multivariate correlation coefficients 
were employed to determine if the variables could be regarded as 
redundant and then removed from the minimum dataset; (c), well- 
correlated variables were regarded as redundant and only one was 
taken into account for the minimum dataset (Andrews et al., 2002; 
Raiesi, 2017). Thirdly, the PCA was also performed separately on the 
two-soil microbial and soil physiochemical indicators, to identify these 
potential soil factors that expressed the revised minimum dataset (Yu 
et al., 2018).

Soil indicators can be divided into two soil functional groups in light 
of the sensitivity of soil productivity. The ‘more is better’ scoring curve 
was characterized by an increase in these soil indicators as soil quality 
increases. In turn, the ‘less is better’ scoring curve was applied as an 
indicator of soil quality, with a high level considered unfavorable. The 
following linear scoring curves are used as ‘more is better’ (Equation (4)
or ‘less is better’ (Equation (5) functions: 

LS =
N

Nmax
(4) 

LS =
Nmin

N
(5) 

here, LS is the linear score of these soil indicators. N, Nmax and Nmin are 
the measured, maximum, and minimum values of each soil indicator 
observed in this work. For nonlinear scoring, the sigmoidal curve 
(Equation (6) is used as follows: 

NLS =
1

1 + ( N
Nm
)

b (6) 

here, NLS is the nonlinear score of these soil indicators. N is the 
measured value of soil indicator, Nm is the average value of soil indi
cator, and b is the slope, which is set to be − 2.5 in the ‘more is better’ 
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curve and 2.5 in the ‘less is better’ curve (Supplementary Table S3).
For the indicator selection methods of minimum dataset and total 

dataset, the weights values are identified by the ratio of their commu
nality to the sum of the communalities of all variables in the minimum 
dataset and total dataset (Yu et al., 2018). Meanwhile, soil microbial and 
physiochemical groups are subjectively given equal weighting (0.50) to 
emphasize the same importance of the two groups of soil processes in 
their contribution to soil ecosystems (Nakajima et al., 2015). After 
weighting and scoring the soil indicators, SQI is calculated using the 
weighted additive (Equation (7) methods as follows: 

SQI =
∑n

i=1
Wi × Si (7) 

hcere, SQI is the soil quality index, Wi is the weighting value of in
dicators, Si is the indicator score (nonlinear or linear), and n is the 
number of indicators in the minimum dataset, revised minimum dataset, 
or total dataset. Further details of these methods for soil quality 
assessment can be found in Yu et al. (2018). Overall, higher SQI values 
mean better soil processes and functions, reflecting the positive influ
ence of land covers on soil ecosystems (Raiesi, 2017).

2.7. Major physico-chemical protection parameters for soil quality

The main parameters used for evaluating soil quality:

Fig. 2. Comparing the variations in oxygen footprint across the Tibetan Plateau withthose observed in other regions. The main distribution of oxygen consumption, 
that is, fossil-fuel combustion (see other components in Supplementary FigureS1) from 2000 to 2013 on average (kg m-2), is shown in panel (a). The averagehistorical 
(1975–2005) oxygen production (kg m-2) is presented in panel (b). The atmospheric oxygen content, oxygen footprint fluctuation, andcomparative analysis with 
previous studies are respectively shown in the Fig. (c), (d), and (e). The changes of oxygen footprint (Of), associated with redarrow or green arrow, indicate an 
increase or a decrease. The symbols “+” (positive) or “-” (negative) represent the relationships of oxygen footprint (riseor fall) and climate effects (warm or cool). N, 
number of data points; Oc, oxygen consumption; Op, oxygen production; Obs, observed; Mod, model (s); Rev, review; RCP4.5/8.5, representative concentration 
pathway 4.5/8.5. **P < 0.01.
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2.8. Statistical analysis

Before doing all the statistical analysis in this work, all data were 
performed for ‘min-max’ normalized, that is, {actual value (xi)-mini
mum (x)} / {maximum (x)-minimum (x)}. Independent-samples t test, 
Pearson correlation, and Simple regression analysis were used to reveal 
the relationships among environmental factors, land covers and years, as 
well as to test the influences of land covers on microbial, soil, plant and 
climatic indicators. Given the strong interconnections and correlations 
among various indicators, Pearson correlation matrix (Fig. 5b, Supple
mentary Fig. S2 and Fig. S4) was analyzed using the R package vegan 
v.3.6.1 (R Development Core Team, 2016). Residual charting work 
along with statistical analyses (include PCA, Supplementary Fig. S3) 
were performed using Edraw Mind Map 7.9, SigmaPlot 10.0, and SPSS 
statistics 17.0.

Before performing the structural equation modeling (SEM), we first 
standardized each indicator using the ‘min-max’ normalized methods. 
Then, establish a prior SEM according to our prior knowledge of the 
total, direct and indirect effects (Li et al., 2020) of microbial, plant, soil 

and climatic properties on soil quality, respectively. Lastly, we selected a 
final SEM according to an overall goodness-of-fit (Eldridge et al., 2018), 
including the normed fit index (NFI), goodness of fit index (GFI), 
comparative fit index (CFI), root mean square residual (RMR), and chi- 
square(χ2) / degree of freedom (df). The standardized total effect is 
equal to the sum of the direct effect plus the indirect effect (Li et al., 
2020). The structural equation modeling analyses were conducted using 
the AMOS 17.0 (Amos Development Corporation, Chicago, IL, USA).

3. Results

3.1. Oxygen footprint

3.1.1. Atmospheric oxygen
Atmospheric oxygen is mostly consumed by fossil fuel combustion 

(Fig. 2a), livestock respiration, human respiration and wildfires 
(Supplementary Fig. S1a–c), and it is mainly produced via vegetation 
photosynthesis (Fig. 2b), resulting in a northwest to southeast atmo
spheric oxygen gradient (Fig. 2a–b). We explored the temporal trends of 

Fig. 3. Comparison of environmental indicators and changes between steppe andmeadow. Independent-samples t test show that comparison of microbial (purple), 
soil (brown), plant (green), and climatic (blue) factors between steppe (a, n = 18) and meadow (b, n = 12). The x-axis shows the min–max normalized. The y-axis 
shows the factors, including description and abbreviation. *0.05 < P < 0.1; **P < 0.05; ***P < 0.01.
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multiyear averaged Oc and Op contents over the Tibetan Plateau from 
1900 to 2005, and our results indicated that the contents of Oc (y =
0.0036x-6.9147, R2 = 0.82) and Op (y = 0.002x-3.7241, R2 = 0.49) 
increased significantly (all P < 0.01) with increasing time scales, and Oc 
increased faster than Op. Then, we forecast the temporal changes of Oc 
and Op contents from 2006 to 2099 under moderate (RCP4.5) and high 
(RCP8.5) emission scenarios. The results of Oc and Op for both scenarios 
show a significant increasing trend by ~ 2100, with Op increasing faster 
than Oc (Fig. 2c).

3.1.2. Changes of oxygen footprint
The ensemble means of multiple CMIP5 models suggest that the 

oxygen footprint (atmospheric oxygen consumption-to-oxygen produc
tion ratio) increased significantly (P < 0.01) under historical period (y 
= 0.0105x-19.693, R2 = 0.47) from 1900 to 2005. This might be pri
marily attributed to ongoing urbanization, fast economic development 
and rapid population growth (Du et al., 2004). In contrast, the oxygen 
footprint will accelerate decline (all P < 0.01) over the Tibetan Plateau 
under the moderate (RCP4.5: y = -0.0146x + 30.998, R2 = 0.93) and 
high (RCP8.5: y = -0.0052x + 12.142, R2 = 0.50) emission scenarios 
from 2006 to 2099 (Fig. 2d). These changes in different emission sce
narios may lead to a lower oxygen footprint under RCP4.5 than under 
RCP8.5. This is partly due to climate warming associated with CO2 
fertilization effects on plant photosynthetic capacity, that is, carbon 
fixation capacity, within a proper range (Piao et al., 2020). There was a 
significant difference in oxygen footprint fluctuations between the Ti
betan Plateau (decrease significantly) and other regions, like urban 
areas (increase significantly) (Fig. 2e). This is mainly owing to the rapid 
global warming, which leads to an earlier vegetation growing season 
and enhanced vegetation photosynthetic rate in most alpine areas of the 
Tibetan Plateau, and a relatively low intensity of anthropogenic dis
turbances (Yang et al., 2008). As a result, the oxygen production is much 
greater than the oxygen consumption in this study.

3.2. Characteristics of soil quality

3.2.1. Land covers
Results of all six methods (Figs. 4 and 5) show that soil quality index 

(SQI) values differ greatly under the two main land covers, in the order 
of meadow (SQI, mean 0.60 level) > steppe (SQI, mean 0.40 level). It 
indicates that high soil quality is closely associated with high nutrient 
content and microbial biomass along with low soil bulk density and soil 
acid-base scale, using both linear and nonlinear scoring models for the 
total dataset (BD, SOC, TC, TN, pH, TPLFA, FPLFA, BPLFA, Cenzy, Penzy 
and lnCN), the minimum dataset (TPLFA and Penzy), and the revised 
minimum dataset (TN, Cenzy and Penzy) (Figs. 4 and 5). See Fig. 3 for 
environmental factors abbreviations.

3.2.2. Spatial patterns
Similarly, SQI varied markedly across 30 sampling sites. All soil 

quality index analyses show that soil quality increases from the north
western area to the southeastern part, corresponding well to the atmo
spheric oxygen distributions across the plateau. Additionally, the low 
soil quality in northwestern region is closely linked to the decrease of 
vegetation biomass input and the increase of surface heat disturbance. 
Based on nonlinear scoring-revised minimum dataset method, SQI for 
northwestern regions ranges from 0.07 (81.18◦E, 32.35◦N) to 0.72 
(100.62◦E, 35.55◦N), while that for southeastern regions varies from 
0.21 (92.35◦E, 33.95◦N) to 0.85 (99.14◦E, 34.56◦N). Compared to the 
southeastern region, the mean SQI value in the northwestern region is 
reduced by ~ 50 % (Fig. 5).

In general, the Pearson correlation matrix results of the six soil 
quality indices are significantly (all P < 0.01) positively correlated with 
each other; hereinto, the nonlinear scoring-revised minimum dataset 
method is considered to be the most useful and sensitive metric for soil 
quality assessment, because it incorporates data dimension reduction 
and has higher correlation coefficients with other methods (Fig. 4d and 

Fig. 4. The soil quality index and its dataset method. Results from principalcomponent analysis for the total dataset (a) and the two soil processes (b microbial and c 
physiochemical). The description of soil quality index (SQI) in panel (d). The color character and underline are selected as the minimum dataset and the revised 
minimum dataset. Six SQIs, including the linear scoring-total dataset (SQI-LT); the nonlinear scoring-total dataset (SQI-NLT); the linear scoring-minimum dataset 
(SQI-LM); the nonlinear scoring-minimum dataset (SQI-NLM); the linear scoring-revised minimum dataset (SQI-LRM); and the nonlinear scoring-revised minimum 
dataset (SQI-NLRM). See Fig. 3 for abbreviations.
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Fig. 5b).

3.3. Drivers of soil quality

3.3.1. Oxygen footprint barrier effect
Our results reveal that there are significant differences in transpira

tion flux, sensible heat flux, latent heat flux, surface temperature, spe
cific humidity, and root zone soil moisture (Fig. 3) from the 
northwestern area to the southeastern part of the plateau. These dif
ferences correspond closely to the distributions of the atmospheric ox
ygen footprint (Fig. 2). According to Poulsen et al. (2015), in an 
atmosphere with low oxygen content and reduced density, shortwave 
scattering of O2 molecules occurs less frequently, resulting in a notable 
enhancement of surface shortwave forcing. This surface shortwave 
forcing contributes to an increase in sensible heat flux by feeding back 
surface heat to the atmosphere, intensifying greenhouse forcing, 
elevating land surface temperature, and ultimately restricting soil 
quality growth (Huang et al., 2016). We define this phenomenon as the 
oxygen footprint barrier effect, which is extremely helpful in under
standing the driving mechanism of climate change on soil quality 

assessment.

3.3.2. Environmental factors
On the Tibetan Plateau, incorporating more than 40 environmental 

factors, including climatic, plant, soil and microbial properties into a 
structural equation modelling reveals a strong negative relationship 
between the climatic factors and soil quality, while plant, soil and mi
crobial factors had a significant positive effect on soil quality (Fig. 6a). 
The standardized total effect of climatic, plant, soil and microbial on soil 
quality was − 0.48, 0.87, 0.96 and 0.11, respectively (Fig. 6b). In terms 
of biological mechanism, the structural equation model shows that plant 
productivity has a positive effect on soil quality, mainly through 
increasing above- and below-ground biomass along with microbial 
biomass (standardized total effect = 0.20). In terms of physiochemical 
mechanism, the structural equation model indicates that the SOC and 
physico-chemical protective associations appear to have the greatest 
effect (standardized total effect = 0.91) in predicting soil quality than 
biological mechanism (Fig. 6).

Fig. 5. Changes and relationships of the six soil quality indexes. Values of soil quality indexes between steppe and meadow (a). Independent samples t test with 
different lowercase letters within land cover types are significant different at P < 0.01. The bars show standard errors. Pearson correlation matrix of six soil quality 
indexes in panel (b). Spatial patterns from soil quality index based on nonlinear scoring-revised minimum dataset method (c). LT, linear scoring-total dataset; NLT, 
nonlinear scoring-total dataset; LM, linear scoring-minimum dataset; NLM, nonlinear scoring-minimum dataset; LRM, linearscoring-revised minimum dataset; NLRM, 
nonlinear scoring-revised minimum dataset. Soil quality index, SQI. **Significant correlation between the soil quality indexes at the 0.01 level.
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4. Discussion

In the Anthropocene, many studies have shown that human activities 
have induced an irreversible decline of the content of atmospheric ox
ygen (Huang et al., 2018; Wei et al., 2021). Oxygen decline may have 
amplified carbon dioxide-driven climate change (Poulsen et al., 2015), 
thereby affecting soil structures and functions. As a result, disturbing the 
balance of atmospheric oxygen will accelerate soil degradation at the 
global scales (Han et al., 2021). In this work, we primarily focus on the 
study of the oxygen footprint barrier effect determine the consequences 
of alterations in soil quality. Based on the changes of oxygen footprint, 
the identification of such phase transitions in climate and soil is crucial 
for the maintenance of terrestrial ecosystem sustainability.

4.1. Long-term climate forcing due to oxygen footprint

Our study demonstrates that an increasing trend in atmospheric O2 
over the Tibetan Plateau can be well represented by the oxygen footprint 
from 2006 to 2099 (Fig. 2). In fact, O2 concentrations is regarded as a 
crucial factor in climate change forcing, owing to its effect on atmo
spheric quantity and density, and thus on the optical depth of the at
mosphere (Poulsen et al., 2015). Shortwave scattering of air molecules is 
more common at high partial pressure oxygen and increased atmo
spheric mass, which leads to a significant reduction of the land surface 
shortwave forcing (Poulsen et al., 2015). Therefore, regional and global 
surface temperature decrease with raising oxygen content, and it may 
lessen atmospheric warming forcing, ultimately promoting ecosystem 
growth. Clearly, the RCP4.5 scenario for each year, indicates that the 
moderate global warming scenario plays a relatively more critical role in 

Fig. 6. The effects of the combined group properties on the soil quality from the structural equation modelling (SEM) analysis. SEM analysis was conducted to 
identify the direct and indirect effect (a), the standardized total effect (direct plus indirect effects, b) explained by these groups of biotic and abiotic factors. Multiple- 
layer rectangles represent the indicators for climatic (blue), plant (green), soil (brown) and microbial (purple) properties, respectively. The arrows show the hy
pothesized direction of causation, and the numbers adjacent to the arrows are the standardized path coefficients. The results of the optimal model fitting: chi-square 
(χ2)/degree of freedom (df)  < 0.001, root mean square residual (RMR) < 0.005, comparative fit index (CFI) > 0.950, goodness of fit index (GFI) > 0.980, and 
normed fit index (NFI) = 1.000. See Fig. 3 for abbreviations.
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the oxygen footprint decline (Fig. 2), and it mainly because of anthro
pogenic greenhouse warming (for example, CO2 fertilization) effects on 
leaf-level carboxylation rate, net primary productivity, and vegetation 
photosynthetic capacity within a proper range (Piao et al., 2020).

In relatively warm and wet conditions, net radiation is predomi
nantly emitted from soil in the form of latent heat flux (latent heat flux is 
the transfer of heat energy associated with phase changes, such as 
evaporation and condensation), cooling soil temperature and limiting 
sensible heat (sensible heat flux is the transfer of heat energy due to 
temperature differences) (García-García et al., 2023). The emission of 
latent heat from the soil enhances the atmospheric water vapor content, 
resulting in stronger precipitation rates, which are closely related to the 
increase in soil water content (García-García et al., 2023). On the con
trary, net radiation is primarily used to enhance soil temperature in 
relatively warm and dry conditions, owing to soil water content limi
tations (García-García et al., 2023). If air temperature is lower than soil 
temperature, heat flux is released from soil to the atmosphere as sensible 
heat flux, since the latent heat flux is constrained by the soil moisture 
deficits; however, if soil temperature is warmer than subsoil tempera
ture, the heat can also be diffused through the soil, dissipating the heat 
by conduction and increasing the heat flux from the ground (Huang 
et al., 2016; García-García et al., 2023). Thus, surface heat is an 
important factor in soil water and temperature feedback, which may 
regulate biological and physiochemical processes (Figs. 6 and 7).

4.2. Soil quality changes

The inconsistent response of the twenty selected soil quality assess
ment indicators in response to different land covers suggests that the 
impacts of different land covers on these indicators are complex and 
related to different soil functions and processes. Vegetation biomass 
increases soil organic carbon (SOC) content, enhances soil aggregate 
stability, and creates better habitats for soil microbiomes (Hebb et al., 
2017). Our research shows that aboveground net primary productivity 
(ANPP), enhanced vegetation index (EVI), root biomass (RB), and car
bon input amount (CIA) under meadow treatment are significantly 
higher than that under the steppe treatment (Fig. 3). Meanwhile, a 
significantly higher SOC content under meadow than steppe can 
enhance the volume of porosity, and thus decrease the soil acid-base 
scale (pH) and bulk density (BD) based on the reports of Nath et al. 
(2017) and Yu et al. (2018). Total nitrogen (TN) content reflects soil 
nutrient availability and can be affected by global warming (Han et al., 
2022). The higher soil nutrient associated with SOC content under 
meadow compared to steppe leads to the higher soil quality (Figs. 4 and 
5). Similar, to our results, Yang et al. (2009) in Tibetan grasslands and 
Chen et al. (2019) over a broad geographic scale also find that the 
conversion of steppe to meadow could result in the increase of soil 
‘fertility’ or ‘health’.

Developing SQI using minimum dataset method is widely accepted 
due to the availability of sufficient information for soil quality assess
ment and the low price and time cost of measuring effective indicators. 
Selecting the appropriate soil indicators for a minimum dataset can be 
achieved by the PCA, but it may return unsatisfactory results as it lacks 
indicators that represent biological and physiochemical properties 
(Pulido et al., 2017). Thus, a modified method of soil indicator selection 
is used in this study. Our research shows that the nonlinear scoring- 
revised minimum dataset method (SQI-NLRM) is superior to other 
scoring methods to score the selecting soil indicators, because it has a 
better discriminative power than other scoring methods under the land 
cover, and it can provide insight into the function of each soil indicator 
in the system. These results are in line with the finding of Yu et al. 
(2018). The SQI-NLRM developed in this work provides a sensitive and 
efficient method for quantitative evaluation of soil quality.

4.3. The three phases of soil quality change

First, soil quality changes associated with increased in atmospheric 
oxygen begin with a ‘climate change phase’ characterized by the oxygen 
footprint barrier effect. This barrier effect is employed to describe long- 
term climate forcing by atmospheric O2 content. In an atmosphere with 
high oxygen content, collisions between photons and oxygen molecules 
are more frequent, thereby enhancing scattering and reducing surface 
temperature (Poulsen et al., 2015). Our results show that, under the 
emission scenarios of RCP4.5 (R2 = 0.93) and RCP8.5 (R2 = 0.50), the 
ratio of oxygen consumption to production on the Tibetan Plateau will 
see an accelerated decline (all P < 0.01) from 2006 to 2099, respectively 
(Fig. 2d). Surface temperatures decrease with increasing atmospheric 
oxygen content, which may alleviate CO2-warming forcing, and ulti
mately altered the effects of climate change on soil quality. For example, 
soil quality index values are significantly different between the two land 
uses, with alpine grassland having larger values than temperate grass
land (Yu et al., 2018 and 2018b). This suggests that ‘high’ temperature 
has led to undesirable soil degradation (Huang et al., 2016).

Second, as atmospheric oxygen continues to increase, we find a ‘heat 
drive phase’ characterized by changes in sensible heat and latent heat 
fluxes under the surface temperature transitions. The effect of O2 vari
ability associated with ‘vegetation greening’ (it is defined as statistically 
significant enhance in seasonal or annual vegetation greenness at a 
location resulting (Piao et al., 2020)) on surface heat in many cases can 
be viewed as the energy imbalance between sensible heat and latent heat 
(Methods; Piao et al., 2020; Ding et al., 2022), which is estimated 
globally to be + 0.1 W/m− 2(− |-) from sensible heat warming and − 0.9 
W/m− 2(− |-) from latent heat cooling from 1982 to 2011 (Zeng et al., 
2017; Piao et al., 2020). We find that the standardized total effects of 
heat condition, plant property, soil fertility and microbial biomass on 
the soil quality was − 0.48, 0.87, 0.96 and 0.11 over the Tibetan Plateau, 
respectively (Fig. 6b). Therefore, surface energy imbalance may support 
a highly variable response of the soil quality to recent anthropogenic 
climate warming. For example, high surface heat can lead to increased 
evaporation of soil moisture, resulting in drier soil conditions (see dis
cussion in Section 4.1). This can affect the availability of water for plants 
and microorganisms, potentially reducing plant growth and microbial 
activity (Jansson & Hofmockel, 2020).

Finally, we detect an ‘physiochemical protection phase’ featured 
with variations of physiochemical factors. Our study suggests that the 
physiochemical pathway accounts for the best effect on soil quality 
explanation than biological pathway over the broad and highly variable 
gradients of the environment (Fig. 6). (i), biological mechanisms are 
sensitive indicators of land cover changes and are commonly used to 
assess the soil quality changes in land degradation. The soil quality in 
this steppe is relatively lower than that in meadow, and there are less 
accumulations of live, litter, and roots, leading to a lower soil organic 
matter associated with microorganism-enzyme activity, ultimately 
contributing to the limiting factors for soil cementing agents (for 
example, SOC adsorption ratio and hyphal entanglement) (Figs. 3-6). 
(ii), soil structure changes greatly under global climate warming, owing 
to changes in permafrost thaw (accelerated decrease in aggregate size) 
and snow-ice melting (increased runoff erosion) may continue over this 
survey region under warming (Shen et al., 2015). Physiochemical 
mechanisms may contribute to a larger effect size, that is, ‘protective 
carrier’, on soil quality changes (Rillig et al., 2002). As a result, the 
biological mechanisms are major drivers in the context of soil quality 
change, and physiochemical mechanisms are results, which reflect the 
starting point and ultimate purpose of soil processes, respectively. On 
these grounds, we conclude that physiochemical mechanisms play a 
more crucial role in determining soil quality than biological mechanisms 
in this work.

Clearly, geoscientists can use this “atmospheric oxygen footprint 
barrier effect” to look into and figure out how stable the terrestrial 
ecosystem is, especially when it comes to soil getting worse and how it 
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copes. This is because soil quality exhibits an extremely high degree of 
sensitive to climate conditions which are correlated with the drivers of 
oxygen consumption and production. In addition, according to human- 
induced O2 consumption and natural O2 production drivers, the oxygen 
footprint barrier effect can effectively reflect the local warm/cool con
ditions (Fig. 7). Thereby, it can serve as a measure of soil quality changes 
and assumes a vital function in the assessment and projection of 
terrestrial ecosystem stability.

5. Conclusions

Different from previous studies, for the first time we propose three 
phases of soil quality change characterized by consecutive change trends 
in oxygen footprints. The three phases, namely ‘climate change phase’, 
‘heat drive phase’ and ‘physiochemical protection phase’, play a crucial 
role in understanding the development of soil quality in arid-cold re
gions. Under equilibrium conditions, a well-defined framework for at
mospheric oxygen footprint barrier effect is provided by our study 
(Fig. 7). It can inspire researchers to develop a new generation of mul
tiscale models to explore soil quality responses to climate change. Also, 
the framework presented here can be utilized to identify the effect of 
oxygen footprint on soil quality, thereby indicating the consequences of 
continuously evolving terrestrial ecosystem, especially in fragile and 
sensitive regions.

The attenuation of the oxygen footprint barrier effect is a common
ality witnessed, accelerating and happening globally due to urbaniza
tion, fast economic development and rapid population growth. When 
the oxygen footprint barrier effect is weak, the frequency of short wave 
scattering by air molecules is reduced, resulting in a considerable 
elevation of land surface shortwave forcing. As a result, an increase in 
global land surface temperatures is observed with the attenuation of the 
oxygen footprint barrier effect. Such a phenomenon may have 

intensified the greenhouse warming forcing and eventually inhibited the 
growth of soil quality. Although our work demonstrates the essential 
role of atmospheric oxygen footprint barrier effect in assessing the soil 
quality over a wide range of geographic scale, there are still several 
limitations that need to be addressed in future studies. A key challenge is 
to validate Earth System Models based on atmospheric oxygen cycles 
with systematic measurements to enable accurate prediction of land
–atmosphere feedbacks in a changing environment. Hence, expansion of 
the existing network of atmospheric oxygen measurements is a top 
priority.
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