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a b s t r a c t 

Coronavirus disease 2019 (COVID-19) is a severe global public health emergency that has caused a major cri- 

sis in the safety of human life, health, global economy, and social order. Moreover, COVID-19 poses significant 

challenges to healthcare systems worldwide. The prediction and early warning of infectious diseases on a global 

scale are the premise and basis for countries to jointly fight epidemics. However, because of the complexity of 

epidemics, predicting infectious diseases on a global scale faces significant challenges. In this study, we developed 

the second version of Global Prediction System for Epidemiological Pandemic (GPEP-2), which combines statis- 

tical methods with a modified epidemiological model. The GPEP-2 introduces various parameterization schemes 

for both impacts of natural factors (seasonal variations in weather and environmental impacts) and human so- 

cial behaviors (government control and isolation, personnel gathered, indoor propagation, virus mutation, and 

vaccination). The GPEP-2 successfully predicted the COVID-19 pandemic in over 180 countries with an average 

accuracy rate of 82.7%. It also provided prediction and decision-making bases for several regional-scale COVID-19 

pandemic outbreaks in China, with an average accuracy rate of 89.3%. Results showed that both anthropogenic 

and natural factors can affect virus spread and control measures in the early stages of an epidemic can effectively 

control the spread. The predicted results could serve as a reference for public health planning and policymaking. 
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. Introduction 

The World Health Organization (WHO) officially declared the out-

reak of coronavirus disease 2019 as a global pandemic in March 2020

1] . The COVID-19 outbreak has been the most serious global public

ealth emergency for nearly a century. It has caused a major crisis in

lobal health security as well as economic and social order, and still af-

ects the survival of mankind [2–4] . Beyond its spread, the COVID-19

andemic has posed a series of longstanding social problems [ 2 , 5 ]. To

etter respond to an epidemic and prepare for its development in differ-

nt situations, quantitative mathematical models that can quantitatively

xpress epidemic evolution are essential. 

The epidemiological model is an important method for predicting

he spread of infectious diseases and mainly predicts the transmis-

ion speed, space scope, transmission route, and dynamic mechanism

f infectious diseases to guide the effective prevention and control of

nfectious diseases [6] . The susceptible-infectious-removed (SIR) and
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usceptible-exposed-infectious-removed (SEIR) epidemiological models

re the most widely used numerical modeling [7–9] . However, these

odels are built under a series of idealized assumptions, which may

imit the accuracy and reliability of the prediction. To obtain more cred-

ble prediction results, more complex models should be developed to

ore realistically reproduce actual situations [10] . 

Although establishing an accurate epidemiological model to describe

he spread of a pandemic is difficult, reported global pandemic data

ontain solutions for epidemiological processes [ 5 , 6 , 11 ]. Theoretically,

t is possible to remedy the defects in previous epidemiological mod-

ls by introducing the latest pandemic data [ 2 , 6 , 12 ]. Moreover, lessons

egarding forecasting methods can be obtained from disciplines other

han epidemiology. For example, lessons can be drawn from weather

nd climate predictions in atmospheric science [13] . In recent decades,

tmospheric science has made remarkable progress in weather and cli-

ate predictions. Although the Earth System Model can make relatively

eliable multiscale weather and climate predictions, it still requires
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t  
ignificant improvements in parameterization schemes, involving sig-

ificant progress to truly address many challenges such as addressing

erosols and clouds [14] . Therefore, the idea of a parameterization

cheme in the Earth System Model is also a useful reference for the pre-

iction of epidemiological models. 

The second version of Global Prediction System for Epidemiolog-

cal Pandemics (GPEP-2) was further developed based on a modi-

ed SEIR model, called the susceptible-exposed-infectious-quarantined-

ecovered-death-protected (SEIQRDP) model [ 15–18 ]. Although this

ersion inherited the statistical-dynamic climate prediction method of

he first version, it significantly improved the accuracy of the system.

his model was modified from a modified SIR model to a modified

EIR model. In general, the GPEP-2 can describe more epidemiologi-

al characteristics than GPEP-1 and provide longer term prediction re-

ults, which also simulates more epidemic scenarios. By considering the

mpact of policies on the evolution of epidemic situations, the model

an provide a more detailed scientific basis for formulating appropri-

te policies. Specifically, compared to the first-generation model, the

econd-generation model builds a control parameterization scheme. The

odel can predict the development of an epidemic in countries with

trict control measures, such as China, by providing effective prediction

nformation to government departments and offering more help for anti-

andemic causes. In addition, the second version retained the temper-

ture parametrization scheme from the first-generation model. Because

he model stability is better than that of the previous generation, sea-

onal predictions can be made for a longer period and early warnings

an be provided for countries worldwide. This study presents the basic

omposition of the GPEP-2 model as well as the prediction results and

heir evaluation. 

. Model description 

.1. Modified SEIR model 

GPEP-1 uses a modified SIR model that defines three disease states:

usceptible (S), infected (I), and recovered and dead (R) cases. Based

n the first version of the GPEP, we developed a second version (GPEP-

). The GPEP-2 was built based on a modified SEIR model [18] . This

odified SEIR model [15] defines seven disease states: susceptible (S),

rotected (P), potentially infected (E, infected cases in a latent period),

nfected (I, infected cases that have not been quarantined), quarantined

Q, confirmed and quarantined cases), recovered (R), and mortality (D).

he modified SEIR model emulates the time curve of an outbreak, and

onsists of the following equations: 

 𝑆( 𝑡) ∕𝑑 𝑡 = − 𝛽𝐼( 𝑡) 𝑆( 𝑡) ∕𝑁 − 𝛼𝑆( 𝑡) (1)

 𝐸( 𝑡) ∕𝑑 𝑡 = 𝛽𝐼( 𝑡) 𝑆( 𝑡) ∕𝑁 − 𝛾𝐸( 𝑡) (2)

 𝐼( 𝑡) ∕𝑑 𝑡 = 𝛾𝐸( 𝑡) − 𝛿𝐼( 𝑡) (3)

 𝑄( 𝑡) ∕𝑑 𝑡 = 𝛿𝐼( 𝑡) − 𝜆( 𝑡) 𝑄( 𝑡) − 𝜅( 𝑡) 𝑄( 𝑡) (4)

 𝑅( 𝑡) ∕𝑑 𝑡 = 𝜆( 𝑡) 𝑄( 𝑡) (5)

 𝐷( 𝑡) ∕𝑑 𝑡 = 𝜅( 𝑡) 𝑄( 𝑡) (6)

 𝑃 ( 𝑡) ∕𝑑 𝑡 = 𝛼𝑆( 𝑡) (7)

The sum of the seven categories is equal to the total population (N)

t any given time. 

 + 𝑃 + 𝐸 + 𝐼 + 𝑄 + 𝑅 + 𝐷 = 𝑁 (8)

The model makes the following two assumptions: 
517
1) As the population of a certain country or region changes little over

a short period, the total population (N) remains unchanged. 

2) During the epidemic, the population is evenly mixed. 

The coefficients 𝛼, 𝛽, 𝛾, 𝛿, 𝜆, and 𝜅 represent the protection rate,

nfection rate, inverse of the average latent time, rate at which in-

ected people enter quarantine, time-dependent recovery rate, and time-

ependent mortality rate, respectively. The population N was assumed

o be constant, which meant that the birth and death rates were not con-

idered. Compared with the traditional SEIR model, the improved model

ntroduces two new disease states: protected (P) and quarantined (Q).

wing to the increasing awareness of self-protection during the pan-

emic, a group of individuals exists who are much less likely to be in-

ected with the virus than susceptible individuals (i.e., protected cases).

ue to the complexity of reality, it is not possible to accurately detect

nd quarantine all confirmed cases. Therefore, Q represents only the

solated confirmed cases that are no longer able to spread the virus. In

ddition, the mortality and cure rates in the modified model were not

onstant but changed over time based on actual conditions. 

.2. Determination of model coefficients 

Due to the limitations of the simulation reality of epidemiologi-

al models and the unavailability of real epidemiological model coef-

cients, it is almost impossible to obtain the coefficients of a model

irectly from the real world. To better fit the epidemic curve, we intro-

uced an improved inverting coefficients method into the model to im-

rove its goodness of fit [17] . This method is used in statistical-dynamic

umerical forecasting for weather and climate. 

Specifically, to predict epidemics in countries worldwide, we first

rovided an initial value for each coefficient in the model. Subsequently,

oefficient optimization algorithms (such as least-squares) and the latest

pidemic data were used in real-time to invert the various coefficients

n the model. The coefficients of the different parameterization schemes

elow are included: Specifically, the initial values of the coefficients and

arameters were used to integrate the equation system. The minimum

ariance sum of the obtained time-series parameters and the actual data

ere adjusted through iterative calculations such that the initial values

f the coefficients were adjusted and kept close to the real value. The

oefficients used in the different scenarios are listed in Table S1. Finally,

he coefficients obtained were substituted into the model to predict the

ubsequent development of the epidemic. The initial values of the coef-

cients and the initial number of people in various disease states may

ffect the accuracy of the inverted coefficients. To obtain more accurate

nd stable results, we combined empirical assumptions and changed the

nitial value several times to perform an inversion. 

We also used a statistical dynamic forecasting method to predict

utbreaks in China. For example, when a regional-scale outbreak oc-

urred, owing to the lack of epidemiological data, we used the coef-

cients of a similar regional-scale outbreak to make predictions in the

arly stage. When sufficient data were available, they were used to make

redictions. Furthermore, to enhance the stability of the traditional

east-squares method (Gaussian–Newton algorithm), we use an im-

roved damped least-squares method called the Levenberg–Marquardt

lgorithm [ 19 , 20 ]. This method inserts a damping coefficient into the

aussian–Newton method to calculate a Hessian matrix. The benefit of

ntroducing this damping coefficient is that it can converge rapidly in

he steepest direction, even when the initial solution is far from the

deal values. This makes coefficient determination more robust [21] .

dditionally, for all damping coefficients > 0, the coefficient matrix is

ositive definite, which places the Hessian matrix in the descending di-

ection. 

. Parameterization schemes 

“To parameterize ” by itself means “to express in terms of parame-

ers ” [22] . Parameterization is a mathematical process that expresses
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Fig. 1. (a) The schematic diagram of the parameterization scheme of massive gathering. (b) The schematic diagram of the parameterization scheme of 

unblock measures . 
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he state quantities of a system, process, or model as a function of inde-

endent variables, called parameters. The state of a system is typically

etermined using a finite set of coordinates. Therefore, the parameteri-

ation consisted of several real variables for each coordinate system. The

umber of parameters corresponds to the number of degrees of freedom

f the system. Therefore, various processes in a model can be repre-

ented using several parameters or equations. Thus, the model can better

escribe the real world. By introducing parameterization concepts into

pidemiological models, we constructed the following parameterization

chemes and improved the model. 

.1. Parameterization of massive gatherings 

Massive gatherings played an important role in virus spread. To sim-

late the impact of large-scale clustering on an epidemic quantitatively,

e developed a scheme to switch between protected (P) and poten-

ially infected (E) cases. A diagram of this is shown in Fig. 1a . In addi-

ion, we defined gatherings with > 200 and < 200 people as large- and

mall-scale gatherings, respectively. During massive gatherings, some

rotected cases are unprotected and exposed to COVID-19 [ 23 , 24 ]. In-

ected and asymptomatic cases among them will promote the epidemic

pread [24] . We assumed that the proportion of infected and asymp-

omatic cases in the population could be calculated using the following

quations: 

𝑑𝐼𝑎( 𝑡) 
𝑑𝑡 

= 𝑀( 𝑡) ×
𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑( 𝑡) 

𝑁𝑝𝑜𝑝 
(10)

𝑑 P( t) 
𝑑𝑡 

= − 𝑀( t) (11)

𝑑 E( t) 
𝑑𝑡 

= 𝑑𝐼𝑎( 𝑡) 
𝑑𝑡 

(12) 

here 
𝑑𝐼𝑎 ( 𝑡 ) 
𝑑𝑡 

represents the number of undetected and asymptomatic in-

ected cases in the gathering crowd, M(t) represents the number of gath-

red people, confirmed (t) represents the number of confirmed cases on

ay t, and Npop represents the population of the country or region.

rotected cases ( 
𝑑 P(t ) 
𝑑𝑡 

) can reduce M(t), and potentially infected cases

 

𝑑 E(t ) 
𝑑𝑡 

) can correspondingly increase 
𝑑𝐼𝑎 ( 𝑡 ) 
𝑑𝑡 

during the gathering event in
he scheme. (  
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From the end of May to the beginning of June 2020, large-scale

rotests against violence broke out in the United States. We simu-

ated this scenario using the aforementioned parameterization scheme

or massive gatherings. During large-scale protests, large public gath-

rings, shouting, and shoulder-to-shoulder marching had already sown

he seeds of a second outbreak in regions under initial control [23–25] .

his makes it more difficult to contain epidemics in regions where the

urve continues to rise. The use of tear gas and pepper spray against

rotesters may also have produced violent coughing and runny noses.

hese measures forced the protesters to remove their masks, making

hem more susceptible to the virus. A certain number of patients with

atent diseases, including infected patients, may have participated in the

rotests. They may spread the disease to healthy protesters, police offi-

ers, and national guards who were not yet immune to the virus [25] .

f close contacts of infected individuals are not fully tracked, they may

pread the virus to other groups of people. All the above-mentioned sce-

arios could increase the risk of larger outbreaks. 

The increase in the number of potentially infected individuals ( 𝛿Et)

n each city was estimated based on the ratio of the number of infected

ndividuals (Qt) to the total population of the city (N). The timing of

rotests in each city was collected from local news reports. The number

f protesters in each city was obtained using a modified model (Table

2). The daily increase in the number of potentially infected individu-

ls ( 𝛿Et) was used as the force input to the model. The model can then

imulate the impact of protests on outbreaks. When the protests began,

e forced group E to increase 𝛿Et. Fig. 2a shows the epidemic predic-

ions for Miami and Florida. In Miami, the second outbreak peaked in

id-July 2020, with a maximum of 3000 new cases daily. The predic-

ion results showed that protests played an important role and were the

ecisive factors in the second outbreak in these cities. With the protests,

he second outbreaks were more severe and began earlier than the first.

.2. Parameterization schemes of unblocking measures 

In addition to the impact of large-scale gatherings on the pandemic,

arly unblocking due to economic pressure also had a significant impact.

nce the control measures are lifted, the contact rate between people

an increase significantly. This has provided a hotbed for the spread

f COVID-19. To simulate the impact of lifting control measures, we

ssumed that after the relaxation of control measures, protected cases

 P ) were reduced by a certain percentage every day until society was
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Fig. 2. (a) The impact of protests on the second outbreak in Miami, Florida. The blue dots denote the reported daily and cumulative cases of COVID-19. The 

solid blue line represents the simulation and prediction without protests, while the dashed red line denotes the simulation and prediction with protests. 

(b) The impact of unblocking on the second outbreak in Phoenix, Florida. The blue dots denote the reported daily and cumulative cases of COVID-19. 

The solid blue line represents the simulation and prediction without unblocking, while the dashed red line denotes the simulation and prediction with 

unblocking. (c) The simulation results for the sudden outbreak of COVID-19 in Guangzhou city on May 21, 2021 by the GPEP-2. The pink dots denote 

the reported daily and cumulative cases of COVID-19. The blue solid curve and red dashed curve denote the prediction of daily newly confirmed cases under 

the second- and third-level response, respectively. The red and blue vertical dashed lines represent the 5- and 10-day response times of the second- and third-level 

responses, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

u  

i

𝑃  

w  

r  

l  

t

 

c  

i  

i  

s  

t  

d  

n  

s  

g  

p  

t

 

P  

r  

o  

b  

r  

u  

u  

b  

b

nblocked to a certain extent after Days_lift. A diagram of this is shown

n Fig. 1b . The equation is as follows: 

( 𝑡) = 𝑃 ( 𝑡) − 𝑃 ( 𝑡) × 𝑃 _lif t _rate ( m) 𝑚 = 1 , 2 …Days _lif t (13)

here P(t) represents the protected cases at time t and P _lift_rate(m)

epresents the percentage reduction in protected cases on day m after

ifting control measures. The P _lift_rate and Days_lift were retrieved from

he model. 

During the large-scale protests in the United States, the economy en-

ountered huge difficulties. Therefore, government departments must

mplement control measures. To evaluate the contribution of unblock-

ng measures to the promotion of the epidemic, we used the scheme de-

cribed above to conduct simulation research. In addition, we assumed

hat protected cases were reduced by a certain percentage ( P _lift_rate)

aily after lifting the control measures. This process required a certain
519
umber of days (Days_lift). The timing of the lifting of the control mea-

ures was collected from local news reports. Using the optimization al-

orithm, the number of protesters ( 𝛿Et) in each city, the reduction in

ercentage ( P _lift_rate) and unblocking days (Days_lift) were obtained

o calculate their impact on epidemic growth. 

For example, the second outbreak peaked in early July 2020 in

hoenix, United States, with the maximum number of daily new cases

eaching 2600 ( Fig. 2b ). The model also predicted enhanced secondary

utbreaks in ten other cities in 2020, with massive gatherings and un-

locking measure parameterization schemes. The results are summa-

ized in Table S2. The predictions showed that the implementation of

nblocking measures worsened the severity of the epidemic. Although

nblocking measures temporarily alleviated the economic crisis, they

rought about immeasurable long-term losses that may offset short-term

enefits [26] . 
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Fig. 3. The schematic diagram of system prediction process . 
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.3. Parameterization of the control measures 

Although many vaccines are currently being developed owing to the

mport and continuous mutation of the virus, it is almost impossible to

void regional-scale local outbreaks in countries where the epidemic is

nder control. To accurately predict the scale of each local outbreak, a

arameterized scheme for regional-scale outbreaks was developed based

n the GPEP-2 model. This parameterization includes three coefficients:

ays_con, E0, and Attenuation_rate. Because the first confirmed case is

ften not detected until several days after the infection, governments ini-

iated control measures several days later. Days_con represents the gov-

rnment response time. There are several infected individuals at the be-

inning of the reported curves. Therefore, the reported epidemic curves

iffered from the actual curves, where E0 represented the number of ini-

ially exposed cases. Once the government initiated strong control mea-

ures, the epidemic infection rate decreased exponentially over time.

he attenuation rate coefficient was used to represent the attenuation

ate. β0 represents the historical infection rate or base infection rate.

urthermore, if the local government took standard control measures in

he corresponding version of the COVID-19 prevention and control pro-

ocol issued by the Chinese government, the response level was defined

s a second-level response. If a local government adopted escalation

easures, it was defined as a first-level response. If a local government

dopted a downgrade measure, it was defined as a three-level measure.

{ 

𝛽0 , 𝑡 < 𝐷𝑎𝑦𝑠_𝑐𝑜𝑛 

𝛽0 ∗ At t enuat ion _rat et , 𝑡 ≥ 𝐷𝑎𝑦𝑠_𝑐𝑜𝑛 
(9) 

The Chinese government has adopted strict epidemic control mea-

ures. We performed a simulation using the aforementioned parameter-

zation scheme and achieved satisfactory results. As a large city with a

opulation of approximately 20 million people, Guangzhou’s epidemic

ontrol is a microcosm for the successful implementation of China’s con-

rol policies. The outbreak in Guangzhou City started on May 25, 2021,

nd was caused by a delta-variant strain of severe acute respiratory syn-

rome coronavirus 2 (SARS-CoV-2) that originated in India. This variant

s one of the most virulent among the known variant strains of SARS-

oV-2. Therefore, the pressure on Guangzhou City during this round of

he epidemic was greater than that during previous outbreaks. However,

ombined with the successful experience of several previous epidemic

revention and control measures and the contribution of large-scale vac-

ination, China once again successfully extinguished the epidemic in its

arly stages. 

The prediction results of the GPEP-2 indicated that under second-

evel control, the number of newly confirmed cases in that round of the

pidemic in Guangzhou City would peak at approximately 23 individu-

ls on June 2, 2021 ( Fig. 2c ). The pandemic was expected to be effec-

ively controlled by June 12, 2021. The estimated cumulative number of

onfirmed cases was approximately 163. After the end of the epidemic,

he true cumulative number of infections in this round of the epidemic

n Guangzhou was 153. The relative error of the system prediction was

.5%. This demonstrated the reliable prediction ability of the GPEP-2. 

.4. Parameterization schemes of seasonal cycle 

Apart from human factors that significantly impact epidemic devel-

pment, many environmental factors change with the season, which can

lso affect or reflect the epidemic [27] . Among these, temperature is a

ajor environmental factor [28] . 

Studies have confirmed that temperature affects the spread of SARS-

OV-2. Temperature changes not only affect the activity of the virus

tself but also affect human immunity and lifestyle [29] . The SARS-COV-

 can maintain high activity at lower temperatures, between 5 °C and

5 °C [ 28 , 30 , 31 ]. This is the temperature observed in autumn and winter

t the mid-latitudes with the highest population densities. In addition,

hen the temperature is too high or low, people tend to gather indoors.
520
his increases the probability of viral transmission. To incorporate tem-

erature into the model, we added a scheme to determine the effect of

emperature on the infection rate. 

( 𝑡) = 𝛽0 ( 𝑡) + 𝐹 ( 𝑡) (14) 

here 𝐹 ( 𝑡 ) denotes the probability distribution function (PDF) obtained

y Huang et al. [28] . They found that 60% of confirmed COVID-19 cases

ccurred in regions where the air temperature ranged from 5 °C to 15 °C.

sing National Centers for Environmental Prediction/National Center

or Atmospheric Research (NCEP/NCAR) reanalysis data, we calculated

he global distribution of the annual PDF and included its influence

n the infection rate. The results showed that high PDF values corre-

ponded to ambient temperature, which is conducive to virus spread. In

he Northern Hemisphere, the optimal band generally moved northward

n summer (June, July, and August) and southward in winter (Decem-

er, January, and February). In the Southern Hemisphere, the optimal

and moves southward in summer (December, January, and February)

nd northward in winter (June, July, and August). Correspondingly,

he probability of virus transmission in different temperature regions

hanged. 

. Process of system prediction 

The entire prediction process included data collection, basic coeffi-

ient inversion and assimilation, simulation and prediction, model im-

rovement, and policy formulation. Fig. 3 shows a schematic of the sys-

em prediction process. 

Data collection: Data from countries worldwide were obtained

rom the COVID-19 Data Repository of the Center for Systems Sci-

nce and Engineering at Johns Hopkins University ( https://github.com/

SSEGISandData/COVID-19 ). When a small local outbreak in China was

redicted, data were collected from the National Health Commission of

hina website. In addition to epidemic data, meteorological data, such

s global 2-meter temperature and humidity grid data from ERA5 (the

fth-generation ECMWF atmospheric reanalysis of the global climate)

ere obtained. Reanalysis data from the ECMWF were also used for sys-

em predictions. 

Basic coefficient inversion and assimilation: Historical data and

 coefficient optimization algorithm were used to invert the basic model

oefficients such as infection, isolation, mortality, and cure rates. A

reliminary data assimilation module using data assimilation methods

as constructed to integrate various parameterization schemes and data

ources such as meteorological data. 

https://github.com/CSSEGISandData/COVID-19


J. Huang, L. Zhang, B. Chen et al. Fundamental Research 4 (2024) 516–526

Fig. 4. The comparison of prediction results and reported data of 16 countries from 2020.6.1 to 2021.12.31. The solid blue lines represent the curve of the 

reported data of the epidemic. The solid red lines represent the curve of prediction of the epidemic. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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rameterization schemes. 
The corresponding parameterization schemes were used for the dif-

erent prediction scenarios. A temperature parameterization scheme was

pplied to all scenarios. Other parameterization schemes were applied

ccording to different situations. For example, when predicting an epi-

emic in various countries, the model used unblocking and large-scale

athering parameterization schemes. The model used a control param-

terization scheme to predict local outbreaks in China. 

Simulation and prediction: After determining the basic coefficients

f the model, historical data were fitted. The residual term was then

onstructed by comparing the fitted data with the reported data. By

unning the model with previously inverted basic coefficients, the daily

rediction results for a single country or region were obtained. If an

pidemic in a country or region has a specific form, corresponding pa-

ameterization schemes must be used. After determining the situation

n different countries or regions, the corresponding model parameteri-

ation schemes were added to the model and adjusted individually. The

rediction results for the corresponding scenarios were obtained. The

nal integration yields the global daily prediction result. 

Model improvement and policy formulation: The prediction re-

ults were compared with reported data to test the prediction effect.

n turn, improvements were made to the model, inversion algorithms,

nd parameterization schemes to improve the validity of the predic-

ions. In addition to improving the model, a scientific basis is provided

or the anti-epidemic causes in various countries, and the prediction re-

ults are provided to the WHO and government departments of various

ountries. In particular, when an outbreak occurs in China, regular and

ccurate predictions are provided to the National Health Commission of

hina and local governments. This has played a positive role in allocat-

ng medical resources to government departments in various countries,

reparing isolation facilities, and understanding the development trends

f the epidemic. 
521
To verify the accuracy of the prediction system, we constructed the

ollowing scoring metrics to evaluate the prediction performance. This

ethod is based on relative error. The scoring formulae for the epidemic

redictions in various countries and China’s domestic epidemic predic-

ions were as follows: 

Sc = 1 − |MPE | (15)

Sd = 1 − |RE | (16)

here PSc and PSd represent the prediction scores for epidemic predic-

ions in various countries and China’s domestic epidemic predictions,

espectively. The MPE denotes the average relative error of each coun-

ry’s monthly cumulative prediction data. RE denotes the relative error

f the cumulative prediction data for each outbreak. 

. Prediction results 

.1. Prediction of cases around the world 

In 2020, COVID-19 had spread to most countries and regions world-

ide. Moreover, the epidemics in various countries experienced several

eaks and troughs. Fig. 4 shows a comparison between the reported

urve of the pandemic and the predicted curve obtained from the aver-

ge values of the GPEP-1 and GPEP-2 from June 2020 to December 2021

or the 16 most severely affected countries. The latest data were inputted

nto the model by rolling updates to predict the epidemic progress. To

redict the developmental trend of the pandemic in a timely manner, the

pdate frequency was set to approximately once every ten days. Predic-

ions worldwide differ from refined predictions for cities in the United

tates, which use temperature, massive gathering, and unblocking pa-
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Fig. 5. The comparison of prediction results and reported data of 6 continents from 2020.6.1 to 2021.12.31. The solid blue lines represent the curve of the 

reported data of the epidemic. The solid red lines represent the curve of prediction of the epidemic. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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Fig. 6. Comparison of monthly predicted cumulative confirmed cases and 

reported cumulative confirmed cases from all countries. The horizontal and 

vertical axis represent the observations and model predictions, respectively. 
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These 16 countries experienced at least two waves of epidemics in

he last 3 years. Some countries such as the Netherlands and South Africa

xperienced four or five waves of epidemics. The epidemic peaks in each

ountry showed a certain regularity and occurred at four time points.

he first peak was observed in September 2020, corresponding to au-

umn in the Northern Hemisphere and the emergence of beta strains.

he second peak corresponded to December 2020–January 2021. The

hird peak was detected in June 2021, which corresponded to the emer-

ence of the delta strain. The fourth peak was detected from August to

eptember 2021, corresponding to the start of autumn in the Northern

emisphere. At the end of 2021, the emergence of the omicron variant

aused an outburst of the epidemic in various countries, with a higher

eak occurring in the subsequent period. 

As shown in Fig. 4 , the prediction results reflect the variation in the

pidemic situation and serve as a reference. Except for the peaks in India

nd Indonesia, the peak predictions of the other countries were consis-

ent in magnitude with the actual data. However, the model predictions

agged slightly behind the actual data. Although the prediction results

re similar to the actual data in terms of trends, there is a gap between

he two at the same time point. These limitations should be addressed

n future studies. 

In addition, we compiled the reported and predicted epidemic data

or the six continents ( Fig. 5 ). Asia, Europe, and North America expe-

ienced the worst outbreaks. The new daily peaks of the epidemic ex-

eeded 400,000. With the spread of the omicron variant, the epidemic

ontinued to deteriorate. Australia and South America have experienced

elatively few outbreaks due to their smaller populations. However,

frica’s medical system and other aspects of infrastructure are seriously

nderdeveloped; therefore, there is a problem of distortion in statistical

ata. This prediction captured trends in the development of the epi-

emic. Although there were deviations at certain times, the system can

rovide a basic reference for overall development trends. By updating

he latest epidemic data in real time and inverting the latest model coef-

cients, the system can more accurately capture epidemic fluctuations. 

The monthly cumulative summations of the predicted and reported

pidemic data for all countries were performed and compared. The accu-

acy of the system was relatively high for countries with a small number

f newly confirmed monthly cases ( Fig. 6 ). This point had a regression

ine with a slope of 0.905 and probability of 1, indicating a high correla-

ion between the predicted and actual outcomes. This indicated that the

rediction results of the system exhibited a certain degree of credibility.
 t  

522
lthough they are somewhat discrete, the distribution of the points in

he figure is relatively even on both sides of the 1:1 line. This is strongly

orrelated with a slight deviation from the peak. From a summation per-

pective, the deviations above and below the 1:1 line complement each

ther. 

The predicted data for the 16 countries were summed monthly and

ompared with the reported data. As shown in Fig. 7a and Table S3, four

tatistics were calculated for the monthly summation: the mean (MEAN),

rediction score (PS), root-mean-square error (RMSE), and correlation

oefficient (CORR). From MEAN, it is easy to see that the epidemic data

f the 16 countries are not a smooth transition, but three countries–

he United States, Brazil, and India–are far ahead of other countries.

his shows that the spatial distribution of the epidemic was not uni-

orm, which may be related to population density, testing volume, etc.

igh PS values ( > 60%) indicated the high accuracy and reliability of

he prediction results. The magnitude of the RMSE was close to that of

he MEAN. Thus, although the relative error of the system was small,
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Fig. 7. Assessment of epidemic prediction for 16 countries and 6 continents. The blue bars represent the prediction scores of each country’s and continent’s epi- 

demic prediction. The last purple bar represents the average prediction scores of all the country’s and continent’s epidemic prediction, respectively. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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he predicted data were relatively discrete from the reported data. This

ay be due to large fluctuations in the reported data of these countries.

ecause the curve predicted by the system was relatively smooth, fluc-

uations in the reported data were not fully reflected. Sixteen countries

how strong correlations, with an average of approximately 0.7. 

Using the same algorithm, four metrics were calculated for six con-

inents to evaluate the prediction accuracy of the system ( Fig. 7b ; Table

3). At the continental level, the data are uneven. The monthly aver-

ge outbreak figures for Asia, Europe, and North America were much

igher than those for the other three continents. This is similar to the

ifferences between countries. The lower PS and RMSE values that are

loser to the mean for these two continents are possibly due to the higher

olatility of the data for North American and African countries. More-

ver, the correlation was higher in all continents except Africa owing to

oor detection and data collection capabilities. 

.2. Case prediction in China 

In addition to predicting the epidemic situation in countries world-

ide, another key task of this system is to predict the epidemic situa-

ion in China. Unlike large-scale outbreaks in other countries, domestic

utbreaks in China are much smaller and shorter in duration, owing to

trict control measures. After unblocking of control measures in Wuhan,

hina, on April 8, 2020, several regional-scale outbreaks occurred in

hina. To provide the government with a scientific basis for decision-

aking, we provided timely and accurate predictions of when the afore-

entioned outbreaks occurred. These predictions were based on the pa-

ameterization scheme of the regional-scale outbreak control measures

escribed in Section 3 . When the local epidemic first appeared, we ob-
523
ained initial data from information released by the National Health

ommission of China. The prediction of an epidemic is generally di-

ided into two steps. First, due to the lack of data in the early stages of

he epidemic, it is difficult to invert the coefficients. Therefore, the latest

omplete local epidemic data are used to invert the basic coefficients.

econd, the basic coefficients are combined with the current epidemic

ata, and the control parameterization schemes are added. We then in-

erted the coefficients in the control parameterization scheme to predict

he epidemic development trends. 

Following these steps, we predicted 12 outbreaks in China ( Fig. 8 ).

s shown in Fig. 8 , the system provided a very good prediction of vari-

us local epidemics in China. The developmental trends of the epidemics

ere predicted. The peak value and end time were in good agreement

ith the reported data. Because the scale of the local outbreaks in China

as very small and the monitoring of the epidemic was relatively strict,

s long as accurate data in the first few days can be provided, the system

an predict and learn the general trend of the development of the epi-

emic. More than 30 outbreaks in China were effectively controlled dur-

ng the initial stage; these data can be publicly accessed ( http://covid-

9.lzu.edu.cn/ ). Timely and effective control measures will remain the

ost effective means of dealing with the COVID-19 or other pandemics,

uch as the rapid detection of initial infections, timely and strict control

easures by government departments, and large-scale epidemiological

nvestigations using advanced technologies such as big data. Further-

ore, vaccines play an important role in the fight against various mu-

ant viruses. 

Domestic outbreaks generally exhibited a unimodal pattern. During

he epidemic period, except for a few cases, these outbreaks will end

ithin 1 month. For policies, such as dynamic clearing, the system uses

http://covid-19.lzu.edu.cn/
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Fig. 8. The comparison of prediction results and reported data of 12 cities in China by the GPEP-2. The solid blue lines represent the curve of the reported 

data of the epidemic. The solid red lines represent the curve of prediction of the epidemic. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 9. Assessment of epidemic prediction for 12 outbreaks in China. The bars represent the prediction scores of each outbreak’s epidemic prediction and their 

average (last purple bar). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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 control parameterization scheme to predict domestic epidemics. From

 comparison of the predicted and reported data curves, the system can

ccurately capture the development trend of each epidemic and predict

ts end time. As shown in Fig. 9 , the average prediction accuracy rate

f the system for each epidemic reaches 89.3%, providing government

epartments with more accurate information on epidemic research and

udgment. This can facilitate government departments to implement tar-

eted deployment and response measures in advance. 

Among the 12 local epidemics, except for Dalian, Wuhan, Xiamen,

nd Beijing (12th), the scores for the remaining cities were > 85%.

alian and Beijing (12th) showed slightly larger deviations in epidemic

redictions owing to a small upward trend in the final stage of the

pidemic. In Wuhan and Xiamen, this was because the number of re-

orted cases was too high or low at the beginning or end of the epi-

emic, respectively. This was closely related to the local testing capabil-

ties. In several other epidemic predictions, the data curves conformed

o unimodal characteristics and were relatively regular, without major
524
hanges. In the future, special optimization will be carried out for cases

ith fluctuating data to improve the prediction accuracy. 

. Discussion and conclusion 

By improving the traditional SEIR model, this study developed the

econd-generation system GPEP-2. Based on the first-generation sys-

em (GPEP-1), the GPEP-2 adds protectors, quarantines, and deaths,

nd constructs various natural and anthropogenic factor parametriza-

ion schemes. The GPEP-2 improves the SIR model to the SEIQRDP

odel, which not only improves the stability of the model but also pro-

ides a basis for building more realistic parameterization. Unblocking

nd large-scale gathering parametrization schemes provide data sup-

ort to simulate the relaxation or lifting of control policies. This can be

onducive to the government’s formulation of best-response strategies.

ontrol parameterization schemes can be used in countries or regions

hat strictly control epidemics. Good simulation results are obtained. In
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ddition, for predictions in China under strict government and public

ntervention, if the epidemic trend does not match the unimodal trend

redicted by the system, an early warning can be provided. An undiscov-

red chain or risk of infection may result in a new round of transmission.

his provides valuable suggestions for the timely control of epidemic de-

elopment trends . 

The statistical-dynamic prediction method is effective for accurately

nverting coefficients. It can also obtain model coefficients as close as

ossible to the real ones. Although compared with some generalized

inear models (GLMs) and time-series models, the GPEP-2 has some de-

iations and lags in the rolling prediction of the epidemic situation in

arious countries worldwide, the dynamic system is included in the pre-

iction. In addition, it can more effectively predict the inflection points,

ncluding the peaks. This is difficult to achieve using purely statistical

odels. These results proved that improving the epidemic model can

rovide good support for anti-epidemic causes. 

However, the GPEP-2 has several limitations that must be addressed.

lthough the system counts asymptomatic infections as confirmed cases,

ertain errors may occur due to statistical problems. The current system

uilds only a single-point epidemic prediction model for each country

nd lacks a detailed description of the impact of population movement

nd socioeconomic factors on the epidemic. Although the system uses a

olling prediction method, and the data at different stages include infor-

ation on vaccination and mutated viruses, these are not sufficient to

ccurately analyze the impact of vaccines and virus mutations [ 32 , 33 ].

 time parameterization scheme for infectivity, including vaccines and

utated viruses that change the viral pathogenicity, needs to be con-

tructed. In addition, big data technology and the digitization level of

ontemporary society have greatly improved; however, large amounts

f data are still rarely embedded in epidemiological models. It may be

oarse and subjective to use the government’s response level, such as

ontrol measures, as a quantitative standard. It will be more objective

nd quantitative to use big data or datasets to build indicators, such as

PI datasets [34] . Furthermore, the dynamic system of GPEP-2 must

nclude a stochastic simulation to obtain a certain distribution inter-

al and increase the predictive ability of the system. Moreover, data

uthenticity significantly affects prediction accuracy. For example, in

ost African countries, data quality is difficult to guarantee, and more

oefficients may be provided rather than obtained by inversion. Fur-

hermore, aerosol transmission, a major form of SARS-COV-2, has not

eceived sufficient attention. 

The limitations of this study include asymptomatic infections, the im-

act of external factors on the epidemic, the parameterization schemes

f various processes, introduction of external data, and the validity of

ata in some regions. The prediction results confirmed that the core

ynamic mechanism of the model reflected the changing trends of the

pidemic. Therefore, improvements against the above limitations enable

he model to provide more refined information and improve the predic-

ion of small local fluctuations in time and space. Thus, the coverage

f the model over time and space can be extended. Thus, the GPEP-

 requires further improvements to provide policymakers with a more

efined and effective basis for decision-making. 

Atmospheric science is one of the best fields for numerical simula-

ion predictions [35] . A complex and sophisticated spatiotemporal four-

imensional numerical model can be used as a reference for epidemio-

ogical models. Furthermore, as environmental changes such as climate

hange become increasingly severe, studies have shown that the risk

f > 58% of zoonotic diseases will increase [36] . Therefore, it would

e beneficial to study the impact of environmental changes on infec-

ious diseases by gridding an epidemiological model with climate and

tmospheric chemistry models to formulate corresponding countermea-

ures in advance. Although epidemiologically gridded data are scarce,

recedents exist for gridded epidemiological models [37] . Furthermore,

ecause the climate and atmospheric chemical models are mature, we

nly need to build coupling modules. Therefore, the proposed scheme is

easible. Specifically, based on meteorological data, it was necessary to
525
rid the collected epidemiological data. The interaction term between

rid points was added to the mathematical equation system to grid the

pidemiological model. Subsequently, this was converted into a meshed

odel. In addition to the gridding of the model, the improvement of

he model itself, the update of the parameterization scheme, and the

ntroduction of the traffic economy model were also the focus of subse-

uent improvements. Moreover, the model can be coupled with various

conomic, bioaerosol, and climate models. 
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