
Article https://doi.org/10.1038/s41467-024-51323-8

The ocean losing its breath under the
heatwaves

Changyu Li 1,2, JianpingHuang 1 , Xiaoyue Liu 3, Lei Ding4, Yongli He 1,3 &
Yongkun Xie 1

The world’s oceans are under threat from the prevalence of heatwaves caused
by climate change.Despite this, there is a lackof understanding regarding their
impact on seawater oxygen levels - a crucial element in sustaining biological
survival. Here, we find that heatwaves can trigger low-oxygen extreme events,
thereby amplifying the signal of deoxygenation. By utilizing in situ observa-
tions and state-of-the-art climate model simulations, we provide a global
assessment of the relationship between the two types of extreme events in the
surface ocean (0–10m).Our results showcompelling evidenceof a remarkable
surge in the co-occurrence of marine heatwaves and low-oxygen extreme
events. Hotspots of these concurrent stressors are identified in the study,
indicating that this intensification is more pronounced in high-biomass
regions than in those with relatively low biomass. The rise in the compound
events is primarily attributable to long-term warming primarily induced by
anthropogenic forcing, in tandem with natural internal variability modulating
their spatial distribution. Our findings suggest the ocean is losing its breath
under the influence of heatwaves, potentially experiencing more severe
damage than previously anticipated.

Theglobaloceanhas beenwarming and losing its oxygenprimarily as a
consequence of human-induced changes to the Earth’s climate1–4.
Alongside long-term trend of increasing temperature and declining
oxygen concentration, risks of extreme condition in these properties,
i.e., marine heatwave and low-oxygen extreme events, has emerged in
the past few decades5,6. The substantial increases of these extreme
signals in climate change could severely affect marine biota and eco-
systems, which is recognized as a serious threat to sustainable future
for the ocean and related human communities7–10.

Currently, an increasing number of studies investigated the
impact of global warming on declining oxygen concentrations (i.e.,
ocean deoxygenation) over decadal and multidecadal periods11,12. The
long-term warming is anticipated to reduce the solubility of oxygen
and enhance biological consumption, and the warming-induced
strengthening of stratification would lead to reduced ocean ventila-
tion and a subsequent decrease in oxygen supply to the ocean

interior13,14. There is also a rapidly burgeoning literature focusing on
extreme warming events in the ocean, defined as marine heatwaves,
which could cause widespread biological and socio-economic
impacts15–19. Research on low-oxygen extreme events started rela-
tively late, but these events have received increasing attention in
recent years. Characterized by the abrupt oxygen decline in the ocean,
the low-oxygen extreme events could cause species to reach their
critical oxygen limits decades earlier than expected from the
deoxygenation20, eventually resulting in the loss of biodiversity and
habitats8. The emergence of these low-oxygen extreme events is
influenced by multiple factors, including anomalous water mass dis-
tributions and ocean eddies etc.5,21. Importantly, case studies have
suggested thatmarine heatwavesmay act as catalysts for extreme low-
oxygen events: the abnormally lowdissolved oxygen levels were found
during a strongmarine heatwave known as “the Blob”22; In SWAtlantic,
amarine heatwavewith sea surface temperatures over 30 °C coincided
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with the first regional record of hypoxia23. Observations on the Baltic
Sea reveal heatwaves can contribute to seawater oxygen deficiency,
especially in the shallow areas24. These researches highlight the
importanceof exploring the coupling betweenheatwaves and extreme
low-oxygen events. Many marine ecosystems are highly vulnerable to
multiple stressors and as a consequence may suffer more severe
damage if low-oxygen extreme and heatwave occur simultaneously or
in close spatiotemporal proximity, as such joint occurrence has the
potential to act synergistically, leading tomutually reinforcing impacts
on the marine organisms25,26. The combination of high water tem-
perature and low oxygen concentration has exerted influences on
marine life such as fishes and scallops27–29. Nevertheless, so far we still
lack a detailed knowledge about how heatwave and low-oxygen
extreme coupling across the ocean. A global assessment of the mod-
ification of the compound events, as well as the drivers behind them, is
urgently needed under ongoing climate change.

To fill this gap, here we conduct a comprehensive analysis of the
relationship between marine heatwaves and low-oxygen extreme
events in the global ocean, using in situ observations and a fully cou-
pled Earth systemmodel30 (Data descriptions and validations ofmodel
could be found in “Methods”). The evolutions of the compound events
of the two extreme events are investigated in our study and a frame-
work is established to identify the drivers contributing to their
occurrences.We focus on extreme events within the uppermost ocean

layer (0–10m) because conditions in the surface ocean, such as tem-
perature and oxygen levels, exert profound influences on marine
ecosystems, encompassing fish populations, as well as the marine
biodiversity23,27. Following the approach developed in ref. 5, extreme
events in temperature (oxygen concentration) are defined as a pro-
longed instance with anomalously warm (low-oxygen) water (See
“Methods” for the detailed definitions). We expect our findings to
further deepen the understanding of the synergy of extreme events in
the oceans.

Results
Our results suggest that regions with relatively high frequency of
heatwaves tend to suffer a highly frequent occurrence of low-oxygen
extreme events (Fig. 1). The ridgeline plots present the observed
temperature and oxygen concentration anomaly since the 1960s, from
which we can see significantly negative correlations between the two
variables in most ocean regions. The correlations between tempera-
ture and oxygen concentration anomalies become less negative yet
remain evident after data detrending, as detailed in Supplementary
Note 1. Outputs from a climate model provide a more detailed and
clearer evidence: the joint distributions of the two type of extremes
show apparent overlaps between regions with marine heatwave and
with low-oxygen extreme events, which indicates the spatial patterns
of annual number of event days are highly coherent across the two
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Fig. 1 | Relationship marine heatwave (MHW) and low-oxygen extreme
(LOE) event. a Joint distribution of the annual number of event days over period
1985–1999 in ocean surface layer. b Same as (a) but for period 2000–2014.
c Evolution of the two extremes from period 1985–1999 to 2000–2014. For sake of
comparisons, the number of days for each extreme event type is classified into four
levels, that is, Rare (R), Occasional (O), Frequent (F), Common (C), respectively,
from which we could therefore obtain 16 (4*4) groups in the joint distribution.
a–c are all derived frommodel simulations. dMaps of the likelihoodmultiplication

factor (LMF) based on the simulation (contour) and observation (colored dots).
Warm color indicates LMF larger than 1 and the cold color opposite. Ridgeline plots
depict the observed distribution of dissolved oxygen anomalies under various
temperature anomaly conditions in eachbasin (the anomaly is calculated relative to
themean seasonal cycle). The corresponding correlation coefficients are presented
in the top right cornerwith symbols * and ** representing the statistically significant
at P <0.1 and P <0.01 level, respectively. The right side in (d) presents histogram
counting the LMF across the ocean grids in the simulation.
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types of extreme events (Fig. 1a, b). This relationship could also be
found in the global patterns of individual extreme events (Supple-
mentary Fig. 1): the pattern of low-oxygen extreme event frequency
and duration broadly resembles that of marine heatwave events, with
pattern correlation coefficients over 0.8 (p <0.01). More importantly,
both of the observations and model simulations reveal the impact of
climate change on these extreme events is becoming progressively
evident at the global scale, with an approximate increase in
0.07–0.09 months per year (Supplementary Fig. 2). In the late 20th
century, only 10% of the world’s oceans are subject to ‘occasional’
occurrence of both heatwave and low-oxygen extreme events, but by
the early 21st century they have expanded to 24.5%; conversely, over
half of the global ocean (~69.3%) is under ‘rare’ occurrence of the two
extreme conditions during period 1985–1999, while it drops sharply to
about one quarter after year 2000 (Fig. 1c). The apparent connections
between the two types of extreme events can be found in both dura-
tion and frequency, visualized through purple-colored regions in
Supplementary Fig. 3.Most proportion experiences an increase inboth
two types of the extreme hazards rather than increase in one of the
single hazard type, with hotspots of largest frequency increases
occurring in subtropical regions of the North Pacific Ocean and high-
latitude North Atlantic Ocean (Fig. 1a, b).

All of the above results illustrate the urgency and importance of
studying the synergy of the two extremes. We thereby refer to the
simultaneous occurrence of extreme high temperature and low oxy-
gen conditions in space and time as a “compound low-oxygen extreme
and heatwave” event (CLH event, see “Methods”). For the daily-mean
model outputs, the duration for eachCLH event is calculated at in each
grid cell and then used as a basis to figureout the annual statistics such
as the frequencyof the events, annualmeanduration and total number
of CLH days per year. The analysis of observation-based data is limited
to basin-scale and themonthly time step due to a relatively insufficient
spatial-temporal coverage. Furthermore, the likelihood multiplication
factor (LMF, see “Methods”) is defined here to quantify the likelihood
that a day (ormonth) is under CLH conditions relative to the likelihood
assuming heatwaves and low-oxygen extreme events would occur
independently from each other31–33.

The features of the LMF reveal statistical dependencies between
marine heatwaves and low-oxygen extremes. The observational data
indicates a globally averaged LMF of approximately 4.0. This implies a
strong positive correlation between the two type of extreme events
and, likewise, that the co-occurrence of the two extremes (i.e., CLH
event) would be four times more frequent than the situation expected
if heatwave and low-oxygen extreme were statistically independent.
For the basin scale, the observed LMFs are larger than 1 in almost all of
the ocean regions except the Eastern Pacific (colored dots in Fig. 1d).
Model simulations are in good agreement with the observations,
showing that over 90% of the ocean experiencemore CLH events (i.e.,
LMF > 1, contour lines in Fig. 1d), with a global average LMF value of
approximately 5.1. Furthermore, the simulations reveal distinct LMFs
among the global ocean due to differences in their intrinsic driving
mechanisms. The largest LMF (>5) occurs in the subtropical regions
such as mid-latitude Pacific and Atlantic Ocean, indicating strong
correlations between the two extremes in these regions, while the
LMF < 1 in the equatorial East Pacific and Indian ocean in which rela-
tively less probability of CLH events occurrences exist. We further
perform the LMF analysis after detrending the data, serving as a sen-
sitivity analysis within our study. The details can be found in Supple-
mentary Note 1, illustrating the impact of temperature and oxygen
concentration trends on the LMFofCLH events anddemonstrating the
robustness of our results.

The evolutions of CLH event reveal substantial modifications as a
consequence of climate change (Fig. 2b). The annually observed
number of months with CLH events has significantly risen in the
majority of the oceans (Supplementary Fig. 4). Comparisons between

two 15-year periods (1985–1999 and 2000–2014) in the climate model
also show a considerable rise in annual CLH days, with increases in
more than 70% of the world’s ocean and a global average increase
exceeding 20 days, despite large spatial variations exist (Fig. 2c). The
largest enhancement occurs in the mid-latitude ocean basins, with an
increase of up to 100 days. Decreases in annual CLH days are found in
parts of the eastern tropical Pacific and high-latitude Southern Ocean.
As a global average, the annual CLHdays have increased significantly in
the past few decades, with a linear trend of +0.96 days per year
(p < 0.01; Fig. 2b, purple line). By the 2010s, the global ocean increases
by approximately 25 additional CLH days per year compared with a
baseline level of 14 days in the 1980s. This increase in annual CLH days
indicates either an increase in the frequency of CLH, a prolongation of
event duration, or an increase in frequency in conjunction with a
prolongation of duration. Supplementary Fig. 5 shows the character-
istics of CLH frequency and annual mean duration, fromwhich we can
see the distinct contributions of the two variables to the increases of
annual CLH days in different regions. The detailed discussions about
the contribution of frequency and duration changes to the increase of
annual CLH days can be found in Supplementary Note 2.

It should be specifically noted that, alongside the increasing
number of event days, the low-oxygen extreme events are becoming
increasingly associated with heatwaves over the past few decades:
during the period 1970–1984, about 41.0% of the low-oxygen extreme
days are accompanied with heatwave globally, while it increases to
45.5% in 1985–1999 and eventually exceeds over 50% in 2000–2014
(Venn diagram in Fig. 2b). In other words, there is one out of every two
low-oxygen extreme days that simultaneously suffers extremely high
temperatures in the early 21st century. At the regional scale, the
strengthening of coupling can also be found in most oceanic basins
except for the East Pacific Ocean, although slight difference exists in
themagnitude (percentages in Fig. 2c). The joint occurrences (i.e., CLH
events) have become the dominant concern in the evolution of low-
oxygen extreme events, reflecting a substantial increase in its syn-
chronization with heatwaves.

The increasing co-occurrence of heatwave and low-oxygen
extreme could have far-reaching implications for human society.
Here we present the characteristics of CLH events in four representa-
tive fishing waters (i.e., The North Sea, Hokkaido fishing zone, East
China Sea and Newfoundland fishing zone, Fig. 3a–i). Comparisons
between two periods (1970–1984 and 2000–2014) reveal that these
regions suffer a significantly longer persistence of both extreme high-
temperature and low-oxygen conditions under climate change (Fig. 3a,
c, f, h). There hasalsobeen an apparent enhancementof extremeevent
intensity in these fishing zones over the last few decades. The asso-
ciated temperature and oxygen concentration anomalies show that
CLH events after 2000 bring extreme conditions of much higher
temperatures (+13%) and lower oxygen concentrations (−11%) than
those before 2000 (Fig. 3b, d, g, i). It is also noteworthy that the
response of CLH events to climate change is more sensitive in regions
with abundant fish biomass than in othermarine areas. In combination
with global ocean biomassmap34,35, we found that themost substantial
average increase in annual CLH days occurs in ocean regions with high
fish biomass (Fig. 3j). In regions where fish biomass exceeds 50gm−2,
there is an upward trend of CLH days about 1.47 days per year. The rise
is approximately 50% greater than the global average increase. Speci-
fically, the increase in annualCLHdays in theNorth Sea,Hokkaido, East
China Sea, and Newfoundland fishing zones is +3.64, +2.95, +2.66, and
+3.34 days per year, respectively, all of which are more than 2.5 times
the global average (approximately +0.96 days per year). Only 8% of the
oceanwherefish biomass below 5 gm−2 suffers an increase of CLH days
larger than the global average level. In contrast, this percentage rises to
66% in the ocean regions where fish biomass exceeds 200gm−2. Fish
biomass declines more rapidly with increasing trends of CLH days
under climate change (Supplementary Fig. 6). This greater increase of

Article https://doi.org/10.1038/s41467-024-51323-8

Nature Communications |         (2024) 15:6840 3



CLH events in high-biomass regions implies more severe damage to
marine life and ecosystem, which may eventually influence human
communities that rely heavily on fisheries, especially for those coastal
regions in developing countries. It should be noted that low-resolution
climate models such as CESM are recognized for exhibiting biases in
coastal regions due to their limited ability to capture small-scale pro-
cesses such as boundary currents, coastal dynamics, and ocean eddy
fluxes36. Previous study has revealed an underestimation of marine
heatwaves in CESM within coastal regions throughout the historical
period37. In other words, the actual conditions in coastal regionsmight
be more severe than anticipated in our manuscript. This underscores
the pressing need for high-resolution models operating at daily time-
scales to explore extreme events in biomass-rich coastal oceans.

A systematic assessment of the drivers behind these changes is
necessary and urgently needed. For this purpose, here we employ the
ensemble empirical mode decomposition (EEMD), an adaptive one-

dimensional time series analysismethod that separates scales naturally
without any prior subjective criterion38 (see “Methods” for detailed
descriptions). As demonstrated in previous studies39–41, the EEMD
method can effectively separate anthropogenic forcing signal from
natural internal variability in the time series. For example, basedon this
method, we can split the time series of global averaged seawater
temperature as well as oxygen concentration into relatively short-lived
and transient oscillation component associated with natural internal
variability and long-term warming signal primarily related to anthro-
pogenic forcing, as depicted in Supplementary Fig. 7. For multi-
dimensional spatial–temporal temperature and oxygen concentration
data, the EEMDmethod is applied into each grid cell to obtain the long-
term signal as well as the oscillation component for these variables.
Following ref. 39, We then piece together the oscillation components
from all grid cells to create a gridded dataset which constructs a
temporal evolution of the spatially coherent structure of this
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component. Eventually, we can obtain the spatiotemporal evolution of
extreme events related to natural internal variability by conducting
extreme event detection on this dataset. Similar methodologies are
employed on the long-term signal to investigate the impacts of
anthropogenic forcing. By using this EEMD-based method, we can
therebyobtain the characteristics of extremeevents under influenceof
natural internal variability and long-term signals.

Figure 4a illustrates the annual changes in CLH days associated
with the long-term warming and oxygen decline caused by anthro-
pogenic forcing. It can be seen that the vast majority of the world’s
oceans are facing an increase in the number of CLH days since the
1980s, with some regions experiencing an increase of more than
50 days (Fig. 4a). This spatial pattern is directly shaped by the con-
current trends of warming and decrease of oxygen concentration. For
example, certain regions in the North Pacific exhibits the highest
values, indicating that these oceans experience the most pronounced
concurrence of temperature increase and oxygen concentration
decline.

The CLH events related to relatively short-lived and transient
oscillation component can be caused by the interaction of many local
and remote processes and phenomena acting across a large range of
temporal and spatial scales. The underlying mechanisms are highly
intricate. The strength of many of local processes (e.g., heat fluxes and
vertical mixing) are a function of the overlying atmospheric synoptic
conditions. These conditions fluctuate in response to shifts in the
general circulation and internal climate variability, such as El
Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD),
across the globe. Therefore, the contribution of natural internal
variability significantly varies by location. It has a positive impact on
annualCLHdays inwidespreadNorth Pacific andNorthAtlanticoceans
during period 2000–2014, while negative impact is found in regions
such as Equatorial Pacific and Southern Ocean (Fig. 4b). Based on
method developed by ref. 42, we furtherly explored the occurrence of
extreme events in relationship with various modes of internal climate
variability which have characteristic time scales ranging from sub-
seasonal (e.g., the Southern AnnularMode, SAM) tomultidecadal (e.g.,

the PDO), as these climatemodes act tomodulate the local conditions-
either from local sources or remote sources via teleconnection
mechanisms. Their relationships are quite complex, but we can still
find clear patterns consistent with the known temperature or pressure
patterns (Fig. 4c; Supplementary Figs. 8, 9). For example, ENSO seems
tobe themainmodulator ofCLH in the East Equatorial Pacific aswell as
Northwest Indian Ocean; the SAM dominates the occurrence of CLH
event in vast ocean southof 40 S; the IOD, representedbyDipoleMode
Index (DMI), strongly relate to CLH events around Indonesia. The
region of North Atlantic in 30–50°N is very interesting that this region
is influenced by various climate modes, including NAO (Supplemen-
tary Fig. 10). However, the influence of NAO is relatively minor com-
pared to other modes; hence it is not drawn in the figures.

Our results reveal that both anthropogenic forcing and natural
internal variability are responsible for themodifications of CLH events:
the former is the main contributor to the lengthening of annual CLH
days at the global scale, while the latter plays an important role in
spatial distributions of this change. For instance, mid-latitude oceans,
including the North Pacific and North Atlantic, experience substantial
influence from the long-termwarming signalsdrivenby anthropogenic
forcing, as well as variabilitymodulated by climatemodes such as PDO
(Fig. 4). The collective impact of these factors has contributed sig-
nificantly to a noteworthy increase in CLH days within mid-latitude
oceans. It’s worth noting that the signals separated by the EEMD
method are generally considered to be caused by anthropogenic for-
cing and internal climate variability. We acknowledge that ourmethod
does not identify specific signals such as aerosols and volcanic activ-
ities. Further attribution analysis is needed to disentangle the con-
tributions of various factors in the future.

A range of mechanisms can lead to coherent synergy of anom-
alously warm and low-oxygen waters. Temperature variations may
result from a confluence of processes, including air-sea heat exchan-
ges, current andeddy-driven advection, horizontal and verticalmixing,
as well as the entrainment of water into the surface layer19. For the
oxygen concentration, changes in oxygen solubility due to sea surface
temperature variations plays a crucial role in modifying the seawater’s
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Fig. 3 | Compound low-oxygen extreme and heatwave (CLH) events in rela-
tionship with marine fish biomass. Features of extreme event in four repre-
sentative fishing waters (a, b, The North Sea; c, d, Hokkaido fishing zone; f, g, East
China Sea; h, i, Newfoundland fishing zone). a, c, f, h The persistence of extreme
events in 1970–1984 and 2000–2014 (marine heatwave (MHW) colored in red, low-
oxygenextreme (LOE) colored in blue andCLHcolored in purple).b,d,g, i Intensity
of CLH event before (blue) and after (red) year 2000. e Spatial pattern of marine

fish biomass (gm−2). jThe linear trend of annual CLHdays during period 1985–2014
as a function of the fish biomass. k the percentages of regions exhibiting an annual
trend of CLH days exceeding (red pie charts) or falling (blue pie charts) below
global average (0.96days per year)within sixbiomass groups. In (b,d,g, i) each dot
represents a CLH event, and the blue (red) dashed line is the averaged intensity of
these events before 2000 (after 2000). The CLH events are identified based on the
condition of the ocean surface layer, which are derived from model simulations.
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capacity to store oxygen. Concurrently, the air-sea oxygen flux, along
with the horizontal and vertical transport of dissolved oxygen as well
as local processes of oxygenproduction and consumption, collectively
shape surface dissolved oxygen concentrations. These processes
mentioned above are subject to modulation by local and remote fac-
tors operating over a broad spectrum of spatial and temporal scales.
The strength ofmanyof theseprocesses are a function of the overlying
atmospheric synoptic conditions. These conditions fluctuate in
response to shifts in the general circulation and climate variability,
such as ENSO, PDO, and IOD, as well as the human-induced long-term
changes across the globe42. Under the combined dominations of nat-
ural internal variability and anthropogenic climate change, These
modifications lead to the accumulation of heat and eventually out-
break of heatwave19,43. This extreme high temperature simultaneously
reduces the solubility of dissolved oxygen, which directly cause oxy-
gen escape from ocean10,44. For further validation, we investigated the
changes in oxygen solubility during extreme events (Supplementary
Fig. 11a). The oxygen solubility in seawater during CLH events exhibits
an apparent decrease compared with the average state, indicating a
reduced capacity of seawater to store oxygen. Interestingly, enhanced
stratifications, indicated by mixed layer shallowing, occurs in the
ocean during the events (Supplementary Fig. 11b). This intensified
ocean stratification can hinder the ventilation of oxygen13, suppress

theocean’s oxygen supply,whichmight eventually affectoxygen in the
ocean interior.

Discussion
A shift characterized by warming and deoxygenation has been occur-
ring in widespread ocean under climate change45,46. Recorded as “peak
signal” in this process, the associated extreme events can deteriorate
the living environment within a relatively short timeframe, resulting in
devastating impacts onmarine ecosystems and biota. Here we find the
low-oxygen extreme events are becoming increasingly associated with
heatwaves. Occurrence of heatwave becomes more frequent in the
warming world, which meanwhile boosts low-oxygen extreme events.
Importantly, our results of a marked increase in CLH frequency,
intensity as well as annual days implies that marine ecosystems are
increasingly subject to suffer multiple physical and biochemical
stressors simultaneously rather than single hazards28. We furtherly
clarify the contributions of anthropogenic forcing and natural varia-
bility to the lengthening of annual CLH days, with the former being the
primary contributor at global scale and the latter significantly influ-
encing the spatial distribution of these changes. Our findings under-
score the potential for heightened compound extreme risks tomarine
ecosystems, necessitating proactive planning in adaptation strategies
for future climate-linked hazards.
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Methods
Dissolved oxygen and temperature observations in the ocean
We use in situ observations fromWorld Ocean Database (WOD) 2018,
the world’s largest collections of the uniformly-formatted and quality-
controlled ocean profile data47. Approximate 1.3 million profiles flag-
ged good are selected from the database, which contain both tem-
perature and dissolved oxygen data since 1960 (Supplementary
Fig. 12). Given our primary emphasis on extreme events in the upper-
most ocean layer, only profile data near the ocean surface (0–10m) is
utilized in this study. We referred to Schmidtko’s paper4 to complete a
series of technical steps such as data filtering and preprocessing
(quality control, duplicate removal, etc.), except that the ocean is
divided into nine basins for sake of comparisons and analysis (the
definition of ocean basins can be found in Supplementary Fig. 13). We
first divided the ocean into grids of 2.5 degrees by 2.5° and mapped
each profile data to the grid point closest to the recorded latitude and
longitude at the time of observation. Then, we followed the defined
basin boundaries, performed a weighted average of all eligible data
based on their grid coordinates, and eventually obtained the time
series for each basin. Note that this observational data is limited to
monthly-mean resolution due to insufficient temporal coverage. We
acknowledge that the averaging in the mapping is inevitably affected
bymissing values. However, limited by the spatiotemporal coverage of
WOD data, this is the compromise approach we adopted after com-
prehensive consideration. The World Ocean Atlas (WOA) 2018, which
is basedonWOD18andprovides climatemeanmapof the temperature
and dissolved oxygen, is used in this study as the reference to evaluate
the model simulations.

Two additional observation-based datasets, namely the Optimum
Interpolation Sea Surface Temperature (OISST)48 dataset and the
Gridded Ocean Biogeochemistry from Artificial Intelligence-Oxygen
(GOBAI-O2)49 dataset, are also employed in this study. The OISST
dataset is derived from remotely sensed sea surface temperature by
the advanced very high-resolution radiometer infrared satellite data
and in situ measurements. It maintains a global spatial resolution of
0.25° on a daily scale since 1981. The recently published GOBAI-O2
dataset provides ocean dissolved oxygen concentrations derived
throughmachine learning algorithms trainedonoxygen concentration
observations from Argo-float-mounted sensors and discrete mea-
surements from ship-based surveys. It covers the period from 2004 to
2022 with a monthly 1° × 1° resolution. For our study, both the OISST
and GOBAI-O2 datasets are processed to a consistent spatial and
temporal resolution and specific overlapping time periods when both
datasets are available.

Descriptions of the climate model
The global analysis of extreme events was mainly conducted with
outputs derived from the fully-coupled Community Earth System
Model (CESM, version 2.1.3) developed at National Center for Atmo-
spheric Research (NCAR)30. The CESM consists of ocean, atmosphere,
land, sea-ice, land-ice, river, and wave models, which could provide
state-of-the-art computer simulations of the Earth’s climate states. For
the ocean component, the description of physical process is based on
the Parallel Ocean Program version 2 (POP2) and the ocean bio-
geochemistry is simulated by Marine Biogeochemistry Library
(MARBL). The ocean has a normal 1° × 1° horizontal resolution (gra-
dually increasing toward the Equator), and 60 vertical levels. In this
study, Our CESM experiment is the same as the CMIP6 historical
experiment50. As a result, the forcings are based on observations from
1850 to 2014 and include greenhouse gas emissions, land-use condi-
tions, solar forcing, and so on. The forcing data, in particular, were
officially provided by the CESM group, as introduced by Danabasoglu
et al.30 in Section 5. Only the last 55 years of the historical experiment
(i.e., 1960–2014, period when the intensity of human activity increases
dramatically) is used for validations and analysis.

Definition of extreme and compound extreme events
A seasonally varying climatological threshold is used to define the
extreme event, that is, the temperature above 90th-percentile thresh-
old for marine heatwave (extremely high-temperature event)15,51 and
the oxygen concentration below 10th-percentile threshold for low-
oxygen extreme5,21. In this study, the percentile threshold is calculated
over the full range of the time series studied in our manuscript, that is,
from year 1960 to 2014, and determined from the shortest available
time-step, i.e., monthly for observations and daily for the model
simulations. For each grid cell or ocean basin, we separately calculate
the threshold for each calendar day (model outputs) or month
(observation data) of a year. To ensure the continuity of extreme
events, for the daily time series, a duration of at least 5 days with
temperature above the threshold (oxygen concentration below the
threshold) is imposed in the identification of an extreme event, and
two events separated by an interval of two or fewer days are con-
sidered as one event.

The compound low-oxygen extreme and heatwave (CLH) events
are defined as the days or months when extremely high-temperature
and low-oxygen conditions occur simultaneously (that is, both tem-
peratures above 90th-percentile and oxygen concentration below
10th-percentile at the same time and location). Similar to marine
heatwave and low-oxygen extreme events, we also impose a criterion
on theminimumdurationof this compound event, with the caveat that
it is slightly shorter compared with the individual extreme event,
specifically 2 days. The annual statistics for CLH events, such as event
frequency, annual mean duration, and the total number of extreme
days per year, are calculated in the samemanner as marine heatwaves.

Evaluation of model simulations against in situ observation
Comparisons with WOD18 and WOA18. We firstly evaluate the
simulated oceanic dissolved oxygen and temperature in comparison
with the observational data fromWOD18. As shown in Supplementary
Figs. 14, 15, themodel is able to capture the observed temperature and
dissolved oxygen patterns. For the climate mean state, the model
simulates well the distribution of temperature and dissolved oxygen
concentration among the oceanbasins. It should be noted that, similar
with results from other CMIP-type models36, bias exists in the our
CESM outputs. A Lower temperature, about −0.42 °C on average, is
simulated in some high-latitude regions compared with observations,
while the opposite is found in part of central-eastern Pacific and
Atlantic, approximate +0.39 °C on average. The simulated dissolved
oxygen exists bias mainly in Extra-equatorial ocean, where the model
overestimates oxygen concentration with an average of approximate
+4.69mmolm−3. Nevertheless, the simulated distribution is in good
agreement with it in observations from WOA 2018, with pattern cor-
relation coefficient over 0.90, significant at 0.01 level. More impor-
tantly, the model captures very well the temporal evolution of the
extreme and compound extreme events under climate change (Sup-
plementary Fig. 2). The marine heatwave is simulated to increase by
0.09 ±0.01 month per year since the 1960s, which corresponds well
with the observed trend of 0.07 ± 0.01 month per year. Besides, both
the model and observation reveal an increase in low-oxygen extreme
events, approximate 0.09 ±0.01 month per year over 1960–2014.
Accurate simulations of the heatwave and low-oxygen extreme events
eventually lead to a very good agreement between simulated CLH
event and the observation-based characteristics.

Comparisons with OISST and GOBAI-O2. We also assess the model
simulations against the results from OISST and GOBAI-O2 datasets.
Supplementary Figs. 16, 17 include climatology comparisons between
the simulation and observation. This analysis spans the timeframe
when data are concurrently available in both observation datasets and
model simulations. The bias and root mean square error (RMSE)
metrics for sea temperature reveals that, overall, the simulation
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performs well, with biases typically less than 1 °C. Noteworthy excep-
tions, such as Kuroshio, North Atlantic coast, equatorial South Africa,
Peru coast, California coast, have been identified and discussed in
earlier studies. The distribution of RMSE is consistent with that of bias.
The larger bias corresponds the large value of RMSE. Therefore, the
simulation has a good performance to capture the variation of sea
surface temperature. Supplementary Fig. 17c illustrates that the bias
for oxygen concentration is generally less than 15mmolm−3, repre-
senting approximately 10% relative to the climatology. Despite larger
biases observed in specific regions, such as the Indian Ocean and high
latitudes of the Atlantic and Pacific Oceans, we think that these dis-
crepancies fall within an acceptable range for investigating oxygen
variation. The distribution of RMSE between simulation and observa-
tion aligns with that of bias, with the majority of values being less than
20mmolm−3. We consider such bias acceptable for investigating the
variation in oxygen levels.

The trend distribution of Seawater temperature and oxygen
concentration is illustrated in Supplementary Figs. 18, 19. In general,
the simulated temperature trend aligns well with the observations,
although the trend of seawater temperature in the North Pacific is
overestimated, and in the South Pacific, it is underestimated. The bias
of trend in the Atlantic is much less than that in Pacific. Regarding
oxygen concentration, the simulations indicate an overall decline in
most ocean regions, which is consistent with the observations, despite
that the simulation overestimated the decreasing trend in the Pacific
and underestimated the increasing trend in the Atlantic, and in the
southern hemisphere, the increasing trend in dissolved oxygen con-
centration contrastswith the observeddecreasing trend. The temporal
correlation coefficients between the observed and simulated seawater
temperature, as well as dissolved oxygen concentration, were investi-
gated in Supplementary Fig. 20. The results suggest that the correla-
tion coefficient exceeds 0.9 inmost regions, except for certain oceanic
areas near the equator. This finding highlights a noteworthy coherence
between the observed time series of seawater temperature andoxygen
concentration and those derived from simulations.

We explore the spatial distribution characteristics of CLH events
using observation-based data and compare them with model-derived
simulations, as depicted in Supplementary Fig. 4. Notably, the time
resolution of GOBAI-O2 is monthly, thus the unit for observation-based
annual CLH days is denoted as “months per year”. For the purpose of
comparison in Supplementary Fig. 4, we convert this unit to “days per
year” by assuming a factor of 30 days per month. Due to limitation of
temporal coverage of GOBAI-O2 dataset, the trend of annual CLH days
for observation is calculated for period 2004–2022. The simulated cli-
matology of annual CLH days exhibits remarkable similarity to that
derived from observations, with a pattern correlation of 0.84. Regions
with the most pronounced annual CLH days are situated in the North
Pacific,mid-latitudeNorth Atlantic, and certain areas in the South Indian
Ocean. Despite existing differences, both simulations and observations
indicate a global increase in annual CLHdays. A significant upward trend
is found in the North Pacific and the vast Atlantic Ocean in both simu-
lationsandobservations. Increases in annualCLHdays are alsoevident in
regions of the Indian Ocean and Southern Ocean, although the rise in
simulations is generally less pronounced than in observations.

The comparisons between the high temporal resolution model
simulations and observational data also suggests that the feature of
extreme events is relatively insensitive to the temporal resolution. The
great consistence betweenmodel and observation gives us confidence
in using the climate model (CESM) to analyze the spatial and temporal
evolution of ocean biogeochemical extremes and heatwaves at the
global scale.

Classification of the extreme events
To present a clear description of extreme events and their joint dis-
tribution, for each type of extreme event, we firstly classified the

number of event days into four levels, that is, so-called Rare (R),
Occasional (O), Frequent (F), Common (C) in our study. The thresholds
dividing these four levels are the 40th, 70th, and 90th percentiles of
annual event days across the oceans (Supplementary Fig. 21). After
classification, the evolution of extreme events and their joint dis-
tribution are straightforward in Fig. 1a–c.

Likelihood multiplication factor
The LMF is used to illustrate the impact of the possible correlation
between hazard pair (that is, marine heatwave and low-oxygen
extreme) on their joint occurrence probability32, and likewise, esti-
mate inwhich regions the compound events aremore likely to occur33.
The LMF in this study is given by:

LMF =
Pðcooccurence of heatwave and low oxygen extremeÞ

PðheatwaveÞ× Pðlow oxygen extremeÞ ð1Þ

the ratio of actually observed probability of joint occurrence (i.e., CLH
event) and probability assuming the two types of extreme events
complete independence.

Depending on the relationship between the hazards pairs, the
LMF can range from 0 to an upper limit defined by percentile thresh-
olds (it is 10 in our manuscript). An IMF higher than 1 indicates com-
pound event occurs more often than by chance, and likewise, that
there is a positive dependence between heatwave and low-oxygen
extremes, with the value increasing with the strength of correlation. In
contrast, LMF less than 1 suggests that the two types of extreme are
negatively correlated, that is, a reduced likelihoodof compound event.
The LMF is calculated for each grid cell (model outputs) and each
ocean basin (model outputs & observations) in this study.

Ensemble empirical mode decomposition method
The EEMD is an adaptive one-dimensional time series analysis method
that separates scales naturally without any prior subjective criterion52.
This noise-assisted technique could perform operations that partition
a series into different ‘modes’:

X ðtÞ=
Xn

i= 1

IMFiðtÞ+ rðtÞ ð2Þ

where IMFi is the ith Intrinsic Mode Function (IMF) which are oscilla-
tory components with distinct frequencies and amplitudes and r(t) is
the residual part of the data after all the IMFs have been extracted.

In this study, the EEMD is used to separate signals of anthropogenic
forcingandnatural internal variability in the evolutionof extremeevents.
Time series of sea temperature and oxygen concentration are decom-
posed via the EEMD method for each grid cell. We set the amplitude of
added noise to 0.2 times the standard deviation of the original data. The
ensemble number is 400 and the total number of IMFs is 6. Following
ref. 40, the sum of IMF 1–5 is treated as the relatively short-lived and
transient oscillation components related with natural internal variability
and IMF 6 is the long-term signal for anthropogenic forcing.

Using the EEMD method, the original time series is decomposed
into two components: the anthropogenic forcing signal and the
internal natural variability signal. By performing extreme event
detection on the anthropogenic forcing signal, we can identify
extreme events related to anthropogenic factors. Similarly, extreme
events related to natural internal variability are identified by con-
ducting extreme event detection on the latter.

An important clarification can be found in Supplementary Note 3
to perceive the underlying consistency between the results from
EEMD-based method in our study and the shifting baseline approach
suggested byAmaya et al.53. The principles underlying the EEMD-based
method resonate with the fundamental concept articulated by Amaya
et al. (2023), which highlights the need for separation of influence of

Article https://doi.org/10.1038/s41467-024-51323-8

Nature Communications |         (2024) 15:6840 8



long-term signal and relatively short-lived and transient changes on
extreme events.

Attributions to large-scale modes of climate variability
An analytical framework established by Holbrook et al.42 is used in this
study to identify regions where there is a statistically significant rela-
tionship between the occurrence of CLH events and the internal nat-
ural variability represented by large-scale climate modes. This
framework provides a systematic approach for evaluating the impact
of climate variability on extreme events, and can be applied to a wide
range of data and models.

Nine commonly used climate indices are considered in this study,
including Niño-3.4 index, EMI (ENSOModoki Index), DMI, NAO (North
Atlantic Oscillation) index, PDO (Pacific Decadal Oscillation) index, TPI
(Tripole index), Atlantic Niño index, SAM (Southern Annular Mode)
index, NPGO (North PacificGyreOscillation) index (see Supplementary
Note 4 for detailed descriptions). For each grid, we calculate the fre-
quency of compound events during positive and negative phases of
these key climate modes and identify which climate modes are sig-
nificantly related to occurrence of CLH event following the method by
Holbrook et al42. In our manuscript, this framework is done by sum-
ming the number of CLH days at each location and determining whe-
ther the climate index is in a positive or negative phase. Monte Carlo
simulations are conducted to determine whether the number of days
counted were greater or less than what might be expected by chance.
For a specific climate index, we generate a synthetic time series with
autocorrelation characteristics akin to the index, utilizing a fourth-
order autoregressivemodel. Subsequently, we recalculate the number
ofCLHdays duringpositive andnegative phases of the synthetic index.
This process is repeated 10,000 times to produce a frequency
distribution of the expected number of days. The 5th and 95th per-
centiles are used to form confidence intervals for the given mode and
region. The climate modes (and phases) which have the greatest
significant impact on occurrence of CLH event are eventually shown
in Fig. 4c. By using this framework, we aim to gain a better under-
standing of the underlying causes of CLH events linked to internal
climate variability.

Data availability
The observed oxygen concentration and temperature from World
Ocean Database 2018 (WOD18) and World Ocean Atlas 2018 (WOA18)
is collected and maintained by NOAA National Centers for Environ-
mental Information (NCEI), which is available at https://www.ncei.
noaa.gov/products/world-ocean-database. Two additional
observation-based datasets, namely the Optimum Interpolation Sea
SurfaceTemperature (OISST) and theGriddedOceanBiogeochemistry
from Artificial Intelligence-Oxygen (GOBAI-O2), are used in this study,
which can be accessed at https://www.ncei.noaa.gov/products/
optimum-interpolation-sst and https://doi.org/10.25921/z72m-yz67,
respectively. The ocean biomass data used in this study can be
accessed at https://doi.org/10.5281/zenodo.5520055 and https://doi.
org/10.5281/zenodo.8345264, respectively. The data underlying the
analyses in this study are deposited in the Zenodo repository under
https://doi.org/10.5281/zenodo.12819499.

Code availability
The CESM (version 2.1.3) code used for the simulations is available at
https://www.cesm.ucar.edu/. The code used in this study to detect
extreme events (e.g., marine heatwaves) is available at https://doi.org/
10.5281/zenodo.7029736. A python module for EEMD (PyEMD) is
available at https://doi.org/10.5281/zenodo.5760057. The code that
examines relationship between extreme events and key climatemodes
can be accessed from https://github.com/ecjoliver/MHW_Drivers. The
NCAR Command Language (NCL) is used for visualizations, which is
available at https://www.ncl.ucar.edu/. The code to generate the

results presented in the study can be obtained fromhttps://doi.org/10.
5281/zenodo.12819499.
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