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An Accurate Retrieval of Cloud Droplet Effective
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Abstract— The cloud droplets effective radius is a key feature
that plays a critical role in influencing cloud microphysical
processes and radiative effects. Accurate quantification of cloud
effective radius (CER) is essential for advancing our understand-
ing of cloud microphysics, refining cloud parameterization, and
improving future climate prediction. Nonetheless, the accuracy
of current CER retrieval algorithms, particularly relying on
millimeter-wavelength cloud radar, is often largely affected by
assumptions about the cloud droplet number concentration, inap-
propriate empirical coefficients, attenuated radar reflectivity, and
limitations of other auxiliary instruments. In this study, we devel-
oped a novel CER retrieval algorithm for single-wavelength
radar by leveraging the interconnections between CER, liquid
water content (LWC), and cloud radar reflectivity. Unlike the
previous studies, we first derive the LWC from a self-consistent
method based on cloud liquid water mass absorption instead
of empirical relationships. Subsequently, we correct the radar
measured reflectivity attenuated by cloud water and perform
sensitivity analysis to select an optimal parameter that minimizes
the uncertainty associated with the given cloud droplet size
distribution (DSD) assumption. Then, the CER is calculated
from the retrieved LWC, corrected reflectivity, and the optimal
parameter. We compared the frequency distribution, vertical
structure, and error fraction of the retrieved CER with aircraft
in situ measurements. Our results demonstrate higher consistency
with in situ data compared to traditional empirical algorithms.
Furthermore, the cloud optical thickness (COT) derived from the
CER shows a much better agreement with Moderate Resolution
Imaging Spectroradiometer (MODIS) products, which provides
additional validation for the efficacy of our method in investigat-
ing cloud microphysical properties.

Index Terms— Cloud effective radius (CER), cloud optical
thickness (COT), cloud radar, retrieval method, self-consistent.
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I. INTRODUCTION

CLOUDS cover approximately 60%–70% of Earth’s sur-
face, exerting a substantial effect on the energy budget

of the Earth–atmosphere system by modulating both solar
and terrestrial radiation. They also play a pivotal role in the
transport of moisture and the distribution of water through pro-
cesses such as condensation and precipitation, which further
results in the regulation of the hydrological cycle, atmospheric
circulation, and, subsequently, the shaping of climate pat-
terns [1], [2], [3], [4]. Low-level clouds (LLCs), prevalent at
altitudes typically below 2–3 km height, have strong mitigation
effects on global warming by reflecting incoming solar radi-
ation [5], [6]. The radiative effect of LLCs on our climate is
largely determined by their specific physical properties. Even
minor changes in properties will significantly impact on both
short-term weather pattern and long-term climate change [7],
[8], [9]. Furthermore, understanding the vertical distribution
of microphysical properties provides insights into the dynamic
and thermal processes that ultimately controlling cloud devel-
opment and life cycle [10]. In the context of global warming,
the intensified processes of condensation, evaporation, and
phase transition will invariably modify the properties of LLCs.
These alterations will in turn influence climate energy balance,
which is known as the cloud feedback mechanisms, consti-
tuting one of the primary sources of uncertainties in future
climate predictions [11]. Therefore, the endeavor to accurately
characterize LLC properties holds significant implications for
enhancing our predictive capabilities in understanding, and
anticipating the impacts of climate change [12], [13].

Cloud droplet size is one of the key LLC features that
not only determines cloud optical quantities such as cloud
single scattering albedo but also exerts influence over the
cloud–aerosol interaction and serves as a reflection of their
interdependence [14], [15], [16], [17]. For instance, under
a fixed liquid water path (LWP), smaller droplet sizes can
reflect more solar radiation back to space and prolong cloud
life by reducing precipitation efficiency. Previous studies have
proven that a reduction in cloud droplet size of approxi-
mately 15%–20% (e.g., approximate size reduction of 2 µm
for 10-µm cloud droplets) would offset the warming effect
induced by doubling CO2 in the atmosphere [18]. Cloud
effective radius (CER, re), which takes into account individ-
ual cloud particle cross-sectional area and the total particle
concentrations in a cloud layer, represents the average size of
the cloud droplets. It is listed as one of the essential climate
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variables (ECVs) by the global climate observing system
(GCOS) for investigation of global climate change [19], [20].
The cloud physical processes and radiative effects incorporated
in climate models are largely governed by the CER vertical
evolutions [21]. Therefore, accurately obtaining cloud droplet
size profiles is of great significance in enhancing cloud param-
eterization in models for future climate predictions.

Various algorithms, employing both passive (e.g., micro-
wave radiometer (MWR), visible, infrared, and multispectral
imagers) and active (e.g., radar and lidar) remote sensing
instruments, either independently or in combination, have
been developed for CER retrieval [22], [23], [24]. The
widely adopted approach involves inferring CER from pas-
sive instruments by capturing reflected solar radiation from
clouds through single channel or multichannel, enabling the
investigation of large-scale global cloud properties. However,
accurately deriving vertical profiles of CER using passive
instruments remains challenging due to their limitation in
observing information solely at the cloud top [25]. In contrast,
cloud radar operating at a millimeter wavelength has the
capability to penetrate thick cloud and is a powerful instrument
for revealing high-resolution cloud vertical structures [26].
Since cloud radar reflectivity (Z ) is proportional to the sixth
moment of the cloud droplet size distribution (DSD) and CER
is the ratio of the third to the second moment of the DSD,
several methods have been developed to establish a linkage
between CER and radar measured reflectivity (Zm , in unit
of dBZ). These approaches are primarily classified into three
categories: traditional empirical methods [27], [28], optimal
retrieval algorithms with lookup tables [29], and joint retrieval
methods combining other cloud microphysical variables from
passive instruments [30], [31]. Traditional empirical methods
derive coefficients either by directly fitting the in situ and
radar observations or by assuming a certain DSD with some
constant parameters such as the cloud number concentration
NT , spectral width σx , and the order β in lognormal and
gamma distribution [32], [33], [34]. However, limitations arise
due to the scarcity and high cost of in situ measurements,
as well as discrepancies between assumed constant parameters
and the diverse range observed in actual data. For example,
a previous study has shown that the real NT has a sig-
nificant vertical structure that increases and then decreases
with altitude [35]. Optimal retrieval algorithms are constrained
to specific cloud conditions with prior lookup table data,
depending on accurate cloud parameterization in numerical
models. The intricate calculation process adds complexity and
uncertainty to the optimal algorithm. Multi-instruments joint
algorithms, while effective in reducing retrieval uncertainties
through constraints from other properties, are influenced by
spatiotemporal mismatches and distinct sampling accuracies
among various sensors. Given these challenges, it is crucial
to develop an algorithm capable of overcoming current limita-
tions without relying on additional instruments and ultimately
ensuring a robust and versatile approach for CER retrieval in
diverse cloud conditions.

In this study, we propose a novel method to retrieve CER
for single-wavelength cloud radar, which is independent of the
NT assumption, empirical coefficients, and other instruments.

The whole method includes establishing the expressions of
CER with Z , liquid water content (LWC), and cloud DSD
parameters attributed to their physical definitions, performing
sensitivity analysis of factors related to cloud DSD parameter,
and obtaining self-consistent LWC and unattenuated reflec-
tivity (Z ). Here, the DSD is assumed to follow lognormal
distribution, which has been demonstrated to provide a suitable
representation for the wide range of droplet sizes typically
encountered in atmospheric clouds. The DSD parameter is
optimally selected by a sensitivity analysis to minimize its
impact on retrieval results. The LWC is retrieved from a
self-consistent method based on cloud liquid water mass
absorption without the incorporation of empirical coefficients
and other instruments apart from cloud radar [36]. Zm is
also corrected simultaneously following the proportional func-
tion between LWC and absorption attenuation. The data and
instruments used for the method evaluation and the details
of method are introduced in Sections II and III, respectively.
The feasibility and accuracy of the method are evaluated in
Section IV by applying it to the ground-based cloud radar and
comparing the results with aircraft in situ data. Moreover, the
reliability of our algorithm in cloud optical properties retrieval
is further assessed by comparing the COT calculated from the
retrieved CER with moderate resolution imaging spectrora-
diometer (MODIS) products, as discussed in Section V before
the conclusion drawn in Section VI.

II. INSTRUMENT AND DATASET

The Eastern North Atlantic (ENA; 39.09◦N and 28.02◦W)
site, established and operated by the U.S. Department of
Energy (DOE) Atmospheric Radiation Measurement (ARM)
Program, is a critical site for probing cloud properties in
the mid-latitude marine environment since it is located in
the Atlantic Ocean with widely distributed LLCs [37]. The
Ka-band zenith radar (KAZR) operated at 35 GHz receives
backscatter echoes in dual-polarization modes and provides
Doppler velocity, Doppler spectrum width, and co- and
cross-polarized radar reflectivity factor by calculating the first
three moments of the radar Doppler spectra [38], [39]. The
active remote sensing of clouds (ARSCL) value-added product
(VAP) derived from the combination of KAZR, Vaisala laser
ceilometer (CEIL), and micro-pulse lidar (MPL) provides
cloud vertical structure with 4s and 30-m temporal and spatial
resolutions, where the hydrological echoes are distinguished
from KAZR background noise and nonhydrological signals,
and the cloud base height (CBH) is determined through
the combination of CEIL and MPL at a wavelength of
532 nm [40], [41].

The aerosol and cloud experiments in the ENA (ACE-ENA)
field campaign were carried out at the ENA site from June
2017 to February 2018 [42]. During the ACE-ENA field
campaign, there are two intensive observation periods (IOPs)
in summer (from June 21 to July 20, 2017) and winter (from
January 15 to February 18, 2018). The ARM aerial facility
(AAF) Gulfstream-159 (G1) research aircraft, flying 20 and
19 missions in the summer and winter IOPs, respectively, pro-
vides multiple products of the marine boundary layer (MBL)
cloud microphysical properties [43]. The fast cloud droplet
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probe (FCDP) mounted on the G1 aircraft is an essential
instrument for measuring the number concentration and size
of hydrometeor particles ranging from 1 to 50 µm, with a
particle size resolution of approximately 3 µm and a temporal
resolution of 1 s [44], [45].

The radar measured reflectivity factor provided by the
ARSCL VAP during the summer and winter IOPs in the
ACE-ENA campaign is used as the inputs of the retrieval
algorithm. The cloud boundaries are jointly determined by the
CBH derived from ARSCL VAP and the cloud top height
(CTH) identified from the KAZR cloud echoes. The radar
profiles with CBH lower than 3 km and CTH lower than 4 km
are selected as cloud layers dominated by liquid water droplets.
The CER produced by FCDP less than 16 µm is utilized
for verifying and assessing the applicability and uncertainty
of the retrieval algorithm. Simultaneously, with the aim of
minimizing the spatial and temporal matching discrepancies
between aircraft measurement and radar detection, thereby
utilizing aircraft data to assess CER retrieval errors, only
the in situ data within 10 km from the ENA site are used
in this study. In addition, the cloud optical thickness (COT)
products from the MODIS observations with the resolution of
1 × 1 km (i.e., MOD06 and MYD06) are used for validating
the efficiency of our method in COT retrieval, where MOD06
and MYD06 are the Level 2 cloud products from MODIS
onboard the Aqua and Terra satellites, respectively [46]. The
MODIS COT within a 0.5◦

× 0.5◦ boxed area centered at the
ENA site is selected to compare with the mean COT from this
method within a 40-min window on MODIS overpass time,
which is proved to be optimal for ground radar and spaceborne
sensors comparisons from our previous studies [47], [48].

III. RETRIEVAL METHOD

The CER is defined as the ratio of the third moment to the
second moment of the cloud DSD shown as follows:

re =

∫
∞

0 n(r)r3dr∫
∞

0 n(r)r2dr
=

〈
r3
〉〈

r2
〉 (1)

where r is the cloud droplet radius, n(r) is the cloud DSD rep-
resenting the number of cloud droplets with sizes in the range
from r to r + dr per unit volume, and ⟨r l

⟩ is the lth moment
of the cloud DSD. The cloud DSD is commonly approximated
by the lognormal distribution as expressed by [29]

n(r) =
NT

√
2πrσ x

exp

[
−ln2(r/rm)

2σ 2
x

]
(2)

where NT is the total cloud droplet number concentration,
rm is the median radius, and σx is the logarithmic spectral
width, which are defined as rm = exp(ln r) and σx =

ln ((ln r − ln rm)2)
1/2

. The lth moment of this distribution is
⟨r l

⟩ = r l
mexp((l2/2)σ 2

x ), and hence, the CER in (1) can be
further rewritten as

re = rm exp
(

5
2
σ 2

x

)
. (3)

Note that the Z and cloud LWC can be expressed as

Z =

∫
∞

0
n(r)r6dr = 64NT r6

m exp
(
18σ 2

x

)
(4)

LWC =

∫
∞

0
ρwn(r)

4
3
πr3dr =

4
3
π NT ρwr3

m exp
(

9
2
σ 2

x

)
(5)

which are both closely associated with the cloud DSD parame-
ters rm and σ 2

x . According to these definitions, the relationship
between rm and exp(σ 2

x ) can be established by eliminating NT

through the combination of (4) and (5) as

r3
m exp

(
27
2

σ 2
x

)
=

πρ

48
Z

LWC
. (6)

rm and σx can be expressed as functions of LWC and Z
from (6), and thus, the CER can be rewritten either as a
function of parameter rm or σx in conjunction with radar
reflectivity Z and cloud LWC as shown in the following two
equations:

re =

(
πρ

48
Z

LWC
1

exp
(
6σ 2

x

)) 1
3

(7)

re = r
4
9

m

(
πρ

48
Z

LWC

) 5
27

. (8)

While both equations can be used for the derivation of CER,
it is essential to note their dependence on the assumption that
the DSD parameter (σx or rm) remains constant. Consequently,
it is imperative to assess the sensitivity of (7) and (8) with
respect to the parameter changes to determine which one is less
affected by the parameter variation and can yield more reliable
results. Two crucial aspects are sequentially addressed. First,
we conduct a sensitivity test to examine the impact of param-
eter variations on the retrieved results and select the equation
with less sensitive to parameter changes. The appropriate value
of the parameter in the chosen equation is assigned from the
most reasonable and widely accepted values in the literature.
Second, we obtain accurate LWC by incorporating adaptive
constraints on physical processes related to cloud liquid water
absorption attenuation and correct the Zm using the LWC.
Thus, we propose a self-consistent algorithm consisting of
these two primary steps for retrieving CER, and the details
are illustrated in the flowchart, as depicted in Fig. 1.

A. Sensitivity Analysis and Optimal Parameter Selection

In order to select the optimal parameter for CER retrieval,
we conducted sensitivity tests on σx and rm , independently
through the ratio of the CER changes, arising from parameter
amplification by a factor of k to the originally retrieved CER.
The parameter sensitivities of σx and rm shown in (7) and (8)
can be expressed as follows:

1re

re
= exp

[
2σ 2

0 (1 − k2)
]
− 1 (9)

1re

re
= k

4
9 − 1 (10)

where k denotes the multiplier by which the parameter is either
increased (k > 1) or reduced (0 < k < 1). σ0 in (9) represents
the parameter σx before being modified by a factor of k with a
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Fig. 1. Flowchart of the CER retrieval by our method. The framework of the
overall algorithm is shown on the left and the method used to compare the
sensitivity of the algorithm for different parameters and calculate the cloud
LWC is shown in the blue dashed box on the right.

value within the range of 0.15–0.74. This range is referenced in
numerous previous studies on DSD parameters as summarized
by Miles et al. [49]. Remarkably, rm in (10) cancels out as it
is equal in both the numerator and denominator, resulting in
an independence of sensitivity to the changes in rm . Conse-
quently, the influence of σx variation on the retrieved results is
contingent upon its initial value σ0. Conversely, the sensitivity
is independent of the rm initial value. To quantify the relative
sensitivity of different parameters, we further compare the
absolute sensitivity differences induced by variations in the
rm and σx parameters as follows:

f =

∣∣∣k 4
9 − 1

∣∣∣ −
∣∣exp

[
2σ 2

0

(
1 − k2)]

− 1
∣∣. (11)

The f values correspond to distinct percentages of k for
varying σ0, which are shown in Fig. 2. A negative value
of f means that the retrieved CER variation resulting from
alteration of rm by a factor of k is less significant than that
of σx and vice versa. For example, taking an average σ0 value
of 0.38 for marine cloud from previous studies and a k of
1.2 corresponding to the horizontal axis 120% (i.e., both rm

and σx increase by 20%), the f value is −0.035, indicating that
the CER variation caused by a 20% increase in rm is smaller
than it caused by the same percentage variation of σx . It can
be seen that the algorithm is less sensitive to the parameter σx

when σ0 is smaller than 0.28, as indicated by the positive f
values within this range. However, f is gradually dominated
by a negative value with the increase of σ0. Especially when
σ0 is greater than 0.56, the retrieved results variations caused
by the rm changes are smaller than that of σx no matter the
parameter is reduced or expanded. Namely, the algorithm is
less sensitive to a given constant rm and the sensitivity of σx

demonstrates a pronounced dependence on σ0. Therefore, it is
optimal to choose (8) in which the results are less affected
by the parameter rm assumption. Here, the value of 13.1 µm
is adopted in our method as the constant rm based on the

Fig. 2. Comparison of algorithm sensitivity to variations in parameters σx
and rm . k and σ0 are the percentage by which the parameters are amplified
or reduced and the initial value of σx , respectively. The value of k equal to
100% represents that the parameter value remains unchanged, without any
enlargement or reduction.

average value of marine clouds from previous studies [49].
We also calculate the retrieved results under the assumption
of other arbitrary rm values. It is found that the change in CER
is caused by the variation of rm within the standard deviation
range (i.e., 13.1 ± 3.6 µm) is merely 11%.

B. LWC Retrieval and Radar Reflectivity Attenuation
Correction

According to (8) selected through parameter sensitivity
analysis, the CER retrieval is inseparable from accurate LWC
and unattended radar reflectivity Z in addition to rm . Thereby,
we utilize a self-consistent cloud LWC retrieval algorithm
developed from our previous study [36] to calculate LWC
and correct the absorption attenuation on Zm using the radar
equation presented later.

The LWC retrieval algorithm is constructed based on the
interdependencies between cloud physical variables without
relying on any other instruments and empirical coefficients.
Specifically, the proportional relationship between absorption
attenuation coefficient A and LWC (i.e., A = K ∗LWC)

regardless of DSD under the Rayleigh approximation is uti-
lized in LWC retrieval. Considering that the disparity between
Zm and Z is determined by the LWC and the relationship
among Zm , Z , and LWC can be expressed as the radiative
transfer equation of Z = Zm10−0.2

∫
A(s)ds (i.e., radar equation),

we convert this radar equation into the Bernoulli differential
equations (BDEs) and integrate it within the cloud layer to
explore the LWC at a point where the relationships among
the variables achieve self-consistency [36]. The proportional
coefficient K ∗ is related to the radar wavelength, temperature,
and complex refractive index of cloud droplets with the unit
of dB km−1. It can be regarded as a constant for a cloud
radar operating at a fixed millimeter wavelength. Therefore,
the optimal parameters in LWC expression within each radar
range can be obtained by minimizing the error between Zm

and theoretically reconstructed reflectivity factor expressed by
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LWC through the trust region reflective (TRR) method. The
algorithm accuracy has been substantiated by comparing the
retrieved LWC with aircraft in situ data and MWR products.
Both of them showed that the LWC retrieved by this method
has significant improvements for both single-layer and multi-
layer clouds, especially mitigating the overestimation of large
particle clouds caused by traditional empirical relationships.

C. Algorithm Uncertainty Analysis

From (8), one can see that the CER retrieval uncertainty
is determined by Z , LWC, and rm . Therefore, we analyze
the retrieval uncertainty by calculating the relative error as
expressed by [50]

1CER
CER

= ±

[(
51Z
27Z

)2

+

(
51LWC
27LWC

)2

+

(
41rm

9rm

)2
] 1

2

(12)

where 1Z , 1LWC, and 1rm are the radar reflectivity uncer-
tainty in ±1 dBZ [41], the standard deviation of retrieved LWC
in ±0.1 g m−3 [36], and the rm standard deviation in ±3.6 µm
as proposed by Miles et al. [49], respectively. Z , LWC, and
rm represent the radar reflectivity for nonprecipitating clouds,
the average of retrieved LWC in 0.2 g m−3 [36], and the mean
value of rm in 13.1 µm, respectively [49]. Considering that Z
is in the range of −40 to −10 dBZ for nonprecipitating clouds,
we assume Z as −30 dBZ and calculate the CER uncertainty
by applying (12). The result shows that the uncertainty is
15.3%, which is less than 16.0% of the combined MWR
and cloud radar algorithm proposed in previous studies [50].
In addition, we calculate the uncertainty for different reflectiv-
ity factors. It is found that the uncertainty varies only within
0.1% for the Z varying from −40 to −10 dBZ. Thus, the
advantage of our method is that it not only provides CER
products without using other instruments but also has lower
uncertainty than previous retrieval algorithms.

IV. RESULTS AND ANALYSIS

We applied this method to the ground-based Ka-band radar
installed at the ENA site spanning over one year from June
2017 to May 2018 and separately compared its results with
the CER, provided by aircraft in situ instruments and other
retrieval methods during the entire IOPs. The application
process of the method in cloud radar and the spatial–temporal
matching of its results to aircraft in situ data are demonstrated
by the nonprecipitation MBL cloud cases occurred on June
30, 2017 and January 29, 2018, respectively.

A. Case Study

Taking a single-layer MBL cloud that occurred on June
30, 2017 as an example, the retrieval process is concretely
displayed in Fig. 3. This case is a typical stratocumulus with
no obvious large particles below the CBH (KAZR measured
CBH close to the CEIL detected CBH marked by black
dots). As shown in Fig. 3(b), the cloud LWC derived from
the self-consistent algorithm is concentrated below 0.4 g m−3

and increases significantly around 19:00 UTC prior to the

Fig. 3. Application of the algorithm to the single single-layer cloud case on
June 30, 2017. Time–height profiles of (a) KAZR measured reflectivity factor
identified from the background noise and low-level nonhydrographic signals,
(b) retrieved cloud LWC, (c) difference between the unattended and measured
reflectivity, and (d) CER retrieved by our method. The black dots marked
in (a) are the best estimated CBH provided by the combination of CEIL
and MPL.

precipitation. The differences between attenuation corrected
and measured reflectivity are less than 0.2 dB [Fig. 3(c)]. This
is consistent with the statement proposed by Yao et al. [51] that
the Ka-band radar attenuation correction for nonprecipitating
clouds is below 1 dB. Utilizing the calculated LWC and
the corrected reflectivity, the CER retrieved by our method
(hereafter CERRet) is within the range of 6–12 µm, as shown
in Fig. 3(d). The results are similar to the previous findings
that the effective radius of MBL nonprecipitation clouds over
the Azores is concentrated in the range of 6–14 µm [52].

The matchups between CERRet and CER provided by FCDP
(hereafter CERFCDP) is exemplified by a nonprecipitation cloud
case that occurred on January 29, 2018 as shown in Fig. 4,
aiming to provide retrieval results from both summer and
winter IOPs, respectively. The G1 aircraft track varying with
longitude, latitude, and time is depicted by 2-D and 3-D graphs
in Fig. 4(a) and (b), respectively. To ensure spatial consistency
between aircraft and radar observation, we select the in situ
data within 10 km from the ENA site and compare it with
CERRet averaged over the three consecutive radar bins centered
on the aircraft heights [53]. The altitudes of in situ data within
the cloud layer are marked as magenta dots in Fig. 4(c) and
the CERFCDP values are indicated by blue dots in Fig. 4(d).
It can be seen that CERRet [the red dots in Fig. 4(d)] follows
the trend of CERFCDP with a relatively smaller average value
(11.02 ± 2.39 µm versus 11.79 ± 1.66 µm). The root-mean-
square error (RMSE) is 2.74 µm by regarding CERFCDP as
the true value. Similar to what is demonstrated in this cloud
case, the method accuracy is further statistically quantified by
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Fig. 4. (a) G1 aircraft track for cloud case occurred on January 29,
2018 during winter IOPs. The black circle is the boundary of 10 km from
the ENA site. (b) 3-D schematic of the G1 aircraft flight altitudes at different
times. The color bar on the right represents the universal time. (c) Time–height
profiles of the KAZR measured reflectivity and the aircraft altitudes are
marked by the gray dots. The data where the flight altitude is between the
CBH and CTH as well as the distance from the ENA site is within 10 km
are marked by magenta dots. (d) Comparison of the retrieved CER with the
aircraft in situ data. The blue dots represent the CERFCDP corresponding to
the magenta dots in (c). The red line represents the averaged CERRet over the
three consecutive radar bins centered on the aircraft heights of the magenta
dots in (c).

comparing the retrieved results with aircraft in situ data from
two IOPs during the ACE-ENA campaign in Section IV-B.

B. Statistical Analysis

To validate the rationality of parameter selection and esti-
mate the method retrieval error, we compare the CER retrieved
by distinct approaches with CERFCDP during summer, winter,
and entire IOPs. The different approaches used for assessment
include the algorithm with constant parameter σx (hereafter
CERσ ) as presented by (7), the traditional empirical method
CER = 22.7exp(0.0384 dBZe) for winter IOPs, and CER =

26.78exp(0.0384 dBZe) for summer IOPs proposed by Dong et al.
[34] (hereafter CERTra) and CERRet. The intercomparison
of the CER derived from these methods with the in situ
data and their frequency distributions are shown in Figs. 5
and 6, respectively. The CER retrieval errors are quantified
through the mean bias (MB), RMSE, and fractional error
(i.e., |((CER − CERFCDP)/CERFCDP)| × 100%) by taking the
aircraft in situ data as true value. During the summer IOPs
[Fig. 5(a1)–(c1)], CERRet values are consistent with CERFCDP
and have smaller MB (i.e., −0.39 µm versus −2.63 and
−0.95 µm) and RMSE (i.e., 4.58 versus 6.95 and 4.94)
than that of CERσ and CERTra. The frequency distribution of

Fig. 5. Comparison of the CER retrieved by (a1)–(a3) algorithm with
constant σx , (b1)–(b3) traditional empirical method and (c1)–(c3) algorithm
with constant rm proposed in this study with the CER provided by FCDP
onboard the G1 aircraft during summer (the top panel), winter (the middle
panel), and the entire IOPs (the bottom panel). The black dashed line at
the diagonal position of the subgraph in three columns from left to right
represents that the retrieved CER is the same as the CERFCDP. The cdf of
the CER fractional error for the algorithm with constant σx (green solid line),
the traditional empirical method (blue solid line), and our method (red solid
line) are shown in the fourth column (d1)–(d3), respectively. The gray dashed
lines represent the cdf is equal to 0.5 and 0.75.

CERRet and CERFCDP also has the proximate peaks (8.56 µm
versus 10.78 µm), as shown in Fig. 6(a). Similar to the above
comparisons, the retrieved results show smaller error than the
other two algorithms both in winter [Fig. 5(a2)–(c2)] and
the entire IOPs [Fig. 5(a3)–(c3)]. Specifically, the cumulative
distribution functions (cdfs) of CERRet fractional error is on
the leftmost side whether in summer [Fig. 5(d1)], winter
[Fig. 5(d2)], and entire IOPs [Fig. 5(d3)]. This confirmed
that the errors of our method are concentrated in a narrow
range and CERRet are in good agreement with the aircraft
in situ data. Moreover, the frequency distribution of CERFCDP
in winter IOPs [Fig. 6(b)] exhibits a similar distribution with
peaks at 11.31 µm. Considering that the precipitation rate
will increase in winter due to the stronger ability of aerosol
particles to serve as cloud condensation nuclei, more frequent
low-pressure systems bringing moist air masses and a less
stable atmosphere associated with midlatitude cyclones than in
summer [54], [55], [56], the CERRet distribution is still close to
the peak of CERFCDP even in the presence of precipitation. It is
affirmed that our method can be applied to small cloud droplets
with high accuracy and is less affected by large precipitation
particles in clouds.

Given that the CER vertical distribution is also a pivotal
property that reflects the condensation and coalescence growth
of cloud droplets [57], we further classify CERRet, CERσ ,
CERTra, and CERFCDP according to their altitudes in a 0.3-km
bin and analyze their mean and standard deviation errors in
each altitude bin. As displayed in Fig. 7(a), the CER exhibits
an ascending trend with altitudes irrespective of the approach
employed. This aligns well with the statement proposed by
Chen et al. [58] that the CER of nonprecipitation clouds
dominated by condensation growth generally increases with
altitudes. Moreover, it is obvious that the average values of
the CER retrieved by different algorithms are smaller than
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Fig. 6. Ridgeline plots showing the frequency distribution of the CER
provided by different approaches during (a) summer and (b) winter IOPs.
The CER derived from our method with constant rm proposed in this study,
the algorithm with constant σx , the in situ data, and the traditional empirical
method are shown in each subgraph from top to bottom. The horizontal scale
is aligned to be the same and the distribution plots overlap slightly for clarity.

that of in situ data, while CERRet exhibits higher consistency
with CERFCDP than that of CERσ and CERTra. Furthermore,
the error distributions for CERRet are depicted in Fig. 7(b).
The median of CERRet absolute fractional error at the altitudes
where the cloud echoes mainly concentrated (i.e., altitudes
from 0.9 to 1.5 km) is within 50%, as shown by the box
plots with the dark red area in Fig. 7(b), which further reveals
that the retrieval error of our method is concentrated within a
narrow variation range.

Aside from evaluating the method accuracy using one of
the traditional empirical methods as illustrated above, we also
compare the coefficients fit from CERRet and Z with various
empirical coefficients proposed by distinct researchers in exist-
ing studies. For example, the traditional empirical methods
proposed by Atlas [27] for nonprecipitating liquid clouds as
CER = 22Z0.167, Sauvageot and Omar [59] for cumulus and
stratocumulus clouds as CER = 51.5Z0.313, Frisch et al. [50]
for marine stratocumulus clouds as CER = 22.7Z0.167, and
Fox and Illingworth [32] for nonprecipitating marine stratocu-
mulus clouds as CER = 46.7Z0.177. As shown in Fig. 8, the
exponential relationship fit by our method from 2223 samples
during the entire IOPs is CERRet = 27.4Z0.154. The fit
coefficients (i.e., 27.4 and 0.154) are both in good agreement
with the empirical coefficients for nonprecipitation clouds. The

Fig. 7. Profiles of (a) CER provided by in situ data (blue solid line),
the algorithm with constant rm proposed in this study (red solid line), the
algorithm with constant σx (yellow solid line), and the traditional empirical
method (green solid line), and (b) fractional error of CERRet versus the altitude
where the cloud echoes are located. The mean and the standard deviation of
the different methods retrieved CERs within the altitudes bin of 0.3 km are
shown as dots and error bars in (a), and CERRet fractional error distribution
within each altitude bin is displayed by a gray boxplot in (b). The gray dashed
line shown in (b) represents the fractional error is equal to zero.

Fig. 8. Comparison of the line fit by CERRet and Z (red solid line) with the
line fit based on in situ data (gray solid line) and other traditional empirical
formulas, respectively. The gray and colored dots represent the CER provided
by the aircraft and retrieved from our method, respectively. The density of
CERRet is represented by the color bar as shown on the right.

red solid line fit by our method is closer to the aircraft in situ
data fit line (as shown by the gray solid line) than that of
other traditional empirical methods. Especially for the large
particles with reflectivity greater than −15 dBZ, our method
can substantially alleviate the underestimation induced by
traditional empirical algorithms. In addition, it should be noted
that the CERRet fit coefficients discussed here are only used
for evaluating our method rationality and are not a component
of the method.

To further account for how the method error is affected by
different variables, we investigate the fractional error between
CERRet and CERFCDP in each bin with width of 0.5 µm,
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Fig. 9. Distribution of CERRet fractional errors corresponding to (a) CER
provided by in situ data, (b) radar measured reflectivity factor, and (c) retrieved
cloud LWC. The shaded area represents the sample number within the 10%
CERRet fractional error on the vertical coordinate and the 0.5 µm, 1 dBZ, and
0.01 g m−3 bins in cloud particle size, radar reflectivity factor, and retrieved
LWC on the horizontal coordinate, respectively. The gray boxplots in three
different subgraphs represent the distribution of fractional error within 4 µm,
5 dBZ, and 0.5 g m−3 bins of CERFCDP, radar reflectivity, and retrieved LWC,
respectively.

1 dBZ, and 0.01 g m−3 for CER, Zm , and LWC, respectively,
as shown in Fig. 9. Fig. 9(a) illustrates that the retrieval error
is approximately zero corresponding to the CER within the
range of 6–14 µm where the cloud droplet size is concen-
trated. Moreover, there are no obvious error variations with
the increase of CER, confirming that the retrieval errors are
independent of the particle size and are rarely affected by large
particles. In addition, the retrieval errors are insignificantly
affected by the reflectivity factor variation, especially for the
nonprecipitation cloud with reflectivity lower than −15 dBZ,
as shown in Fig. 9(b). There is a slight increase in error
quartiles when the reflectivity factor falls within the range
of −15 and −5 dBZ. This may be attributed to the fact
that the aircraft in situ data are limited to the cloud droplet
size, whereas the radar detects some large particles in this
reflectivity range. Similarly, the fractional errors are also
impervious to the variations in cloud LWC as depicted in
Fig. 9(c), validating that the critical advantage of our method
is that it is rarely constrained by variables and has robust
stability.

V. APPLICATION OF ALGORITHM IN COT RETRIEVAL

Since the CER is also a fundamental variable that deter-
mines cloud optical properties, it would be a convincing
perspective to further verify the method’s accuracy by cal-

Fig. 10. Two-dimensional joint histograms of the COT retrieved by (a) our
method and (b) traditional empirical method versus the MODIS products over
the one year from June 2017 to May 2018. The number of samples in each
bin with a width of 2 is displayed in different colors. More samples are
represented by darker color and vice versa by a lighter color.

culating the optical properties from the retrieved CER. In this
study, we attempt to estimate the COT (τ) from the retrieved
CER by the following equation as [60]:

τ =
3
2

LWP
ρwre

(13)

where ρw is the density of liquid water about 1 g m−3 and
LWP is the vertical integration of LWC in unit of g m−2.
In accordance with Section III, CERRet can be calculated
within each radar gate rather than the average value spanning
the entire cloud layer. Therefore, the COT for the whole cloud
layer has to be derived by the integration of (14) from CBH
to CTH [i.e., τ =

∑ j=CTH
j=CBH τ(h j )], where (14) is the COT in

the i th radar gate discretized from (13) as expressed by

τ(hi ) =
3
2

LWP(hi )

re(hi )
=

3
2

LWC(hi )1s
re(hi )

(14)

where 1s is the height between the adjacent radar gates in the
vertical direction. In this study, 1s is equal to the cloud radar
vertical resolution of 0.03 km, and the LWC in each radar
gate are retrieved by the self-consistent method as detailed in
Section III.
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We retrieved the COT (hereafter COTRet) for a total of
433 instantaneous samples of single-layer clouds from June
2017 to May 2018 and compared it with the prevailing MODIS
products during the same periods. The 2-D histogram of
COTRet and that of the traditional empirical method (here-
after COTTra) versus the COT products provided by MODIS
(hereafter COTMODIS) are shown in Fig. 10, where COTTra is
calculated from CERTra. COTRet is concentrated around the
diagonal, while COTTra is distributed above the diagonal with
significant overestimation compared to COTMODIS. This can
be attributed to a substantial underestimation in the traditional
empirical method for CER retrieval in contrast to our method.
The MBs in COTRet (6.38 ± 3.07) and COTTra (10.78 ± 16.49)
are −1.89 and 2.51 compared to COTMODIS (8.27 ± 6.66).
The RMSE of COTRet is notably smaller than that of COTTra,
i.e., 6.27 versus 14.94. The superb applicability of our method
in COT retrieval and the reduction of overestimation caused by
traditional empirical algorithms are effectively demonstrated.

VI. CONCLUSION

The main purpose of the work is to propose a CER retrieval
method for single-wavelength radar based on the connections
between CER, Z, and LWC under the assumption that cloud
DSD follows the lognormal distribution. The cloud droplet
number concentration is effectively eliminated by combining
the Z and LWC definitions. Only one cloud DSD parameter
rm , which has been proved to have less influence on the
retrieved CER, is given as constant through the sensitiv-
ity analysis. Innovatively, the LWC is obtained from the
self-consistent algorithm constructed by the radiative transfer
theory, and the measured reflectivity is attenuation corrected
by utilizing the proportional relationship between absorption
attenuation and LWC in this study. This ensures that this
method can be applied to nonprecipitation and clouds with
large particle sizes without relying on other instruments and
empirical coefficients. Moreover, the uncertainty of our CER
retrieval method is limited to only 15.3%, which is smaller
than that of the uncertainty of the joint algorithm combining
cloud radar and MWR.

The application of the algorithm in ground-based radar
deployed at the ENA site, as well as the matching of radar
and aircraft data, is demonstrated separately using two distinct
cases that occurred on June 30, 2017, and January 29, 2018.
The algorithm accuracy was evaluated by comparing CERRet
with CERTra and CERFCDP within 10 km from the site during
the summer, winter, and entire IOPs, respectively. The results
showed that the frequency distribution and vertical structure
of CERRet and the curves fit by CERRet with Z are all in
good alignment with that of the CERFCDP compared to CERTra
and CERσ . The retrieval error is concentrated near zero and
is less affected either by variations in droplet size, reflectivity
factor, or cloud LWC. Furthermore, it is demonstrated that this
method can be applied to calculate COT with smaller MB and
RMSE than the traditional empirical algorithm by comparison
with MODIS products.

In conclusion, the CER retrieval method constructed based
on the self-consistent LWC algorithm, attenuation corrected
reflectivity, and parameter rm demonstrates lower uncertainty

and higher accuracy compared to the traditional empirical
coefficient algorithm and the algorithm with constant σx .
Moreover, it proves to be applicable to retrieve other cloud
optical properties by taking COT as an example. The CER
retrieval method can be flexibly applied to ground-based and
spaceborne single-wavelength cloud radar since it is con-
structed based on the principle of radar observation. Future
work will focus on applying this method to spaceborne mil-
limeter wavelength cloud radar, such as the cloud profiling
radar (CPR) onboard CloudSat. This endeavor aims to modify
this novel algorithm capable of retrieving LLCs’ microphysical
properties, including LWC, CER, and COT over a broad area.
Although the algorithm is inevitably limited to the liquid water
cloud and the parameter in cloud DSD is assumed to be
constant, it may help to improve the characterization of LLCs
properties in models and enhance the accuracy of climate
predictions.
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