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• Linear and nonlinear relationships be-
tween Himawari-8 channels and O3 were
studied.

• Fine scale O3 was obtained using the top
of atmospheric radiation of Himawari-8.

• The hourly R2 of interpretable deep learn-
ing model (TOAR-O3) can reach
0.86–0.94.

• Relationship between weather patterns
and O3 was analyzed by self-organizing
map.
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Ozone (O3) is an important greenhouse gas in the atmosphere. Stratospheric ozone protects human beings, but high
near-surface ozone concentrations threaten environment and human health. Owing to the uneven distribution of
ground-monitoring stations and the low time resolution of polar orbiting satellites, it is difficult to accurately evaluate
the refinement and synergistic pollution of near-surface ozone in China. Besides, atmospheric circulation patterns also
affect ozone concentrations greatly. In this study, a new generation of geostationary satellite is used to estimate the
hourly near-surface ozone concentration with a spatial resolution of 0.05°. First, the Pearson correlation coefficient
and maximum information coefficient were used to study the correlation between the top of atmospheric radiation
(TOAR) of Himawari-8 satellite and O3 concentration; seven TOAR channels were selected. Second, based on an inter-
pretable deep learning model, the hourly ozone concentration in China from September 2015 to August 2021 was ob-
tained using the TOAR-O3 model. Finally, the self-organizing map method was used to determine six major summer
weather circulation patterns in China. The results showed that (1) the near-surface O3 concentration can be accurately
estimated; the R2 (RMSE: μg/m3) values of the daily, monthly, and annual tenfold cross validation results were 0.91
(12.74), 0.97 (5.64), and 0.98 (1.75), respectively. The feature importance of themodel showed that the temperature,
TOAR, and boundary layer height contributed 38 %, 22 %, and 13 %, respectively. (2) The O3 concentration showed
obvious spatiotemporal difference and gradually increased from10:00 to 15:00 (Beijing time) every day. Inmost areas
of China, O3 concentration had increased significantly. (3) The O3 concentration in northern China was the highest
under the circulation pattern of the Meiyu front over the Yangtze River Delta, while in southern China, it was the
highest under the circulation pattern of the northeast cold vortex controlling most of China.
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1. Introduction
O3 is an important trace gas in the atmosphere that prevents ultraviolet
radiation and protects the Earth's organisms in the stratosphere, but highO3

concentrations in the boundary layer can lead to air pollution (DeLang
et al., 2021; Monks et al., 2015; Tang et al., 2021). Near-surface O3 stimu-
lates the respiratory mucosa and other lung tissues, causing pneumonia,
chronic obstructive pulmonary disease, asthma, allergic rhinitis, and
other respiratory diseases (Lei et al., 2019; Liu et al., 2018; Tian et al.,
2020; Yang et al., 2019); O3 pollution damages human health and plant
growth (Chi et al., 2016; Feng et al., 2015; Lu et al., 2020). According to
the IPCC 6th report, O3 increased the global average surface temperature
by 0.23 °C from 1750 to 2019 (IPCC, 2021). Air pollution caused by fine
particulate matter has gradually decreased since the Chinese government
took measures to prevent and control air pollution, however, O3 pollution
is on the rise (Dong et al., 2021; Gao et al., 2020; He et al., 2021b). An anal-
ysis of the characteristics of air pollution in China during the COVID-19 out-
break found that after the Chinese government imposed strict lockdown
measures inWuhan and restricted human activities, NO2, an important pre-
cursor of O3, decreased by 61.92 %, while the O3 concentration increased
(Dong et al., 2021), which was mainly due to seasonal variation in O3

and the titration effect of NO (Wang et al., 2022a). The premise for near-
surface O3 pollution research is to obtain its concentration with high spatial
and temporal resolution.

Ground-monitoring stations have been an effective way to monitor O3

pollution for a long time. However, owing to the uneven distribution of
ground stations and the low density of stations in sparsely populated
areas, it is difficult to accurately evaluate the overall distribution character-
istics of O3. Satellite remote sensing has the advantage of continuity in
space (Li et al., 2010a; Li et al., 2010b; Wei et al., 2021; Zhang and Li,
2015); the tropospheric ozone column density observed by the Ozone
Monitoring Instrument (OMI) satellite during 2010–2012 was consistent
with the surface ozone of six global atmospheric monitoring stations in
China, with a mean correlation coefficient of 0.47 (Liu et al., 2019). How-
ever, it is worth noting that O3 in the lowest layer of the OMI products
did not directly correspond to O3 in the boundary layer (Bai et al., 2016).

The machine learning methods show unique advantages for retrieving
surface O3 concentrations (Chen et al., 2022a; DeLang et al., 2021; Liu
et al., 2020; Xue et al., 2020). Li et al. (2020) used a random forest general-
izedweightedmodel, developed fromOMI data, to predict themaximum8-
h daily average (MDA8) concentration of O3 over the Tibetan Plateau (TP),
with amaximumR2 of 0.76 and aminimum rootmean square error (RMSE)
of 14.41 μg/m3. Zhang et al. (2020) estimated the monthly near-surface O3

concentration in eastern China using OMI data based on the geo-weighted
regression method and found that the R2 was 0.81, with an absolute error
(AE) of 7.38 μg/m3. The surface O3 concentration in East Asia was esti-
mated using tropospheric ozone monitoring instrument (TROPOMI) data;
the predicted R2 was 0.65–0.78, and the RMSE was 19.6–24.7 % (Dong
et al., 2021; Kang et al., 2021). Based on the two stage deep learning
model, Moderate Resolution Imaging Spectroradiometer (MODIS) data
were used to invert O3 over the Beijing-Tianjin-Hebei region, the Yangtze
River Delta, and Guangdong, Hong Kong and Macao, the maximum R2 of
the model was 0.78, and the minimum RMSE was 18.35μg/m3 (Luo et al.,
2022). Based on TROPOMI data, the O3 concentration in North China in
2019 was estimated using the geo-intelligent light gradient lifting method
with spatio-temporal correlation, and the R2 can reach 0.912 (Chen et al.,
2022c). The accuracy of O3 retrieval based on machine learning methods
to reverse O3 concentrations is greatly improved by using polar-orbiting
satellite data.

The top of atmospheric radiation (TOAR) data includes signals from the
surface and atmosphere, from which atmospheric pollution information
can be extracted (Wang et al., 2021). Zang et al. (2021) reversed the O3

concentration in China using TOAR data from theMODIS, with R2 reaching
0.71. Compared with polar-orbit satellites, geostationary satellites can
remarkably improve the temporal and spatial resolution of the data
(Zhang et al., 2021). Himawari-8 is a third-generation geostationary
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meteorological satellite (Bessho et al., 2016); the Himawari-8 satellite
AOD data were used to analyze near-surface particle pollutants with a
time resolution per hour and a spatial resolution of 0.05° (Chen et al.,
2022b; Song et al., 2022). However, few studies have been conducted in
China on near-surface O3 concentration inversions using the TOAR of sta-
tionary satellites.

The change in O3 concentration is affected by many factors, among
whichmeteorological factors and weather situations are two of the key fac-
tors (Bei et al., 2022; Shu et al., 2020). Tropical cyclones and continental
anticyclones are the major weather systems associated with O3 events
(Wang et al., 2017), while meteorological factors (mainly including surface
temperature, humidity, and wind speed) also play an important role in O3

pollution (Carro-Calvo et al., 2017; Chen et al., 2019; Pu et al., 2017;
Yang et al., 2022). Using objective principal component analysis in the T-
mode classification method to study the relationship between the weather
patterns and O3 pollution in the North China Plain in the summer of
2014–2018, Dong et al. (2020) found that the most serious O3 pollution
is related to the high-pressure anomalies over the Northwest Pacific
Ocean and the obvious low-pressure centers in northeast China. The empir-
ical orthogonal function (EOF) of daily O3 changes in eastern China con-
cluded that the stronger western Pacific subtropical high (WPSH) is
associated with lower O3 concentrations in southern China and higher con-
centrations in northern China (Zhao andWang, 2017). A general drawback
of these traditional weather classification is that, although they represent
discrete phenomena of atmospheric systems, they generally cannot be orga-
nized into a continuum (Sheridan and Lee, 2011). Self-organizational map-
ping neuronal networks (SOM) have more advantages than the traditional
EOF or principal component analysis (PCA) (Liu and Weisberg, 2011).
Therefore, in this study, SOM was used to classify the seasons with the
highest number of days of excessive O3 pollution and to reveal the relation-
ship among various weather types, meteorological elements, and O3 con-
centrations.

In this study, first, the correlation between the 16 observation channels
of the Himawari-8 and O3 concentrations was determined. Then, spatio-
temporal information, geographic information, meteorological factors,
and TOAR data of seven highly correlated channels were input into an
interpretable deep learning model as variables to build the TOAR-O3

model, and its performance was tenfold cross-verified. Next, the model
was used to estimate the ozone concentration, the hourly ozone concentra-
tion dataset over a 0.05° grid in Chinawas developed, and the temporal and
spatial distribution characteristics and trends of ozone concentration were
analyzed. Finally, the main summer weather patterns in China were deter-
mined by SOMduring the study period, and the effects of eachweather pat-
tern on ozone concentration were analyzed.

2. Data and method

O3 site observation data, Himawari-8 TOAR data, ERA5 meteorological
data and geographic data were used in the study. The period is from
September 1, 2015 to August 31, 2021 (In this paper, winter refers to
December of the previous year to February of the following year, spring
refers toMarch toMay, summer refers to June toAugust, and autumn refers
to September to November. All hours are Beijing time).

2.1. Datasets

2.1.1. O3 site observation
China National Environmental Monitoring Center (CNEMC) provides

the average value of O3 per hour, the O3 monitoring data is calibrated
and quality controlled according to the China National Standard (GB
3095–2012). During the study period, the total number of environmental
monitoring stations was 1893, as shown by the black dots in Fig. 1(A),
indicating that the stations were not evenly distributed. Studies have
shown that O3 has obvious regional differences, based on the factors such
as large urban agglomerations and topography in China (Duan et al.,
2022). Considering the regional division of China, we divided ten O3



Fig. 1. (A) Distribution of China's environmental monitoring stations; the black dots represent environmental monitoring stations; the legend represents the coverage rate of
TOAR after cloud removal. The boxes represent ten areas, a: Beijing-Tianjin-Hebei (BTH, greenyellowbox), b: central China (CC, red box), c: Chengdu-Chongqing expressway
(CY, yellowbox), d: Yangtze River delta (YRD, cyan box), e: Pearl River delta (PRD, orange box), f: Guan-Zhong plain (GZP, dark pink box), g: Hexi corridor (HX, black box), h:
Northeast of China (NEC, lime box), i: Northern of Xinjiang (NXJ, blue box) and the j: Tibetan plateau (TP, pink boxes); (B) Linearity and nonlinear relationship between
Himawari-8 channels and O3 concentration (Left axis: Pearson correlation coefficient, shown by blue dots, Correlation Coefficient; Right axis: MIC value, shown by orange
diamond, Maximal Information Coefficient). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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research areas (as shown in the box in Fig. 1(A), and see supplementaryma-
terials Table S1 for regional longitude and latitude information).

2.1.2. Himawari-8 TOAR dataset
Himawari-8 was launched by the JapanMeteorological Agency in 2014

and officially began providing data in 2015. Compared to the Imager on
Himawari-6/7, the Advanced Himawari Imager (AHI) on Himawari-8 can
provide 16 optical channels of information (See Table S2 for data informa-
tion). It includes 3 visible light channels, 3 near infrared channels and 10
infrared channels (Bessho et al., 2016). TheO3 channelwith a central wave-
length of 9.6 μm is included in infrared channels, it can be used for O3
3

observation. The AHI has a time resolution of 10 min for the overall area
(80°E−160°W, 60°S− 60°N) and 2.5 min for the target area. Average cov-
erage rate of Himawari-8 TOAR after cloud removal (ratio of effective data
after cloud removal to all data) is shown in Fig. 1(A). With the gradual de-
crease of cloud cover from low to high latitudes in China, the coverage rate
of TOAR increased from south to north. The average coverage rate of TOAR
was 34.2 %, and the maximum coverage rate was over 60 %.

2.1.3. Meteorological factors and geographic information data
Meteorological and geographic factors influence O3 concentration and

transport (Ma et al., 2021).Miao et al. (2021) found that there is a nonlinear

Image of Fig. 1
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relationship between O3 concentration and boundary layer height in North
China. Zhan et al. (2018) found that temperature affects the photochemical
reaction rate of O3, and ultimately affects the concentration of O3. Dong
et al. (2020) believed that the most severe O3 pollution in North China was
related to the high-pressure center in the eastern part of north China. There-
fore, themeteorological factors selected in this study including the surface 10
mwind U and V components (U10 and V10), boundary layer height (BLH), 2
m air temperature (TM), relative humidity (RH) and surface pressure (SP).
They are derived from the ERA5 dataset provided by the European Centre
for Medium-RangeWeather Forecasts (ECMWF) and have a temporal resolu-
tion of 0.25° × 0.25° or 0.1° × 0.1° in space per hour. In addition, high and
low vegetation index (LH,LL), land cover type (LUCC), which were used to
represent land cover type. HEIGHT is a srtm-3 elevation data jointly mea-
sured by NASA and the national mapping administration (NIMA) with a spa-
tial resolution of 90 m. Population density data (PD) is based on the 2015
United Nations adjusted population data provided by the socio-economic
data and applications center (SEDAC), spatial resolution is 0.04° × 0.04°.
See Table S3 for details of the TOAR-O3 model input data.

2.1.4. TAP O3 dataset and China high O3 dataset
We selected data from two commonly used MDA8 datasets namely the

tracking air pollution (TAP) andChinaHighAir Pollutants (CHAP), compared
with our model products. TAP dataset is a multi-scale, near-real-time dataset
of atmospheric aerosol and gaseous pollutant concentrations in China con-
structed by integrating ground observation, multi-source satellite remote
sensing, emission inventory and model simulation data, it includes a MDA8
O3 concentration dataset with a spatial resolution of ten km and a five-fold
cross-validation R2 of the data prediction model of 0.84 (Xiao et al., 2021;
Xue et al., 2020). CHAPgenerated frombig data (e.g., ground-basedmeasure-
ments, OMI multi-source satellite remote sensing products, atmospheric
reanalysis and model simulations) with artificial intelligence by considering
the spatiotemporal heterogeneity of air pollution),the cross-validation deter-
mination coefficient (CV-R2) of the dataset is 0.87 (Wei et al., 2021).

2.2. Methods

2.2.1. Data matching
Bilinear interpolation was used to adjust the spatial resolution of the

meteorological factors and geographical data to 0.05° × 0.05° Himawari-
8 TOAR data. Then, based on a grid of 0.05° × 0.05°, the O3 hourly mean
data recorded by environmental monitoring stations in China (80°E
−136°E, 16°N − 54°N) were matched with the TOAR data. If there are
multiple sites in a grid, the average of the O3 hourly concentration of
these sites was used (unless otherwise specified, the O3 concentration pre-
sented herein refers to hourly O3 concentration).

2.2.2. Linear and nonlinear relationship
The Himawari-8 channels may have a linear and nonlinear relationship

with O3 concentration. The linear relationship between channels and O3

concentration was tested using Pearson's correlation, and the maximum in-
formation coefficient (MIC) was used to test the nonlinear relationship
(Reshef et al., 2011). The MIC values range from zero to one; the higher
the MIC value, the higher the nonlinear correlation between the two vari-
ables, that is, the stronger the dependence between the two variables.

2.2.3. Deep forest model
The deep forest (DF)model is based on an integratedmodel that can ob-

tain a performance similar to that of a deep neural network (LeCun et al.,
2015), but it is faster and more efficient than a deep neural network. The
designed deep forest model had three hidden layers, each of which
contained 12 ensemble learners (six extreme trees and six random forests).
A detailed introduction to this model can be found in the literature (Chen
et al., 2022b; Song et al., 2022).

The model performance was tested using the tenfold cross-validation
method (Chen et al., 2022a; Di et al., 2017; Liu et al., 2020; Song et al.,
2021), and the parameters used to describe the model performance
4

included the determination coefficient (R2), root mean square error
(RMSE), mean absolute error (MAE), and bias. The formulae for these pa-
rameters can be found in literature (Chen et al., 2022a; Song et al., 2021).

2.2.4. Weather situation classification
Weather classification can be used to characterize the process of atmo-

spheric movement at multiple scales and study the relationship between
air pollution and weather circulation. SOM is an artificial neural network
method for nonlinear unsupervised learning (Kohonen, 1990), which has
been applied in the cluster analysis of atmospheric sciences (Crawford
et al., 2016; Shu et al., 2020; Stauffer et al., 2018). SOM objectively per-
forms nonlinear projections from the input data to two-dimensional node
arrays while keeping the topological results and probability distributions
of the output unchanged (Liao et al., 2018).

The geopotential height field at 850 hPa at 08 o'clock can effectively
capture the weather circulation changes (Han et al., 2018). The summer
geopotential height of 850 hPa at 08 o'clock from ERA5 was used as the
SOM input in this study. Each SOMoutput node corresponds to the weather
circulation type. Six major circulation types in China were identified. All
552 summer days of the selected study period were included in the cluster-
ing results.

3. TOAR-O3 model estimation

3.1. Correlation study between Himawari-8 channels and O3 concentration

The Himawari-8 AHI contains 16 channels, of which the 12th channel
(9.6 μm) is called the O3 absorption channel. Fig. 1(B) shows the linear
(Pearson correlation coefficient) and nonlinear (MIC value) relationships
between the Himawari-8 channels and near-surface O3 concentration.
The dotted red line represents the correlation coefficient of 0.3 (MIC =
0.159). It can be seen from the Fig. 1(B) that seven channels show signifi-
cant nonlinear correlationwithO3 concentration (MIC>0.159), and the lin-
ear correlation between these seven channels and O3 is also strong (Pearson
correlation coefficient > 0.4). The considered seven channels are channels
7, and 11 to 16, notably channel 12, referred to as O3 absorption channel,
was also included. To maximize the utilization of channel information for
the deep forest model to build its relationship with O3, the TOAR data of
these seven channels were selected as the TOAR-O3 model input.

3.2. Feature importance of TOAR-O3 model

The TOAR-O3 model can directly give the importance of the features
of the model, and the sum of the importance of each feature is one. Fig. 2
(A) and (B) show the characteristic importance of the TOAR-O3 model in
different seasons and regions. In summer, the TOAR had the greatest influ-
ence on themodel, with a feature importance of 23%. In winter, the contri-
bution of TOAR (23%) to themodel was second only to that of BLH (28%),
mainly because BLH affects the diffusion and accumulation of O3 (Miao
et al., 2021). In spring and autumn, the temperature had the greatest influ-
ence on the model, accounting for 28 % and 40 %, respectively. Tempera-
ture affects the photochemical reaction rate of O3 and ultimately affects
the O3 concentration (Zhan et al., 2018), He et al. (2021a) also highlight
the important role of temperature in the photochemical reaction of O3 pre-
cursors to generate O3. The characteristics of the models are also different
in different regions. Among the 10 regions divided in Fig. 1(A), the contri-
bution of the TOAR to the model was relatively stable, averaging approxi-
mately 16 %. Temperature was the most important variable in the BTH,
CC, CY, YRD, GZP, HX, and NEC regions, whereas BLH contributed the
most in the PRD, NXJ, and TP regions. In addition, in the TP and NEC re-
gions, HOUR is the secondmost important variable in themodel, indicating
that the O3 concentration changeswith time (Wang et al., 2017).Moreover,
compared with other regions, temperature is the lowest importance in the
TP, which may be related to the average altitude of the Tibetan Plateau.
The above results indicate that there are remarkable differences in the influ-
ence of variables on the TOAR-O3 model with seasons and regions.



Fig. 2. Feature importance of TOAR- O3 model in (A) annual, seasonal and (B) ten regions. TOAR represents the radiation at the top of the atmosphere for seven selected
channels, the legends and figures represent the proportion of feature importance in the model.
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3.3. Model results

3.3.1. Time scale verification results
The performance of the TOAR-O3 model was tested using a ten-fold cross-

validation method. The cross-validation results of the TOAR-O3 model from
10:00–15:00 during the study period are shown in the Fig. 3(A − F). From
10:00 to 14:00, the model fitting effect gradually increased, cross-validation
R2 was 0.86–0.92, fitting slope was 0.90–0.92, RMSE (μg/m3) was
12.97–14.05, MAE (μg/m3) was 8.60–9.87. At 15:00, the R2 of the model
was about 0.9, the RMSEwas 15.27 μg/m3, MAE was 10.08 μg/m3.Which in-
dicates that the TOAR-O3 model can accurately estimate the hourly O3 con-
centration and estimated results are in good agreement with the real data.
As the gradually increase of solar radiation, the temperature was gradually
rise, photochemical reaction was strengthened, and the formation of O3 was
increased (He et al., 2012; Zhan et al., 2018); therefore, from 10:00 to
14:00, the model fitting effect gradually enhanced. In contrast, R2 of the
TOAR-O3 model also decreased (14:00–15:00) when the solar radiation re-
duced gradually. In general, the cross-validation R2 of the TOAR-O3 model
5

was higher than 0.86, and even higher than 0.9 during 12:00–15:00, indicat-
ing that the TOAR-O3 model has excellent performance in predicting O3

concentration.
The TOAR-O3 model performance also varied across time scales. From

Fig. 3(G−J), the model performed well in autumn. The mean R2, RMSE,
and MAE of model were 0.92, 13.55 μg/m3, and 9.24 μg/m3, respectively.
The model of other three seasonal performed relatively well, with cross-
validation R2 values of spring, summer, and winter being 0.89, 0.86,
and 0.89, respectively. RMSE (μg/m3) were 14.04, 18.54, and 10.1, MAE
(μg/m3) were 9.62, 13.09, and 6.92, respectively. In summer, RH is the
third importance variable of the model after TOAR and temperature
(Fig. 2(A)). Although temperature and solar radiation in summer are favor-
able for the photochemical reactions to generate O3, higher humidity also
affects O3 generation (Zhan et al., 2018). In addition, clouds have a greater
influence onO3 generation in summer, and the number of samplesmatched
by the TOAR-O3 model is much smaller than that in other seasons; there-
fore, the model does not show better results in summer than in other sea-
sons. In winter, the temperature is cooler, the solar radiation intensity is

Image of Fig. 2


Fig. 3. Hourly (A − F), each season (G− J) and daily, monthly, seasonal, and annual (K− N) cross validation results of the TOAR-O3 model based on grid points. (Black
dotted lines represent expected error lines, light dotted lines represent 1:1 lines, and red solid lines represent linear regression fitting lines; N represents the sample size
obtained each time). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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smaller, and the photochemical reaction rate of O3 generation decreases;
therefore, O3 concentration is low (Wang et al., 2022b). In spring, the tem-
perature gradually rises, and solar radiation strengthens, which is condu-
cive to the generation of O3. In winter, the TOAR and boundary layer
height variables contribute >50 % to the model, temperature is only 7 %,
while temperature in spring is 28 % to the model (Fig. 2(A)). In autumn,
the contribution of temperature to the model can reach 40 %, which is
6

the highest among the four seasons, and the sum contribution of the
TOAR and boundary layer height to the model also exceeded 30 % (Fig. 2
(A)). In addition, the temperature in autumn was relatively high, and the
number of samples was much higher than that in summer, resulting in bet-
ter model performance. The estimated andmeasured values of O3were ver-
ified at different timescales, as shown in the Fig. 3(K− N). The R2 values
for daily, monthly, seasonal, and annual were 0.91, 0.97, 0.99, and 0.98,

Image of Fig. 3


Fig. 4. Left column: Comparison of the monthly average O3 concentration of TOAR-O3 model prediction results with TAP and CHAP datasets and observation data; right
column: hourly cross validation results of the TOAR-O3 model based on grid points in typical regions (red solid lines represent linear regression fitting lines, N represents
the sample size obtained each region). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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respectively. RMSE (MAE) values were 12.74, 5.64, 2.73, and 1.75 μg/m3

(8.25, 3.15, 1.35, and 0.81 μg/m3), respectively. The fitting slopes were
1.01, 1.01, 1.01, and 1.02, respectively. The results show that the near-
surface O3 concentration estimated by the TOAR-O3 model can provide re-
liable data for the change of O3 pollution in China.

3.3.2. Spatial scale verification results
The TOAR-O3 model shows good performance in all regions, as shown

in the Fig. S1(A). The mean value of R2 was above 0.9, but there were spa-
tial differences in the models. Regions with a higher R2 (A), lower RMSE
(B) and MAE (C) were usually distributed in densely populated and eco-
nomically developed areas, such as CY, BTH, and YRD. The R2 of BTH
and the surrounding areas was much higher than that of HX and other
areas, mainly because of the high concentration of O3 generated by photo-
chemical reactions due to more anthropogenic O3 precursors. Atmospheric
transport has a significant impact on surface O3 in central and eastern China
(Li et al., 2021; Shen et al., 2022). In the TP region, due to sparse stations
and the strong influence of meteorological factors such as wind speed, the
performance of this model is relatively poor, with low R2 (A), high RMSE
(B) and MAE (C).

According to the 10 regions divided in Fig. 1(A), the cross-verification
results of TOAR-O3 model for each region were calculated. As shown in
the Fig. 4 right column, themodel performance was excellent in all regions,
amongwhich themodel had the best performance at BTH,withR2 reaching
0.94, RMSE of 14.09 μg/m3 and MAE of 9.37 μg/m3. The R2 values of CC,
GZP, NEC, and NXJ all reached 0.92, and HX's R2 is slightly lower, with a
mean of 0.88. The mean R2 value of TP (0.83) was the lowest, which is
mainly because temperature is an important factor affecting the formation
of O3 by photochemical reactions (Chang et al., 2021). The contribution of
the temperature variable to the model was the weakest in the TP, at
only 5 %. In addition, the sample size of TP was much smaller than
that of other regions, adversely affecting the model performance. In
general, the mean R2, RMSE, and MAE of TOAR-O3 model in each typi-
cal region can reach 0.90, 13.81 μg/m3, and 9.51 μg/m3, indicating that
the model has universal applicability for O3 estimation in each region of
China. As shown in Fig. S2 deviation analysis results (the O3 concentra-
tion range (A), typical area (B), different times (C), and different
months (D)), the closer the median difference (orange dot) is to zero,
the closer the model estimate is to its true value. Specifically, the devi-
ation analysis of the O3 concentration range showed that when the O3

concentration was <300 μg/m3, the median deviation was close to
zero, and the model deviation was small. From Fig. S2(A), When O3

concentration was >300 μg/m3, the deviation was negative, indicating
that it was underestimated. It was also overestimated in the CY (Fig. S2
(B)). and at 10:00(Fig. S2(C)), whereas it was underestimated at 15:00.
From Fig. S2(D), O3 concentrations from June to September were
slightly overestimated.

3.3.3. Comparison of predicted data with other datasets
The average monthly O3 concentration predicted by the TOAR-O3

model was compared with the average monthly MDA8 O3 concentra-
tion at the TAP and CHAP grid points and the hourly O3 observation
data at the site. As shown in the left column of Fig. 4, the red line rep-
resented the monthly average of the hourly O3 concentration esti-
mated by the TOAR-O3 model, and the black line was the monthly
average of the hourly O3 concentration observed by the CNEMC. How-
ever, hourly O3 concentration data are not available in the CHAP-O3

dataset (blue line) and TAP-O3 dataset (purple line), so the monthly
mean value calculated by the MDA8 O3 concentration was selected.
The prediction result (red line) was closer to the observed data
(black line), and the overall trend was consistent with the CHAP-O3

and TAP-O3 datasets.

3.3.4. Spatial distribution of O3

In order to obtain the hourly spatial distribution of O3 concentration,
the O3 estimation results were averaged by hour (10:00–15:00). As
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shown in the Fig. 5(A–F), the spatial distribution of near-surfaceO3 concen-
tration changes significantly between 10:00 and 15:00. Initially
(10:00–11:00), it increased slowly, mainly because the solar altitude
angle increased gradually with time, resulting in a moderate increase
in solar radiation. From 12:00 to 15:00, near-surface O3 showed an ob-
vious upward trend, especially in densely populated areas such as CC
and YRD, which is mainly because of favorable meteorological condi-
tions (such as temperature and solar radiation intensity) (Chen et al.,
2020), and anthropogenic nitrogen oxides (NOx) and volatile organic
compounds (VOCS) produce more O3 through photochemical reactions
(Luo et al., 2020).

The monthly variation characteristics of the ozone concentration also
differed with month. As shown in the Fig. 5(H − S), except for PRD and
CY, the monthly variation trend of O3 concentration in other regions was
roughly the same, increasing gradually from January to June and reached
maximum, then decline from June to December, reaching the minimum
value in December, which was mainly attributed to the seasonal variations
of meteorological conditions and precursor emissions. The monthly varia-
tion trend of O3 concentration in ten typical regions was analyzed
(Fig. S3). The annual O3 concentration in the CY, GZP, CC, YRD, and PRD
increased significantly, and the increase in GZP was the most significant.
The slope of the trend line reaches 0.22, indicating that the annual growth
rate could reach 2.64 μg/m3. In general, the slope of the O3 concentration
trend line in ten typical regions (the straight line in Fig. S3) was greater
than zero, indicating that the O3 concentration in all regions presented an
upward trend, which is consistent with the results of Huang et al. (2021).

The seasonal changes of O3 concentration are shown in the Fig. 6(A–D).
The O3 concentration was highest in the summer and lowest in the winter,
which is mainly related to the temperature and solar radiation (Chen et al.,
2020). In spring and summer, O3 pollution was most serious in BTH, YRD,
and CC (Han et al., 2013). In autumn, the central area of O3 pollution
shifted to the south of China. In winter, only a few cities in PRD experienc-
ing high O3 concentrations. To further clarify the location of high O3 con-
centration area in each season, the proportion of days with daily O3

concentrations >100 μg/m3 at grid points in each season was calculated.
As shown in the Fig. 6(E–H), there were few days with O3 concentrations
>100 μg/m3 in winter. The number of days exceeding the standard of O3

pollution in Southeast China was higher than that in Northwest China.
The areas with more days exceeding the standard in spring were concen-
trated in and around the BTH, and the proportion exceeding the standard
was about 20 %. Days exceeding the standard were lower in autumn and
the most serious in summer. As shown in the Fig. 6(F), the O3 concentra-
tions in the YRD, BTH, NEC, GZP, and HX exceeded the standard
(100 μg/m3) most significantly, with the proportion up to approximately
40 %.

4. Influence of weather circulation patterns on O3 concentration in
summer

Traditional deep learning models are often regarded as “black boxes”
and cannot effectively explain the results. In order to verify the accuracy
of the feature importance of the DFmodel from the perspective of the influ-
ence of meteorological conditions on O3 concentration, we have clustered
the atmospheric circulation by SOM and the influence of meteorological
factors on O3 concentration under each circulation pattern was discussed.
O3 pollution in eastern China was more serious than that in western
China (Tang et al., 2017) and in summer was the worst in all seasons
(Fig. 6(B)), with the maximum number of exceeding days (Fig. 6(F)).
Dong et al. (2020) found that the O3 concentration is closely related to me-
teorological conditions generated by regional atmospheric circulation, and
the most severe O3 pollution in North China is related to the eastern high-
pressure center. Shu et al. (2020) emphasized that summer near-surface
O3 concentrations are sensitive tomajor weather patterns. Considering sea-
sonal O3 pollution levels and atmospheric circulation influences on O3 con-
centrations, the summer weather conditions during the research period
were analyzed.



Fig. 5. Spatial distribution of hourly (A–F) and monthly (H–S) mean O3 concentrations in China.
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4.1. Classification of weather patterns

The influence of different weather systems on near-surface O3 concen-
trations in summer was studied using SOM to classify the weather circula-
tion. The main characteristics of summer weather circulation in China
during the study period were represented by six major weather circulation
patterns (P1, P2, P3, P4, P5 and P6, as shown in Fig. 7). Slightly different
from Fig. 1 (A), the TP and NXJ regions are not shown in Fig. 7 due to
the influence of altitude. P1 (Fig. 7(A)) is the most common circulation
9

model, with a frequency of 28.08 %, and is mainly characterized by weak
East Asian summer monsoons and abnormal anticyclones located in south-
east China. P2 (Fig. 7(B)) is a typical typhoon system on the southeast coast
of mainland China, with a frequency of 6.88 %. P3 (Fig. 7(C)) shows the
weather circulation with the second highest frequency of 23.55 %, and is
characterized by a zonal circulation dominant. P4 (Fig. 7(D)) is a weather
system dominated by a subtropical high with a frequency of 9.78 %. P5
(Fig. 7(E)) is characterized by a frequency of 12.14 %. The main feature
of this circulation pattern is the strong northeast cold vortex, Subtropical

Image of Fig. 5


Fig. 6. (A-D) Spatial distribution of seasonal mean O3 concentration in China; (E-H) proportion of days with O3 concentration exceeding 100 μg/m3 in each season.
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highs recur under the impetus of cyclones (Zhao and Wang, 2017). P6 is a
typical pattern of the Meiyu phenomenon in the middle and lower reaches
of the Yangtze River (Fig. 7(F)) with a frequency of 19.57 %.

4.2. Relationship between circulation patterns and O3 concentration

The P1 pattern occurred in June with the highest proportion (Fig. S4).
The anticyclone brought clear marine air to southern China and reduced
10
the O3 concentration in the area. In the PRD, the O3 concentration of P1
was 80 μg/m3, which was lower than that of the other patterns. However,
in northern China, due to the influence of weak cyclonic circulation, O3

concentrations were relatively high, such as BTH, NEC, and HX (Fig. 8(A)).
In the P2 pattern, the subtropical high was pushed farther north by the

typhoon system, and the occurrence rate in August was higher than that in
the other two months (Fig. S4). The typhoon system resulted in the lowest
concentration of surface O3 in the YRD (Fig. 8(A)), but did not reduce

Image of Fig. 6


Fig. 7. 850 hPa geopotential height field andwind field for six weather circulation patterns. The number in the upper right corner indicates the occurrence frequency of each
pattern.
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the O3 concentration in the PRD, which may be due to the enhanced trans-
port of O3 from Central China to Southeast China by cyclone circulation
(Fig. 7(B)).

The P3 patternmainly occurred in July and August (Fig. S4). In contrast
to the P1 pattern, P3was dominated by zonal circulation, which reducedO3

transport, and the O3 concentration in each region was higher than that in
P2 (Fig. 8(A)).

The P4 pattern occurredmostly in July and August (Fig. S4). The steady
weather conditions occur more frequently in the PRD; therefore, the O3

concentration was higher (Fig. 8(A)). However, owing to the influence of
the subtropical high rain belt in northern China, the O3 concentrations of
HX, GZP, and BTH was relatively low. (Fig. 8(A)).

The P5 pattern occurred mainly in June. In this weather pattern, the
hourly mean O3 concentration reached the maximum value of 130 μg/m3

among the six patterns (Fig. S4). The O3 concentrations were higher in all
regions, reaching maximum values in the PRD and CC (Fig. 8(A)).

The Meiyu front (P6) is a typical circulation pattern of an important
plum rain phenomenon in the middle and lower reaches of the Yangtze
River from early June to mid-July (Fig. S4). In the northern region, owing
to the control of the northeast cold vortex, a continuous sunny day oc-
curred, and the O3 concentrations in BTH, NEC, HX, and GZP reached the
maximum. Especially in the BTH region, the O3 concentration exceeded
150 μg/m3, whichwas much higher than the other five weather circulation
patterns (Dong et al., 2020).

4.3. Relationship between meteorological elements and O3 concentration in var-
ious circulation patterns

The change of O3 concentration under different circulation patterns are
mainly attributed to the change of local meteorological elements, which af-
fects the photochemical reactions and transport process of O3. The feature
importance of the summer (Fig. 2(A)) showed that the meteorological
11
elements have different contribution. Compared with other meteorological
elements, the importance of TM, RH and BLH is>10 %. Therefore, in Fig. 8
(B), the correlation between these three meteorological elements and O3

concentrations was discussed.
In general, the O3 concentration was positively correlated with TM and

BLH, and negatively correlated with RH. In BTH, the correlation was high
for all three factors under P4 pattern, while the correlation between O3 con-
centration and temperature was strong in all circulation patterns except P5.
In CC, the correlationwas higher for all three factors in P1 and P2, while the
correlation between O3 concentration and relative humidity was greater
than the other two elements. In CY and GZP, these three meteorological el-
ementswere all highly correlatedwithO3. In the YRD, theO3 concentration
was highly correlated with RH and the BLH, but less correlated with tem-
perature except P3. In HX, NEC, and NXJ, O3 concentration had a good cor-
relation with temperature, while in the TP, it had a higher correlation with
BLH than TM and RH, which was consistent with the area feature impor-
tance of TOAR-O3 model (Fig. 2(B)).

5. Discussion and conclusions

For a large amount of satellite data, it is a challenge to build a fast com-
puting model and ensure the optimal model performance. The Pearson cor-
relation coefficient (PCC) and maximum information correlation (MIC)
were used to study the correlation between the TOAR of the Himawari-8
satellite and the O3 concentration; seven TOAR channels (channels 7 and
11–16) had significantly high linearity (PCC > 0.4) and nonlinear correla-
tion (MIC>0.15), including O3 at 9.6 μm absorption band. Compared
with the model which all 16 bands inputs, the model with the selected 7
bands had the best performance (See Table S4 for details) and saved
about 1/3 of calculation time.

Traditional deep learning models are often regarded as “black boxes”
and cannot effectively explain the results. An interpretable deep learning

Image of Fig. 7


Fig. 8. (A) Hourly mean O3 concentration in typical regions under different circulation patterns; (B) the correlation coefficient between temperature (TM), relative humidity
(RH), boundary layer height (BLH) and O3 concentrations under the six circulation patterns. The numbers behind TM, RH and BLH correspond to the six patterns in Fig. 7.
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model (DF) was used to invert the near-surface O3 concentration. The fea-
ture importance of the model showed that temperature, TOAR, and BLH
contributed 38 %, 22 %, and 13 %, respectively. Since the time resolution
of polar-orbiting satellites is difficult tomeet the current research on refine-
ment O3 and synergistic pollution, this paper selects the TOAR data of
geostationary satellites with relatively high time and spatial resolution for
O3 concentration inversion. The temporal resolution of the retrieved O3

concentration is hours, and the spatial resolution is 0.05°. The R2 (RMSE:
μg/m3) values of the daily, monthly, seasonal and annual 10-fold cross-
validation results were 0.91 (12.74), 0.97 (5.64), 0.99 (2.73) and 0.98
(1.75), respectively. The ozone concentration inmost areas of China has in-
creased significantly, especially in GZP, with an annual growth rate of
2.64 μg/m3.

Sheridan and Lee (2011) mentioned that traditional atmospheric circu-
lation classification models, such as empirical orthogonal function and
principal component analysis, represent discrete phenomena of atmo-
spheric systems, but they usually cannot be organized into a continuum.
The SOMclassification results can represent a continuum of circulation pat-
terns. Therefore, SOMwas used in the paper to classify the summer circula-
tion field, corresponding to the period of high ozone pollution. The O3

concentration in northern China was the highest under the circulation pat-
tern of the Meiyu front over the Yangtze River Delta, while in southern
China, it was the highest under the circulation pattern of the northeast
cold vortex controlling most of China. Nevertheless, the lowest O3 concen-
tration under the circulation pattern was characterized by the typhoon sys-
tem in the Yangtze River Delta.

The feature importance of TOAR-O3 model shows that the contribution
of temperature is small while the BLH is the largest over the Qinghai-Tibet
Plateau. Since temperature is closely related to the photochemical reaction
that generates ozone, the photochemical reaction is not the main source of
O3. The BLH on the Qinghai-Tibet Plateau was closely related to the terrain
height and the seasonal change (Xiang et al., 2021). Ozone at Mount
Waliguan in the northeastern Qinghai-Tibetan Plateau mostly originated
from the stratosphere, Americas, Europe andAfrica (Zhu et al., 2016). How-
ever, Air masses from central and eastern China dominates the airflow at
Mount Waliguan in summer, suggesting strong impact of anthropogenic
forcing on the surface ozone on the Plateau (Xue et al., 2011). Therefore,
the source of O3 in TP needs to be further analyzed.

The O3 concentration in Inner Mongolia is relatively high in summer
(Fig. S5), but there is no major O3 precursor source region in this region
(Liang et al., 2020). There are several possible reasons. First, atmospheric
transport largely regulates the regional interaction of O3 pollution in
China (Shen et al., 2022). The atmospheric circulation not only transports
O3 from BTH, GZP and other areas, but also transports O3 precursors,
and, 70%of the circulation patterns is conducive to increase the ozone con-
centration in InnerMongolia (Fig. S6). Second, according to the feature im-
portance of the model in Inner Mongolia (Table S5), it can be seen that
temperature has the greatest influence on the O3 concentration, indicating
that the ozone generated by photochemical reaction accounts for a large
proportion of total O3 in this region. Third, the feature importance of the
BLH is next to TM (Table S5). When the BLH increases, the diffusion of
ozone depleting pollutants (NO, etc.) accelerates, and the titration effect
of NO on near-surface O3 is weakened, and the ozone consumption de-
creases. In addition, the increase of BLH will also accelerate the diffusion
of O3 and reduce the near-surface O3 concentration. When the increasing
rate of O3 is higher than its decreasing rate, the near-surface O3 concentra-
tion will increase. With the increase of solar radiation, the BLH will also in-
crease in normal, and the increase of solar radiationwill lead to the increase
of photochemical reaction of ozone generation. These comprehensive rea-
sons lead to relatively high ozone concentration in summer and at 13–15
o'clock (Beijing Time) in Inner Mongolia, as shown in Fig. S5 and Fig. 5
(D-F).

In this study, Himawari-8 TOAR data were combined with meteorolog-
ical factors and geographic information data to construct a TOAR-O3model
based on DF. The O3 concentration in China from September 2015 to Au-
gust 2021 was estimated using the model, and the summer circulation
13
patterns were classified using the SOM. The conception process is shown
in the Fig. S7. In future work, further improvement is needed. In this
paper, only the daytime O3 concentration was retrieved, but the 24-h O3

concentration was not obtained. As the DF model is a deep learning
model, it will take a long time to calculate if there is a large amount of
data. It remains difficult to accurately evaluate the performance of the
TOAR-O3model in areaswithout O3monitoring sites. In addition, the inter-
regional transport contribution of ozone in China has not been quantified.
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