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• LAI increased significantly while AI in-
creased slightly during past three decades.

• The response of LAI to AI is divergent
across climatological region.

• The sensitivity of LAI to AI decreased in
drylands and increased in humid regions.

• Increasing CO2 resulted in decouple be-
tween LAI with AI in drylands.
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The land surface has been drying over recent decades, which is inconsistent with the greening of the Earth. The extent
and spatial variation in the sensitivity of vegetation to aridity changes in drylands and humid regions remain unclear.
In this study, satellite observation and reanalysis data were used to analyze the relationship between vegetation
growth and atmospheric aridity changes in different climatological regions on a global scale. Our results showed
that the leaf area index (LAI) increased at a rate of 0.032/decade from 1982 to 2014, while the aridity index (AI) in-
creased slightly at a rate of 0.005/decade. Over the past three decades, the sensitivity of the LAI to AI has decreased in
drylands and increased in humid regions. Thus, the LAI and AI were decoupled in drylands, whereas the effect of arid-
ity on vegetation was enhanced in humid regions during the study period. The physical and physiological effects of
increasing CO2 concentration are responsible for the divergent responses of vegetation sensitivity to aridity in drylands
and humid regions. The results of the structural equation models showed that the effect of increasing CO2 concentra-
tion via LAI and temperature, with respect to decreasing AI, enhanced the negative relationship between LAI and AI in
humid regions. The greenhouse effect of increasing CO2 concentration resulted in an increase in temperature and a re-
duction in aridity, whereas the fertilization effect of CO2 increased LAI, thus creating an inconsistent trend with LAI
and AI in drylands.
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1. Introduction

Changes in water availability on land are key drivers of the impacts of
climate change on human and natural systems (Berg et al., 2016). Aridity
index (AI), the ratio of annual precipitation (P) to annual potential evapo-
transpiration (PET), is widely used to describe the scarcity of the water sup-
ply relative to the atmospheric demand for moisture (Huang et al., 2017a,
b); it is also used to define global dryland areas (IPCC, 2019). Observations
and model results indicate that much of the land has been drying (Huang
et al., 2016a,b), which corresponds to a decrease in AI. With global
warming, the Earth will face a warmer and drier future (Sherwood and
Fu, 2014). Drylands are expected to expand (Feng and Fu, 2013; Huang
et al., 2016b, 2017a,b), thereby increasing the risk of desertification in
the future (Huang et al., 2012, 2020). Aridity has a significant effect on
the structure and function of dryland ecosystems (Berdugo et al., 2020).
As aridity increases, the cycles of carbon, nitrogen, and phosphorus
would decouple in drylands, which negatively affects the key processes in
these ecosystems (Delgado-Baquerizo et al., 2013) and triggers increased
tree mortality (Kharuk et al., 2013). Numerous studies have shown that
grasslands and forest ecosystems have been influenced by increasing arid-
ity, such as the Tibetan Alpine Grasslands (Ding et al., 2018), the Greater
Yellowstone Ecosystem in the Northern Rocky Mountains (Brookshire and
Weaver, 2015), and the grasslands of the United States (Konings et al.,
2017). Eurasian boreal forest greening has also shifted (Buermann et al.,
2014), and the global net primary production has decreased over the past
decade (Zhao and Running, 2010).

At the same time, however, the globe has experienced ‘greening’ over
the past three decades (De Jong et al., 2012; Fensholt et al., 2012; Piao
et al., 2020), based on a body of work including in situ and satellite obser-
vation evidence. Long-term changes in vegetation greenness are influenced
bymany factors, including the fertilization effect of increasing atmospheric
CO2 concentration (eCO2), nitrogen deposition, climate change, and human
activity (Zhu et al., 2016). eCO2 can enhance photosynthesis by accelerat-
ing the rate of carboxylation and increase vegetation greenness by improv-
ing water-use efficiency (Piao et al., 2020). eCO2 has proven to be the
dominant factor in global greening, as demonstrated by observational
data and model results, particularly in drylands (Lu et al., 2016; Donohue
et al., 2013; Zhu et al., 2016). Climate change is another important driver
of greenness variation. He et al. (2019) reported that increasing precipita-
tion is the main driver of greening over drylands. Human activities also sig-
nificantly influence land cover through deforestation, afforestation, and
agricultural activities. Song et al. (2018) reported that human activity ac-
counted for 60 % of the changes in global land type from 1982 to 2016.
Chen et al. (2019) pointed out that greening patterns have been strikingly
prominent in China and India since 2000 and have overlapped with crop-
lands worldwide.

Several studies have attempted to reconcile the paradoxes of global
greening and drying. Based on the analyses ofmeteorological, hydrological,
and agroecological aridity, Roderick et al. (2015) concluded that warmer
conditions coincide with less arid conditions. Previous studies have re-
vealed the fertilization effect of eCO2 on the vegetation, while other studies
have pointed out overestimated PET due to decreasing stomatal conduc-
tance (Berg et al., 2016; Yang et al., 2019). So those studies have implied
that the relationship between leaf area index (LAI) and AI has changed
due to eCO2 and climate change; however, the relationship between
changes in AI and LAI varies spatially and remains to be fully understood.
Additionally, the extent to which this relationship changes remain unclear.
This hampers our ability to understand vegetation change and its responses
to climate change, and results in contradictory conclusions about future
dryland expansion (Huang et al., 2016b; Berg and McColl, 2021). In this
study, we used three decades of LAI and AI observations to investigate
their relationship across various climatological regions at a global scale.
We evaluated the long-term trends of the relationship between vegetation
greenness and aridity change across different climatological regions. The
mechanisms underlying the changing sensitivity of vegetation to aridity
due to eCO2 was also investigated. Our study is crucial for understanding
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the response of vegetation to the aridity change in the different climatolog-
ical regions, and for improving future projections of vegetation dynamics
under a changing climate.

2. Materials and methods

2.1. Datasets

2.1.1. Satellite datasets
LAI is a key biophysical parameter for the monitoring of agroecosystems,

whichwaswidely used to the global change and ecological studies (Zhu et al.,
2016; Piao et al., 2020). In this study the satellite-observed LAI products
(GIMMS LAI3g) are used to analyze the changes in global vegetation for the
period 1982–2014. The GIMMS is currently considered the best dataset in
overcoming data inconsistencies resulting from the utilization ofmultiple sat-
ellite sensor systems. The GIMMS LAI3g dataset was derived from the Ad-
vanced Very High Resolution Radiometer after sensor calibration, volcanic
aerosols, and other sensor degradation and contamination issues and is avail-
able at 8 km horizontal resolution every 15 days (Zhu et al., 2013). Whenwe
tested trends in LAI at global and continental scales, we calculated the mean
of LAI values of all the pixels in the specific region, weighting by cos(θi π/
180.0), here θi is the latitude of the grid i.

2.1.2. Climate datasets
The AI represents how well the water supply can meet the demand, is

defined as the ratio of annual P to annual PET, and is computed as:

AI ¼ P
PET

(1)

Under this quantitative indicator, humid regions are defined as
AI≥ 0.65, while drylands are regions where AI < 0.65 and are further di-
vided into subtypes of hyper-arid (AI < 0.05), arid (0.05 ≤ AI < 0.2),
semi-arid (0.2 ≤ AI < 0.5), and sub-humid (0.5 ≤ AI < 0.65) regions.
Herein, climatological AI is the mean of annual AI for the period
1961–1990 (Feng and Fu, 2013; Huang et al., 2016a,b). The precipitation
data is from the NOAA's PRECipitation REConstruction over Land (PREC/
L) dataset developed by the Climatic Prediction Center (CPC), which was
interpolated from station data from the Global Historical Climatology Net-
work (GHCN) version 2 and Climate Anomaly Monitoring System (CAMS)
dataset with a spatial resolution of 0.5° for 1948 to the present. The PET and
temperature data were retrieved from CRU TS 3.25 dataset (Harris et al.,
2014) with a spatial resolution of 0.5° for 1901–2014.

2.1.3. CO2 datasets
Here, we used the global annual CO2 data obtained from the Global

Monitoring Laboratory of NOAA for 1980–2021. The global mean surface
values using measurements of weekly air samples from the Cooperative
Global Air Sampling Network (Conway et al., 1994; Trolier et al., 1996)
and a global average was calculated from the latitude plot at each time
step (Masarie and Tans, 1995).

All the datasets were aggregated to 0.5°. As the LAI is not available in
some barren areas, tomaintain consistencywith the LAI, wemasked the re-
gion where the value of the LAI was missing when we calculated the AI
mean and trend in this study.

2.2. Methods

2.2.1. Statistical method
The Pearson correlationwas performed between annual LAI and AI over

the period 1982–2014. We also investigated the trend of relationship be-
tween annual LAI and AI over the period 1982–2014 by the 15-years mov-
ing windows. The Theil–Sen trend analysis, which is a linear trend
calculation that is resistant to the impact of outliers (noise) was used to
quantify the LAI and AI trend. The Mann−Kendall (MK) method was
used to test the significance of trend. A value of +1 indicates a trend that
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continuously increases and a value of−1 if it always decreases. A value of 0
indicates no consistent trend.

The assessment of the relationship between the LAI and AI requires the
analysis of the temporal fluctuation of these variables. The temporal vari-
ability of these quantities was affected by long-term trends of drivers like
temperature, eCO2, nitrogen deposition, etc. In order to filter out the effect
of the trends in the covariates, we based the analysis on interannual varia-
tions of LAI and AI across AI gradient following Forzieri et al. (2017).

2.2.2. Multidimensional ensemble empirical mode decomposition
We used multidimensional ensemble empirical mode decomposition

(MEEMD) to investigate the trend of LAI and AI. MEEMD is a way to sepa-
rate spatiotemporally varying trends and spatially nonuniform variability
of different time scales based on EEMD (Huang et al., 1998; Wu and
Huang, 2009). InMEEMD, a time series was decomposed to a set of intrinsic
mode functions (IMFs) based on EEMD at each grid pixel, which are a series
of amplitude frequency-modulated oscillatory components. The last IMF is
recognized as the trend of the time series, which is sensitivity to the
Fig. 1.The time series of annual leaf area index (LAI) and aridity index (AI) from1982 to
evolution in hyper-arid regions is not shown owing to small LAI; the red lines present L
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extension (addition) of new data. MEEMD has been widely applied in cli-
mate research (Ji et al., 2014; Wu et al., 2011). In this study, we choose
that ensemble number is 400; the number of IMFs is 5 and added the
noise to data has an amplitude of 0.2 standard deviations of the correspond-
ing data following Cheng et al. (2015).

2.2.3. The contribution of different region
Contribution is one of the important factors to justify the local change

extent to global change (Huang et al., 2012), which can reflect the role of
regional aridity and vegetation change to their global change. Here, we cal-
culated the contribution rate (CRk) of region k as:

CRk ¼
ak � ∑

Nk

i¼1
Wki

Ag � ∑
Ng

i¼1
Wi

(2)

where ak is the trend of mean AI or LAI for region k, Ag is the trend of the
global mean AI or LAI, Nk is the number of grids in region k, and Ng is the
2014 in (a) global, (b) arid, (c) semi-arid, (d) sub-humid, and (e) humid regions. (The
AI and the blue lines present AI. The Y-axis scales in the five subplots are different.)
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total number of grids over global land. Wki and Wi are the weighted factor
of the grid i, Wki ¼ cos θki � πð Þ=180:0, θki is the latitude of the grid i in the
region k, Wi ¼ cos θi � πð Þ=180:0, and θi is the latitude of the grid i in the
region k.

2.2.4. Structural equation model
The structural equationmodel (SEM) provides a statistical framework to

deal with the complex relationships among different drivers, giving us a
more comprehensive picture of their relative importance and providing in-
sights into themechanisms behind their effects (Grace, 2006;Maestre et al.,
2016). In this study, the SEMwas used to analyze the influence eCO2 on the
relationship of LAI and AI in different climatological regions. The SEM anal-
yses were performed using the AMOS 17.0 (IBM., Chicago, IL, USA).
Fig. 2. The global distribution of linear trends of the (a) annual leaf area index (LAI) and
at P < 0.05.)

4

3. Results

3.1. Changes in LAI and AI

The global LAI increased at a rate of 0.032/decade and the AI increased
at a rate of 0.005/decade from 1982 to 2014 (Fig. 1a). Thus, the Earth has
become slightly wetter over the past three decades and the climate has be-
come more favorable for vegetation growth. However, the AI decreased in
arid and semi-arid regions at−0.003/decade and− 0.001/decade, respec-
tively, whereas the LAI showed an increasing trend (0.008/decade and
0.019/decade). Both LAI and AI increased in the sub-humid and humid re-
gions (Fig. 1d, e). The trends of AI and LAI were not uniform at the global
scale (Fig. 2). Increasing LAI has occurred mainly in the Northern
(b) aridity index (AI) from 1982 to 2014. (The stippling represents significant trends
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Hemisphere over the past three decades, especially in Europe, Central
Africa, Southeast North America, and Southeast Asia (Fig. 2a). AI increased
significantly in Central Africa, India, Northeast North America, and South
Africa (Fig. 2b).

The LAI trends in Europe, India, East China, Central Africa, and South-
ern America were the main contributors to the global annual LAI mean
trend; however, the contribution of the LAI in the high latitudes was nega-
tive (Fig. 3a). As shown in Fig. 3b, the global trend of the area contributions
to LAI change has a narrow distribution (mean = 0.002, SD= 0.004), but
is skewed positively (skewness = 0.90), which indicates that the global
trend for the annual LAI mean was dominated by limited concentration
areas. The areas where the AI increased were mainly located in Central
Africa and India, with the highest contributions being from the Tibetan Pla-
teau, India, and Africa (Fig. 3c). Compared to the frequency of contribu-
tions for LAI, that of AI showed a larger standard deviation (mean =
0.0024, SD= 0.03) (Fig. 3d), which is consistent with the high spatial het-
erogeneity of the regional trend contribution to the global trend for the an-
nual AI mean.

3.2. LAI changes in different climatological regions

Fig. 4 shows the LAI trends for different climatological regions from
1982 to 2014. It is worth noting that the LAI trend was greater under a pos-
itive AI trend than under a negative AI trend in drylands; conversely, the
LAI trend was smaller under a positive AI trend than under a negative AI
trend in humid regions (Fig. 4a). The trend was positive despite the chang-
ing AI type, suggesting that aridity change is not the dominant factor
Fig. 3. The global distribution of the contribution rate of regional changes to the glo
distribution of the contribution rate of the regional LAI (b) and AI change (d).
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driving the changing annual LAI in drylands or humid regions (Fig. 4b).
There were two peaks in the trend of LAI, with respect to the climatological
mean AI (Fig. 4c), located in the regions where the climatological AI ranged
from0.9 to 1.2 and from1.6 to 1.9. The relative LAI trend, which is the ratio
of trend LAI to the averaged LAI during 1982–2014, in the drylands was
higher than that in humid regions (Fig. 4d).

Fig. 5 shows the contributions of the LAI and AI trends in different cli-
matological regions to the global trend for annual means. The regions
where the climatological AI ranged from 0.6 to 0.9 play a dominant role
in the global annual AI trend. The regions where the climatological AI
ranged from 0.9 to 1.2 play a key role in the global annual LAI trend, indi-
cating that humid regionsmade the biggest contribution to global greening.
As implied by the evolution of LAI based on the MEEMD, three LAI peaks
were located in regions where the climatological AI ranged from 0.4 to
0.7, 0.9 to 1.2, and 1.6 to 1.9, in agreement with the results based on the
linear trend, which are also important regions to global annual LAI trends.

3.3. Correlation between the LAI and AI

We further investigated the correlation between LAI and AI in different
regions (Fig. 6). The regions with a positive correlation between LAI and AI
were mainly located in Australia, Southern Africa, Central Asia, Northern
China, and Central and Western America. Regions with a negative correla-
tion between the LAI and AIwere mostly located in the high latitudes of the
Northern Hemisphere, particularly in Siberia (Fig. 6a). As the AI increased,
the correlation increased until the AI approached 0.25, at which point the
correlation decreased; when the AI crossed 0.80, there was a negative
bal leaf area index (LAI) change (a) and aridity index (AI) change (c); frequency



Fig. 4. The trend of leaf area index (LAI) under different climatological region (a) and under different conversion types (b), the linear trends of LAI (c) and relative LAI trend
(d) during 1982–2014 as a function of the climatological mean AI. (** represents a significant difference at P < 0.01 based on a t-test in (a); the conversion includes any tran-
sition fromadjacent and nonadjacent subtypes. The ‘increased’ categorymeans the transitions fromwetter to drier subtypes; the ‘decreased’ category refers to transitions from
drier to wetter subtypes in (b). AI >2.2 are included in the last bar to the far right of plot in (c) and (d).)
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relationship between LAI and AI (Fig. 6b). Therefore, considering the posi-
tive correlation between LAI and AI in drylands and the negative correla-
tion in humid areas, a reduction in the global mean AI does not
necessarily indicate a reduction in LAI. Fig. 6c shows the trend in the
Fig. 5. The contribution of different climatological regions to the global aridity index
function of the climatological mean AI from 1982 to 2014 based on MEEMD. (The LAI
an orange bar.)

6

correlation between LAI and AI over the past three decades using a 15-
year moving-window analysis. The global distribution of the trend of corre-
lation between LAI and AI showed high spatial heterogeneity, dominated
by a negative trend. Regions with a negative trend of correlation were
(AI) and leaf area index (LAI) trend (a) and the evolution of the LAI trend (b) as a
contribution is presented as a green bar, while the AI contribution is presented as



Fig. 6. The global distribution of the correlation (a) and trend of the correlation (c) between the LAI and AI from1982 to 2014; the correlation (b) and the trend of correlation
(d) between LAI and AI as a function of the climatological mean AI. (The stippling represents a significant correlation and trend at P < 0.05 in (a) and (c), respectively.)
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located in North Sahel, Central and Southern Africa, the Mediterranean,
Eastern America, and Southwest China. Regions showing a positive trend
of correlation included Europe, Brazil, and Central America (Fig. 6c). In
the region where the AI value ranged from 1.4 to 1.6, the trend of the cor-
relation value reached its maximum value (Fig. 6d). The trends of correla-
tion values between LAI and AI over arid, semi-arid, sub-humid, and
humid regions were −0.04, −0.02, −0.03, and −0.04/decade, respec-
tively (Fig. 7). A reduction in the correlation value indicates that the rela-
tionship between LAI and AI decoupled in drylands over the three
decades. However, the relationship between LAI and AI was stronger in
humid regions, indicating a closer negative relationship between vegeta-
tion and aridity.
Fig. 7.The time series of the correlation between leaf area index (LAI) and aridity index (
regions.
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3.4. Mechanism underlying changes in LAI sensitivity to AI

Here, we analyzed annual variations in LAI and AI across the AI gradi-
ent, following Forzieri et al. (2017), to explain the different correlations be-
tween LAI and AI in different climatological regions. In dryland regions, the
decreased AI coincided with a reduction in the LAI, in line with the positive
correlation between the LAI and AI; however, in humid regions, the de-
creased AI was accompanied by an increased LAI, resulting in a negative
correlation between the LAI and AI (Fig. 8e). To further explore the mech-
anism of the correlation between LAI and AI in different climatological re-
gions over the past three decades, we examined the covariation effect of P
and PET influence on LAI and AI in different climatological regions
AI) during 1982–2014with afifteen-yearmoving-window in different climatological



Fig. 8. Relative interannual variations of leaf area index (LAI, a) and aridity index (AI, c) against the relative interannual variations in potential evapotranspiration (PET, y
axis) and the climatological mean AI. Relative interannual variations of LAI (b) and AI (d) against the relative interannual variations in precipitation (P, y axis) and the
climatological mean AI. Relative interannual variations of LAI (e) against the relative interannual variations in AI (y axis) and the climatological mean AI.
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(Fig. 8a-d). Increasing P and decreasing PET coincidedwith increasing AI in
both the dryland and humid regions (Fig. 8a and b). However, the change in
LAI depended on the climatological region. In drylands, increasing P and
decreasing PET caused an increase in the LAI. In humid regions, increasing
P and decreasing PET were accompanied by a reduction in the LAI (Fig. 8c
and d). Thus, the consistent influence of P and PET on the AI and the con-
trasting effect on the LAI in dryland and humid regions resulted in a differ-
ent correlation between the LAI and AI across climatological regions
(Fig. 8e).

We further explored the effect of eCO2 on the trend of correlation be-
tween LAI and AI over the past three decades. The fertilization effect of
eCO2 had a dominant effect on the increase in LAI over the past three de-
cades. Vegetation plays a vital role in water and energy exchange between
the land and atmosphere; thus, AI could be influenced by eCO2 through
vegetation. eCO2 increases the temperature, which also influences the AI
by increasing PET. Therefore, we hypothesized that eCO2 indirectly influ-
enced AI via vegetation and temperature, and affected the relationship be-
tween LAI and AI. Based on this hypothesis, structural equation models
were built for drylands and humid regions (Fig. 9). The results indicated
that the direct effect of eCO2 on the AI was negative in drylands and posi-
tive in humid regions, the effect of eCO2 on AI through temperature was
higher in drylands than in humid regions, and the effect of eCO2 on AI by
LAI was positive in drylands and negative in humid regions. Ultimately,
this resulted in the decoupling of the relationship between the LAI and AI
in drylands; however, the effect of eCO2 via the LAI and temperature with
8

respect to a decreasing AI enhanced the relationship between the LAI and
AI in humid regions.

4. Discussion

Our results revealed that the LAI increased globally, which is in line
with previous studies (Zhu et al., 2016). AI decreased in the arid and
semi-arid regions (Fig. 1), while the relative LAI trend was largest
(Fig. 4d), that mainly due to the fertilization effect of eCO2 (Lu et al.,
2016). The largest LAI trend was found in humid regions, which are also
important regions contributing to the global averaged LAI trend (Figs. 3
and 4c). Although LAI increased in all climatological regions, the LAI
trend in the region where AI showed a decreasing trend was smaller than
that in the region where AI showed an increasing trend in the dryland
(Fig. 4), consistent with the interannual relationship between LAI and AI
being positive in drylands. Humid regions or high-latitude boreal regions
are not water-limited but energy-limited (Nemani Ramakrishna et al.,
2003), vegetation growth is constrained by temperature and radiation,
and short-term precipitation deficiency may result in higher solar radiation
and temperature. Less precipitation, cloud cover, and more radiation were
favorable for vegetation growth, these conditions ultimately decreased the
AI by increasing PET in humid regions (Fig. 8), consistent with the interan-
nual negative relationship between LAI and AI in humid regions (Fig. 6).

The relationship between the AI and LAI decoupled over the study pe-
riod in drylands and strengthened in humid regions over the same period.



Fig. 9.The structural equationmodel of leaf area index, aridity index, eCO2, temperature in different climatological regions, (a) drylands, and (b) humid regions. The number
near the single arrow is the standardized coefficient. GFI: goodness of fit index, NFI: normed fit index, RFI: relative fit index, RMR: root mean square residual.
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The greenhouse effect of eCO2 has contributed to global warming, leading
to an increase in PET and a decrease in AI (Figs. 1 and 9). However,
warming over land has not been evenly distributed; observations have
shown enhanced warming over drylands (Huang et al., 2012; Huang
et al., 2017a,b), so the effects of eCO2 via temperature on the AI in drylands
are stronger than those in humid regions (Fig. 9). Our results showed the
positive effect of eCO2 on AI by the LAI in drylands, which may be due to
that increase in LAI can increase the amount of transpiring leaf area, leading
to an enhanced evapotranspiration (Ukkola et al., 2016; Zhu et al., 2017),
which is beneficial for recycling precipitation (Zhang et al., 2022a).
Zhang et al. (2022b) also found that the sensitivity of vegetation greenness
to precipitation has increased owing to the eCO2 in drylands. The direct ef-
fect of eCO2 on the AI was negative in drylands and positive in humid re-
gion, which was consistent with the ‘wet gets wetter, dry gets drier’
paradigm related to the change in the moisture content of the atmosphere
(Wills et al., 2016). The result of the combing direct and indirect effects is
that eCO2 had a negative effect on AI in drylands, while LAI increased
owing to the fertilization effect of eCO2; thus, LAI and AI were decoupled
in drylands. However, the effect of eCO2 on AI via vegetation was negative
in humid regions, where stomatal closure reduced evapotranspiration and
increased sensible heat emissions from ecosystems, leading to decreased at-
mospheric moisture and precipitation (Ukkola et al., 2016; Zhu et al.,
2017). Thus, combining the negative effects of eCO2 on AI through LAI
and temperature with the fertilization effect on LAI, the interannual nega-
tive relationship between LAI and AI strengthened in humid regions. Our
results may be reconciled with previous inconsistent projections about the
expansion of drylands in the future. Berg and McColl (2021) did not con-
sider the change in LAI sensitivity to AI in the context of eCO2, which re-
sulted in different projections of drylands under climate change scenarios
(Huang et al., 2016b).

It is worth noting that previous studies have shown that aridity affects
the structure, function, and biodiversity of ecosystems (Berdugo et al.,
2020; Shi et al., 2021). As aridity is increasing worldwide (Huang et al.,
2016b) and regions where water constraints on vegetation growth are in-
creasing (Jiao et al., 2021), previous studies have indicated that global
greening is accompanied by browning under global warming conditions
(Kong et al., 2017; Pan et al., 2018). Many studies have also shown that
the fertilization effects of eCO2 are declining (Peñuelas et al., 2017; Wang
et al., 2020), indicating that a dryland ecosystem can pass an irreversible
tipping point as aridity increases, possibly entering a nonlinear response
phase. In this scenario, the mortality risks from drought and heat stress
would increase with the transition from a vegetation fertilization-
dominated period to one dominated by nutrient and climate constraints
on plant growth. Although we revealed the decoupling between AI and
LAI in drylands due to eCO2, considering the negative effect of eCO2, this
implies more vulnerability of ecosystems in drylands under global change
9

and eCO2, indicating that desertification remains an issue that requires per-
sistent attention.

Although we investigated the effect of eCO2 on vegetation sensitive to
aridity; however, human activities also influence vegetation growth. Re-
cent studies have shown that China and India dominate the global LAI
trend due to land use/change (Chen et al., 2019). This also influences the
sensitivity of vegetation to aridity at the local scale. eCO2 commonly re-
duces stomatal conductance, which can cause PET to be overestimated in
models with unlimited areas (Berg et al., 2016; Milly and Dunne, 2016;
Yang et al., 2018, 2019). Although previous studies have shown that the
magnitude of the effect of eCO2 on AI due to decreasing stomatal
conductance is small, that was not considered in this study, which may
have overestimated the extent of decoupled LAI with AI in drylands. We in-
vestigated the effect eCO2 on vegetation sensitive to aridity based on SEM
at a global scale; however, themechanisms and processes need to be further
studied at a regional scale.

5. Conclusions

This study investigated the relationship changes between aridity change
with vegetation growth in different climatological regions. Over the past
three decades, with the exception of arid and semi-arid regions, aridity
has increased, and the fertilization effects of eCO2 have dominated the in-
creasing trend in the global vegetation cover. Interannual changes in P
and PET resulted in divergent aridity and vegetation responses in different
climatological regions. In drylands, increasing P and decreasing PET pro-
duced an increase in the LAI over the study period. In humid regions, this
did not necessarily lead to an increase in the LAI. The decoupled relation-
ship between a reduction in aridity and an increase in vegetation cover in
drylands was due to the synergistic influence of fertilization and the green-
house effect of eCO2. However, the relationship between the changes in
aridity and vegetation growth has been strengthened by eCO2 in the
humid regions over the past three decades. Our results imply that vegeta-
tion dynamics prediction should consider spatial aridity changes to avoid
uncertainties due to the divergent vegetation response to AI trends in differ-
ent climatological regions in the future. We also need to paymore attention
to the complex effects of eCO2 on vegetation responses to climate change
over different regions to manage vulnerable ecosystems under continued
global change.
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