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Predicting climate anomalies months in advance is of tremendous socioeconomic value. Facing both the-
oretical and practical constraints, this realm of ‘‘seasonal prediction” progressed slowly in recent decades.
Here we devise an innovative scheme that pushes the boundary of seasonal prediction by recognizing and
isolating distinct spatiotemporal footprints left by modes of climate variability that cause varying annual
cycles in response to the solar forcing. The predictive power harnessed from these spatiotemporal foot-
prints results in a prediction skill surpassing existing models for seasonal forecasts of eastern China rain-
fall, which is one of the most challenging seasonal prediction problems. By considering varying annual
cycles explicitly, the new scheme is able to predict multi-provincial flood and/or drought occurrences
seamlessly over an entire year. This novel scheme is generically applicable for improving seasonal fore-
casts over other monsoon regions and for critical climate variables such as surface temperature and Arctic
sea-ice extent.
� 2022 Science China Press. Published by Elsevier B.V. and Science China Press. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Skillful predictions of precipitation variability months ahead
bear fundamental importance in social and agricultural planning.
Since 1958, the National Climate Center of the China Meteorologi-
cal Administration has been holding an annual meeting in early
spring, called ‘‘Huishang (会商)”, to obtain consensus forecasts of
precipitation anomalies of the following seasons over different
regions of China [1,2]. Decision makers then use the forecasts to
guide agricultural and industrial planning and to develop plans
for flooding disaster mitigation. Due to the unique location of
China and its orographic complexity, the precipitation in China is
influenced by many major climate systems, such as the East Asian
monsoon system, the South Asian monsoon system, the migration
of the Western Pacific Subtropical High, and complicated mid-
latitude circulation patterns and weather systems [3–9]. The most
prominent features of precipitation in eastern China are the abrupt
advancing and retreating of seasonal rain bands from South China
to North China in the spatiotemporal domain and inhomogeneity
of precipitation intensity [3,10]. However, this north-south
advancing and retreating is not regular year to year [11], making
the seasonal predictions of regional precipitation in China an extre-
mely challenging task [12,13]. Any improvement in seasonal fore-
casts of precipitation can bring significant socioeconomic benefits
to many millions of people.

Despite their high skill in predicting Pacific SSTs (sea surface
temperatures) for a lead time of up to 14 months [14,15], state-
of-art coupled GCMs (general circulation models) still do not pos-
sess a useful skill in predicting precipitation for a lead time longer
than 1 month [12,16,17]. As a result, seasonal prediction of precip-
itation anomalies relies heavily on statistical models. The recent
advancement in ensemble forecasting has made it possible for
the first time that the June mean rainfall in the middle and lower
Yangtze River basin can be predicted by a dynamical seasonal fore-
casting system at a lead time of up to 4 months with significant
skill [18]. Many modes of climate variability, such as El Niño-
Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO),
and Indian Ocean Dipoles (IOD), are found to impact the precipita-
tion variability in eastern China [6,7,19–21]. The indices represent-
ing these climate variability modes have been used to develop
various statistical models for seasonal forecasts of seasonal/
monthly means of precipitation anomalies over some key regions

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.scib.2022.12.026
http://creativecommons.org/licenses/by/4.0/
mailto:mcai@fsu.edu
https://doi.org/10.1016/j.scib.2022.12.026
http://www.sciencedirect.com/science/journal/20959273
http://www.elsevier.com/locate/scib


J. Ma et al. Science Bulletin 68 (2023) 105–116
(e.g., Yangtze River valley and central-North China) during the
monsoon rainy season [22–26].

Conventionally, predictands of statistical models are climate
anomalies, which are defined as departures from the climatolog-
ical mean annual cycle, which we refer to as the traditional
annual cycle (TAC). TAC is the portion of a variable that exactly
repeats itself at any temporal location of a year but is indepen-
dent of the year (https://glossary.ametsoc.org/wiki/Annual_cycle).
Because TAC does not bear additional predictable information
besides repeating itself annually, seasonal forecasts for climate
variables become tasks of predicting anomaly fields. This way of
partition, to some extent, brings convenience at the first glance.
However, this partition can work effectively only when the
response of the climate system to yearly periodic solar forcing
is linear and dominated by repetitive TAC with corresponding
anomaly fields minor. From a physical perspective, a large portion
of such defined anomaly fields of a specific climate variable (e.g.,
precipitation) is originated from modes of climate variability that
interfere with its annual cycle in response to the solar forcing
[22–26], and the remaining is due to internal linear/nonlinear
interactions on different timescales, ranging from the synoptic,
sub-seasonal to interannual scales. Thus, the traditionally defined
anomaly fields may contain a significant component originating
from spatiotemporal footprints left by modes of climate variabil-
ity that act to modulate individual years’ annual cycle in response
to the solar forcing. The above argument implies that the tradi-
tional partition approach may potentially distort the interpreta-
tions of the physical origins of the anomalies, as elucidated in
the work of Wu et al. [27].

The objective of this study is to explore a new avenue for
improvement in seasonal forecasts by focusing on the part that
comes from the annual response to solar forcing modulated by
modes of climate variability, which we refer to as yearly varying
annual cycles (VAC), consisting of yearly repeatable and non-
repeatable spatiotemporal patterns. The repetitive pattern corre-
sponds to TAC, but its amplitude varies yearly. Besides yearly vary-
ing amplitude, the non-repetitive patterns are drastically different
from that of TAC. The difference between VAC and TAC is regarded
as the interannual variability of varying annual cycles (IVAC). Phys-
ically, the IVAC of a climate variable corresponds to spatiotemporal
footprints left by modes of climate variability that interfere with its
annual cycle response to the solar forcing. In other words, IVAC
anomalies express themselves through mechanisms that are
shared with those that determine the annual cycle. Thus, IVAC is
expected to be more predictable than the remaining part of the tra-
ditionally defined anomalies, because it is intrinsically related to
individual years’ annual cycle due to modulations of the annual
cycle by modes of climate variability. Therefore, the skill of sea-
sonal forecasts may be significantly improved by focusing on IVAC,
provided that IVAC accounts for a significant portion of tradition-
ally defined anomaly fields. The remaining part of the paper will
attest to this expectation by demonstrating the utility of this VAC
concept for improving the seasonal forecasts of precipitation in
eastern China.
2. Diagnostics and predictions based on varying annual cycles

2.1. The varying annual cycle perspective

In the view of the traditionally defined annual cycle, a daily cli-
mate variable P(s,t) after removing its long-time climatological
mean, where s denotes space domain and t is time, is decomposed
as

P s; tð Þ ¼ PTAC s;dayð Þ þ P0 s; tð Þ; ð1Þ
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where PTAC and P0 represent, respectively, TAC and traditionally
defined anomaly fields of P(s,t) with respect to PTAC, and ‘‘day” is
the (Julian) day of a year. VAC can be described in a domain that
includes both spatial and Julian-day variations jointly, referred to
as the ‘‘space-day” domain. It follows that P(s,t) is decomposed
alternatively as

P s; tð Þ ¼ PVAC s; day; yearð Þ þ P� s; tð Þ; ð2Þ
where PVAC and P* represent, respectively, VAC and anomaly (with
respect to PVAC) fields, and ‘‘year” is the year. The relationships
between PTAC and PVAC, and between P0 and P*, are

PVAC s;day; yearð Þ ¼ PTAC s; dayð Þ þ PIVAC s;day; yearð Þ;
P0 s; tð Þ ¼ PIVAC s; day; yearð Þ þ P� s; tð Þ; ð3Þ

where PIVAC corresponds to the interannual variability of the annual
cycle of P(s,t).

As illustrated in Fig. 1, TAC is the annual pattern in the space-
day domain that repeats itself exactly at any temporal location
year after year (PTAC, Fig. 1b) whereas VAC consists of repeatable
and non-repeatable annual patterns. As a result, the anomaly field
with respect to TAC (P0, Fig. 1c) could be dominated by annual sig-
nals that reflect spatiotemporal footprints left by modes of climate
variability that interfere with the annual cycle response to the
solar forcing. VAC, on the other hand, would capture the spatially
and temporally mutual and continuous evolution of a climate vari-
able in a given year (PVAC, Fig. 1d) in response to the annually
evolving solar forcing and modes of climate variability. The advan-
tage of using the space-day domain is to naturally represent the
repeatable ‘‘space-day” evolution that is directly related to the
annual cycle and non-repeatable ‘‘space-day” variation resulting
from the interference of climate variability modes with the annual
cycle response to the solar forcing. The departure field from VAC
(P*, Fig. 1e) represents a collection of spatially and temporally ‘‘in-
dependent” events. It is expected that PIVAC is more predictable
than P* because it is intimately related to the annual cycle response
to the solar forcing in the presence of modes of climate variability.
The inclusion of P* in the traditionally defined anomaly (P0) would
‘‘contaminate” the varying annual cycle response to the solar forc-
ing, resulting in less skillful forecasts.

2.2. Annual patterns of precipitation over eastern China

The climate variable considered in this study is P(s,t), the daily
precipitation field after removing its long-time climatological
mean over eastern China (Fig. S1 online) zonally averaged from
105� to 123�E covering the period of 1980–2020 (see data section
of Analysis procedures for details). Yearly maps of P(s,t) over east-
ern China in the space-day domain that include PTAC(s,day) are
given in Fig. 2 whereas Fig. S2 (online) corresponds to their coun-
terparts of traditionally defined precipitation anomalies P0(s,t)
written in the format of, P0(s,day,year). The two most salient fea-
tures of yearly evolving space-day maps that are well documented
in the Refs. [3,10] are (1) more rain from late spring to summer
(wet season) than the rest of the year (dry season), (2) the north-
ward migration of seasonal transition of heavy rainfall centers
has two sudden jumps: one around late May at about 25�N and
the other around July at about 32�N. Fig. 2 also shows that there
exist large year-to-year variations of space-day patterns of P.
Examples include (1) year-to-year variation of the wet season
starting dates (e.g., 1983 for an early start and 2011 for a late start),
(2) more/less rainfalls in both south and north with (almost) the
same starting and ending dates of the wet season as the climato-
logical wet season (1994/2004), and (3) more/less rainfalls in the
south of 32�N but less/more rainfalls in the north during the wet
season (e.g., 1983/2003).

https://glossary.ametsoc.org/wiki/Annual_cycle


Fig. 1. Schematic diagram illustrating the conceptual difference between the traditional annual cycle (TAC) and varying annual cycle (VAC) perspectives. A meteorological
field (say precipitation over eastern China) in a given year in the space-day domain (a) can be decomposed into TAC (b) and the anomaly with respect to TAC (c). Alternatively,
it can be decomposed into VAC (d) and the anomaly with respect to VAC (e). The meteorological field shown here is generated synthetically for the purpose of illustration with
an arbitrary scale, and is intended to be reminiscent of a flooding year in North China, such as 1990.
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In this study, the traditionally defined annual cycle, PTAC(s,day),
is obtained using data from 1980–2009, and the remaining 11 years
(2010–2020) are used to evaluate the forecast skill of the statistical
model developed using data from 1980 to 2009. To extract PIVAC,
we apply an empirical orthogonal function (EOF) method outlined
in Box A of Fig. S3 (online) using the first 30 space-day maps shown
in Fig. 2. Displayed in Fig. 3 are the first six EOF modes in the space-
day domain (left column) and their principal components (PCs,
right column). For each EOF mode, we obtain the space-day power
spectra defined as the power spectra of the annual time series
averaged over all latitudes. We regard those EOF patterns whose
space-day power spectra of signals longer than the semi-annual
scale account for at least 75% of their total variances as part of
VAC (Fig. S4a online). It is seen from Fig. S4b (online) that EOF7
and higher have noticeably smaller contributions than those from
EOF1-EOF6 to the total variance of P0. As a result, we only consider
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the first 6 EOFs as the independent annual patterns (APs) of VAC,
which are denoted as AP1, AP2, ���, AP6. Because these six APs
account for nearly 94% of the total P variance, PVAC reconstructed
from these six APs (Fig. S5 online) is highly correlated with the
total P shown in Fig. 2 (Fig. S6 online). As expected, AP1 corre-
sponds to PTAC (not shown here), as the correlation between them
is very close to 1 (0.998) and the climatological mean of PC1
(175 mm/d, the right ordinate of Fig. 3b online) is very close to
the amplitude of PTAC (about 175.5 mm/d). The departure of PC1
from the amplitude of PTAC corresponds to the part of P0 due to
the year-to-year amplitude variation of PTAC. Contributions to the
total variance of P0 from the six APs are, respectively, 5.2%, 19.3%,
11.8%, 10.5%, 8.8%, and 7.7%.

The sum of the products of the six APs and their PCs (after
removing their climatological means) is PIVAC (Fig. S7 online),
which is constructed according to



Fig. 2. Yearly maps of precipitation fields (P) over eastern China in the space-day domain. The ordinate is latitude and abscissa is month of a year with the year information
indicated at the top left corner of each panel. Precipitation is in units of mm/d. The dashed green lines are the zero contour lines of the climatological (1980–2009) mean of the
traditionally defined annual cycle (PTAC) of P, and the solid gray lines represent the zero contour lines of P. Note that the 1980 precipitation field is not included here for the
sake of easy typesetting.
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PIVAC s; day; yearð Þ ¼
X6
j¼1

APj s;dayð ÞPC�
j yearð Þ; ð4Þ

where

PC�
j yearð Þ ¼ PCj yearð Þ � PCj yearð Þ; ð5Þ

where the overbar denotes the 30-year (1980–2009) mean values.
Because PIVAC accounts for nearly 63% of the total variance of P0,
PIVAC is the most important source of the traditionally defined pre-
cipitation anomalies. Fig. S8 (online) shows how PIVAC contributes to
P0 on a year-to-year basis, both in terms of all six APs collectively
and each AP individually. There is a large year-to-year variation in
the contribution to the P0 from PIVAC, ranging from 5% in 2017 to
87% in 1983. The amplitude of individual AP also exhibits pro-
nounced year-to-year variations. For example, AP2 alone accounted
for nearly 62% of the total variance of P0 in 1994 but was not present
at all in 1991.
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2.3. Successive orthogonalization of external factors

To identify the dominant modes of climate variability as poten-
tial predictors for PIVAC, we consolidate a total of 30 external fac-
tors, 20 of which have been considered in Refs. [25,26,28–47] for
predicting spring/summer precipitation anomalies in some specific
regions over eastern China and the remaining 10 are derived from
these 20 factors. Their definitions, data sources, and references are
provided in Tables S1 and S2 (online). The yearly time series of
these external factors are derived from their 6-month mean values
starting from September in the previous year and ending in Febru-
ary of the current year, covering the period of 1979/1980–
2019/2020. For easy reference, we simply use the ‘‘previous year”
as the year index for the yearly time series of these external factors
(e.g., 1979 for the year 1979/1980). We use a successive orthogo-
nalization method sketched in Box B of Fig. S3 (online) to remove
any redundant information among these external factors, which
makes the selected factors independent with one another. The



Fig. 3. Annual patterns (APs) of the precipitation fields (P) over eastern China. The panels on the left column are the 6 APs, corresponding to the first six empirical orthogonal
functions (EOFs) derived from the first 30 years (i.e., N = 30) of Pwith ordinate being latitude and abscissa being month of a year. The values on the color bar are dimensionless
and the values on the top right corner of each panel in the left column are the percentage variance of P (Fig. 1) explained by the individual APs. For the right columns, the bars
plotted in the panels are yearly time series of the amplitudes of individual APs. The ordinate on the left is the anomalies (with their first 30-year mean values removed)
whereas the ordinate on the right is the total values (i.e., including their first 30-year mean values), and both are in units of mm/d. The values on the top right corner of each
panel are the percentage variance of traditionally defined precipitation anomaly (P0) explained by APs. The years on the left of the vertical dashed line correspond to the time
period for the diagnosis and those on the right for predictions. The 11 gray curves correspond to the amplitudes of the APs obtained from the multi-regression models
covering the periods of 1980–2010, 1980–2011, ���, and 1980–2020, respectively. Note that the 11 black dots in the end of the 11 gray curves represent forecasts for years of
2010, 2011, ���, 2020. The values on the bottom left corner of each panel are the correlation scores between the observed (bars) and predicted (gray curves) time series over the
period of 1980–2009, and values inside the parentheses are the averaged correlation scores for the periods of 1980–2010, 1980–2011, ���, and 1980–2020.
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abscissa of Fig. S9 (online) lists the 14 factors resulting from the
successive orthogonalization based on the data from 1979–2008.
The differences between the original yearly time series (vertical
bars) and the orthogonalized counterparts (colored curves) of
these 14 factors in Fig. S10 (online) correspond to the redundancies
removed by the successive orthogonalization procedure.
109
2.4. Relating annual patterns to external factors

We next build six multi-regression models to relate amplitudes
of the six APs to the 14 independent factors using factor and rain-
fall data in the 30-year period of 1979/1980–2008/2009 (referred
to as the ‘‘diagnostic” period), following the procedures outlined
in Box C of Fig. S3 (online) and Eqs. (9) and (10). It is seen from
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Fig. S11 (online) that the order of the factors in terms of explained
variances changes from one AP to another. It is of importance to
note that the explained variance of each AP decreases rapidly as
the number of the external factors such that the total variance
explained by the 14 factors becomes saturated beyond 8–9 factors.
Therefore, it suffices to consider the first 8 factors when building
multi-regression models for reconstructing the yearly time series
of APs. Because different APs involve a different combination of
these 14 factors, we collectively have considered all of the 14 fac-
tors for the six APs. Shown in the grey curves of Fig. 3 are the
regressed yearly time series of APs obtained from the multi-
regression models that only include the first 8 factors given by
Figs. S11a–f. Their correlations with the original year-to-year time
series of these APs over the diagnostic period range from 0.66 to
0.78, indicating the regression models are skillful in capturing
year-to-year amplitude variations of the six APs.

These 14 factors collectively capture about 51% variance of PIVAC
(Fig. S12a online). The key features associated with the external
factors that have the first 5 largest contributions to PIVAC are

(i) Multivariate ENSO index (MEI) (Fig. S12b online). The years
immediately after the positive phase of MEI tend to have a
very early start of rainfall seasons over South China and
the Yangtze River valley with enhanced Meiyu rainfall. The
reverse can be said of the negative phase of MEI. Previous
studies [7,32,33] also indicate that in ENSO decaying years,
there tends to be enhanced precipitation extending north-
eastward from southern China in January and February to
the Yangtze River valley in March to May. The enhanced pre-
cipitation over the Yangtze River valley continues through
the months of June, July, and August but less rainfall over
southern China.

(ii) Tibetan Plateau snow depth (TPSD) (Fig. S12c online). The
years immediately after a thicker snow depth over Tibetan
Plateau tend to have a stronger rainy season over South
China and lengthened Meiyu season over the Yangtze River
valley, but drier summer over South China and North China
Plain. The summer flooding over the Yangtze River and Yel-
low River basins has been attributed to anomalous moisture
transport to eastern China after the above-normal TP snow
cover in cold seasons [44,45]. Fig. S12c (online) further sug-
gests that summer flooding over the Yangtze River and Yel-
low River basins is accompanied by a rapid transition from
enhanced rainfall in spring to drier summer over South
China.

(iii) Spatial mean sea level pressure over Mascarene (MSLP)
(Fig. S12d online). The MSLP index describes a semi-
permanent subtropical ridge in Southern Hemisphere.
According to Ref. [34], MSLP impacts the Asian summer
monsoon through its modulation on the Somali jet. Our
results indicate that years immediately after positive MSLP
anomalies tend to have a drier spring over entire eastern
China followed by a wetter summer over North China and
South China, but the drought condition over the Yangtze
River valley persists throughout the entire year.

(iv) Quasi Biennial Oscillation index (QBO) (Fig. S12e online). The
years immediately after the westerly QBO phase in the trop-
ical stratosphere tend to have to a shorter rain season over
South China, a drier Meiyu season over the Yangtze River
valley, a wetter rain season over the North China plain.
The study [40] suggests that the QBO could be one of the
important factors predicting the spring rainfall variability
over East Asia, as the westerly QBO phase is accompanied
by weakened Hadley circulation resulting in the equator-
ward retreat of the WPSH (western Pacific subtropical high)
and the southward shift of East Asian jet. Such changes in
110
circulation are responsible for the southward displacement
of the midlatitude rainband, resulting in decreased (in-
creased) spring rainfall over the Yangtze River valley (South
China). It well supports our results of the spring rainfall pat-
tern in Fig. S12e (online). Our results also indicate that the
wet season in South China ends earlier and a drier Meiyu
season occurs in westerly QBO. In addition, the decreased
rainfall in summer and early fall over South China is consis-
tent with the finding of fewer tropical cyclones approaching
South China in the westerly QBO phase [41].

(v) Spatial mean SST over North Pacific Ocean (NPSST) (Fig. S12f
online). The years immediately after warm SST over North
Pacific tend to have a shorter but stronger rain season over
South China, a drier Meiyu season over the Yangtze River
valley, but more rains in the wet season over North China.
The warmer sea surface temperature (SST) of the tropical
Northwest Pacific has been used as a predictor of the
autumn drought of South China and the Yangtze River valley
[48].

(vi) Antarctic Oscillation index (AAO) (Fig. S12g online). The
years immediately after the positive phase of Antarctic oscil-
lation tend to enhance summer rainfall over South China,
but dry years north of the Yangtze River valley. As reported
in previous studies [28,29], strong AAO events in spring and
summer weaken the southwest monsoon in spring near
South China, increase summer precipitation in the middle
and lower reaches of the Yangtze River valley, and reduce
rainfall over central-North China.

2.5. Forecast skill of PIVAC

We next want to validate the six regression models in the con-
text of predicting the temporal evolution of year-to-year variations
of amplitudes of the six APs in the period of 2010–2020, referred to
as the ‘‘prediction period”. To forecast the amplitudes of APs in a
target year, (2009 + k) where k = 1, 2, ���, 11, we need to renormalize
and re-orthogonalize the 14 external factors in the same order as
they are considered in the diagnostic period so that they remain
to be independent in the period from 1979 to the year before the
target year (see Box D of Fig. S3 online and Analysis procedures
for details). It is seen from Fig. S10 (online) that the 11 color lines
of every factor, each representing the re-orthogonalized (30 + k)-
year time series of the factor under the consideration, are all nearly
indistinguishable from the 30-year time series constructed via the
successive orthogonalization in the diagnostic period. This helps
ensure that the re-orthogonalization does not change the inherent
information content of the external factors that regulate amplitude
variations of APs. The predicted amplitudes of APs in all the target
years in the prediction period (11 black dots in Fig. 3) are obtained
from the six regression models using the values of the 14 indepen-
dent factors before the target year (Fig. S10 online) and the 11 sets
of updated 6 � 8 regression coefficients using the data from the
period of 1980 to the year before the target year. The regression
models with the newly updated regression coefficients allow us
to forecast the yearly time series of amplitudes of APs over the per-
iod from 1980 to the target year. Such time series not only yield the
forecast for the amplitude of APs at the target year but also provide
a new opportunity for validating the regression models over the
diagnostic period and against the forecasts made in the early years.
As indicated in Fig. 3, the forecasted yearly time series of APs made
at the target year resembles closely to its counterparts not only
over the diagnostic period (i.e., 1980–2009), but also over the pre-
diction period (2010–2020). This suggests that the statistical rela-
tions between amplitude variations of APs and external factors are
robust. As a result, their average correlation skill in predicting the
original year-to-year time series of these AP amplitudes, ranging
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from 0.64 to 0.72, is very close to the skill assessed in the diagnos-
tic period.

We next construct PIVAC from these individually regressed/fore-
casted AP amplitudes (Fig. S13 online). Fig. 4 indicates that the 30-
year (41-year) mean of map correlations between Figs. S13 and S7
(online) is about 0.67 (0.61), which is nearly twice as high as the
threshold of the ‘‘useful” skill (0.3) for climate predictions. More-
over, the correlation skill of the regressed/forecasted PIVAC against
observed PIVAC is as high as 0.5 in 24 out of 30 years in the diagnos-
tic period and 7 out of 11 years during the prediction period.
Fig. S14 (online) shows that the correlation skill evaluated under
the diagnostic mode is only slightly better than that evaluated
under the prediction mode with the exception in 2016, in which
the diagnostic skill is significantly higher than its prediction skill.
This is suggestive that the high prediction skill seen in the predic-
tion period (2010–2020) is not resultant of the over-fitting prob-
lem. Furthermore, the saturation of explained variance beyond
8–9 factors shown in Fig. S11 (online) is indicative that the poten-
tial issue of over-fitting is largely avoided by the removal of the
redundant information among factors, as the inclusion of addi-
tional factors after re-orthogonalization helps little in increasing
explained variance of a given VAC. It is worthwhile to point out
that the correlation skill for predicting the full anomalies is equal
to the product of the skill for the PIVAC field (Fig. 4) and the square
root of the percentage variance (Fig. S8 online) explained by PIVAC.
On average, PIVAC explains about 63% of the full anomalies and the
average correlation skill for PIVAC is 0.61. Therefore, the average
correlation skill for predicting the full anomalies is equal to 0.48
(=0.61 �

ffiffiffiffiffiffiffiffiffiffi
0:63

p
).

To further substantiate the cross validation result shown in
Fig. 4, we have performed a series of 10,000 � 11Monte-Carlo fore-
cast experiments using these 14 factors as the predictors for PIVAC.
Specifically, we randomly select 30 years of data from 1980 to 2020
as the diagnostic period for obtaining regression coefficients of
PIVAC against the 14 factors and predict PIVAC in the other 11 years.
We repeat the random selections of the diagnostic period 10,000
times, which yields a total of 10,000 � 11 forecast skill evaluations
and a total of 10,000 � 30 diagnostic skill evaluations. The results
of Monte-Carlo forecast experiments (Fig. S15 online) support the
conclusion that the good diagnostic skill (90% of diagnostic skill
exceeds 0.3 correlation score) of our model does translate to good
forecast skill (about 60% forecasts have a skill higher than 0.3),
which is well above the forecasts made using white noise (about
25%). The ratio of diagnostic skill to prediction skill obtained in
Monte-Carlo forecast experiments (60/90 or 0.67) is similar to
the ratio of the average prediction skill in 2010–2020 (0.46) to
C
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Fig. 4. Yearly time series of the correlation scores of the forecasts for the interannual var
the contributions to the correlation scores from individual APs and their sums equal to
(1980–2009) from the prediction period (2010–2020). The vertically stacked color bar
correlation coefficients.
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the diagnostic skill in 1980–2009 (0.67). Therefore, the Monte-
Carlo forecast experiments, besides serving as a statistical cross
validation, further indirectly suggest that the high skill is not due
to over-fitting. In addition, we have evaluated the skill of ‘‘persis-
tent forecasts”, which is often used as a reference forecast (‘‘clima-
tology” is another reference forecast) for skill evaluation. Clearly,
our forecasts outperform greatly persistent forecasts.

3. Conclusion and discussion

By virtue of being part of the world’s strongest monsoons, the
temporal evolution of precipitation in eastern China is strongly
influenced by the annually evolving solar forcing. On the premise
that climate variability related to yearly varying annual cycles is
more predictable than the internal climate variability, we devise
an innovative way to isolate the precipitation variability in eastern
China associated with annual patterns that are not repeatable
yearly from the remaining of the traditionally defined precipitation
anomaly field. Specifically, we regard the spatial domain and day-
to-day evolution in a year as the domain for spatiotemporal pat-
terns of a meteorological variable (such as precipitation) that
change yearly. To achieve this, we separate time t explicitly into
(Julian) days of a year and years and join the space domain and
(Julian) days of the year as the base, referred to as the ‘‘space-
day” domain, for spatiotemporal patterns. As a result, a yearly
meteorological field (e.g., precipitation) in the space-day domain
naturally contains the information of the (yearly) repeatable
‘‘space-day” evolution and (yearly) non-repeatable ‘‘space-day”
variations. The former corresponds to the climatological annual
cycle that is directly related to the solar forcing and the latter are
part of the anomaly fields resulting from the interference of cli-
mate variability modes with the annual cycle response to the solar
forcing.

We identify one repeatable and five non-repeatable APs in the
precipitation field over eastern China. The IVAC associated with
these six APs accounts for nearly 63% of the total variance of pre-
cipitation anomalies in eastern China, representing year-to-year
variations of starting date, duration, and intensity of monsoon pre-
cipitation in eastern China. Therefore, year-to-year amplitude vari-
ations of repeatable and non-repeatable APs about their
climatological mean values contribute substantially to year-to-
year variations of monsoon precipitation in eastern China.

We envision that these APs encapsulate distinct spatiotemporal
footprints of a set of external factors that regulate Asian monsoon
systems and collectively describe atmosphere-ocean-land condi-
tions for eastern China’s precipitation response to the annually
iability of annual cycle (PIVAC) against the observed PIVAC. Colors are used to indicate
the values indicated by ‘‘+”. The dashed vertical lines separate the diagnosis period
s are ordered in a bottom-up fashion following the decreasing absolute value of
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evolving solar forcing in the following year. We apply a successive
orthogonalization analysis to obtain 14 independent factors from a
total of 30 external factors that have been used in the literature for
predicting spring/summer precipitation anomalies in some specific
regions over eastern China. Collectively, the prior year information
of these 14 factors explains about 51% variance of the year-to-year
variation of monsoon precipitation in eastern China associated
with VAC. The six factors that have the largest contribution to
VAC are (1) MEI (Multivariate ENSO index), (2) TPSD (Tibetan Pla-
teau snow depth), (3) MSLP (spatial mean sea level pressure over
Mascarene), (4) QBO (Quasi Biennial Oscillation index), (5) NPSST
(spatial mean SST over North Pacific Ocean), and (6) AAO (Antarctic
Oscillation index). These factors regulate the yearly response of
precipitation in eastern China to the annually evolving solar forc-
ing via advancing/delaying starting dates, lengthening/shortening
of the monsoon rainfall season, and strengthening/weakening of
its intensity in different latitude bands of eastern China.

It is of importance to note here that the ordering of the factors
by the successive orthogonalization procedure adopted in this
study is done without considering their ability to explain the APs
explicitly, as these factors have been already proved in the litera-
ture to have useful skill in predicting spring/summer precipitation
anomalies over eastern China. This choice allows us to treat these
selected factors equally and independently in building the multi-
regression models for predicting APs. We also note that an alterna-
tive choice is to construct the multi-regression models by combin-
ing regression and orthogonalization analyses jointly following the
work of Ref. [49]. Because the two choices would select different
factors from the 30 external factors as predictors, the resultant skill
would be different (should all of the 30 factors are selected, the
resultant skill would be identical, corresponding to the skill of
the standard multiple regression analysis using all of the 30
factors).

To explore the prediction utility of the VAC perspective, we per-
form forecast experiments in the years of 2010–2020 using multi-
variate regressions models with the information of these 14
independent factors in the prior years for amplitudes of the six
annual patterns identified from 1980–2009 (diagnostic period).
The external factors each have distinct spatiotemporal footprints
in eastern China’s rainfall throughout the year as they represent
atmosphere-ocean-land conditions in the prior year that regulate
the next year’s annual cycle response in rainfall to the annually
evolving solar forcing. By independently forecasting the dominant
spatiotemporal modes of rainfall in terms of the six APs, our
approach reduces spatiotemporal noise contamination and
enhances the utilization of the potential predictability offered by
each external factor. It is shown that the correlation skill in pre-
dicting the original year-to-year time series of individual APs’
amplitudes, ranging from 0.64 to 0.72, is very close to the skill
assessed in the diagnostic period (1980–2009). The average corre-
lation skill of the predicted PIVAC in the prediction period (2010–
2020) is about 0.46, which is about a 30% reduction from the aver-
age correlation skill (0.67) evaluated in the diagnostic period. The
statistical cross validation using Monte-Carlo forecast experiments
confirms the small reduction (33%) from the diagnostic skill to the
prediction skill. The 41-year average skill of 0.61 for the precipita-
tion over an entire year in eastern China surpasses average forecast
skills for just rainy seasons (e.g., spring and/or summer) demon-
strated by existing dynamical (�0.1), dynamic-statistics (�0.38),
and statistical (�0.45) models [50–55]. Because the high correla-
tion skill of our new approach is achieved for the continuously
temporal evolution of spatial rainfall anomaly patterns over the
entire year, instead of just over a certain period (e.g., the month
of June, or July), such forecasts for rainfall anomalies over the
entire year would help enable decision makers for more targeted
mitigation planning on the flooding/drought throughout a year.
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It should be pointed out that as with most statistical forecasts
for monthly/seasonal mean anomalies, our forecasts tend to under-
estimate the amplitude of climate anomalies. We have confirmed
that the correlation skill of our forecasts is negatively correlated
with root mean square errors (RMSE). Therefore, forecasts with a
large positive correlation score have a small RMSE. The mean value
of RMSE of our forecasts is about 0.5 mm/d with the largest RMSE
being about 0.9 mm/d, which is smaller than the mean RMSE of
seasonal forecasts for precipitation made by the NOAA Climate Test
Bed (https://www.cpc.ncep.noaa.gov/products/ctb/CTB/).

Fig. 5 highlights that the power of the VAC-based forecasting
approach in terms of its capability of predicting occurrences of
multi-provincial-scale hydrological extremes at least six months
in advance. The top row of Fig. 5 corresponds to the year 1998,
when summer flooding in the Yangtze River Valley killed more
than 3000 people, destroyed over 15 million homes, and caused
a total economic loss exceeding $36 Billion [56]. The hindcast ini-
tiated at the February of 1998, whose skill is about 0.71, unam-
biguously captures the March-July flood over most of eastern
China and the subsequent dry months of the remaining year. The
middle row is for the year 2011 when the most severe drought
since 1961 occurred over eastern China leading to a total loss of
nearly $48 Billion [57]. The correlation skill of the hindcast initi-
ated at the February of 2011 is about 0.7, capturing the 2011
drought signature, including its overall spatiotemporal extent.
The correlation skill of the hindcast initiated at the February of
2020 (bottom row) is about 0.71, capturing the massive flooding
in 2020 in the Yangtze River valley and a dry monsoon season over
North China Plain and South China.

This study demonstrates the utility of the VAC perspective for
seasonal predictions using zonal mean anomalies, which can be
naturally extended for spatial patterns of anomalies. In 4.7 of Anal-
ysis procedures, we outline a procedure that can be used to obtain
the spatial patterns of anomalies directly from the VAC-based sea-
sonal prediction of zonal mean anomalies. We have applied this
procedure to obtain the spatial patterns of observed and forecasted
PIVAC (Figs. S16–S18 online) from the results shown in Fig. 5. The
results confirm that (1) the spatial patterns of the observed PIVAC
also greatly capture the spatial patterns of the full rainfall anoma-
lies in each of the three highlighted multi-provincial-scale hydro-
logical extreme years over eastern China and (2) the good
prediction skill for observed PIVAC can be transferred to the predic-
tion skill for their spatial patterns, as summarized in Fig. S19
(online).

We here wish to add that the use of the September-February
average adopted in this work for defining the predictors is mainly
to demonstrate the utility of the VAC perspective for seasonal pre-
dictions of eastern China rainfall to be considered in the annual
‘‘Huishang (会商)” conducted in early spring of each year (i.e.,
March). The use of the information in January and February would
allow us to retain the most updated information about the phase
and amplitude of these climate modes for March’s ‘‘Huishang”.
One could choose the July-December average for defining the pre-
dictors for ‘‘Huishang” in January, or the August-January average
for ‘‘Huishang” in February, and so on.

In conclusion, climate variability manifested in VACs is a major
source of predictability across interannual timescales, because
these VACs express themselves through mechanisms that are
shared with those that determine the annual cycle response to
the solar forcing. The newly identified source of predictability
helps push the boundary of statistical seasonal predictions to a
new paradigm that includes the continuously spatiotemporal evo-
lution of climate anomalies seamlessly over an entire year with a
longer lead time. The two immediate benefits of the VAC perspec-
tive are that (1) it helps advance our understanding of modulations
of annual cycle response to the solar forcing by modes of climate

https://www.cpc.ncep.noaa.gov/products/ctb/CTB/


Fig. 5. Forecasts of 1998, 2011, and 2020 hydrological extremes over eastern China. (a)–(c), respectively, are the yearly maps of traditionally defined precipitation anomalies
(P0), interannual variability of annual cycle (PIVAC), and forecasted PIVAC in 1998 (a flooding year). (d)–(f) are same as (a)–(c), but for 2011 (a drought year). (g)–(i) are same as
(a)–(c), but for 2020 (a flooding/drought year for Yangtze River valley/southern China). The ordinate is latitude and abscissa is month. The values on the top right corner of
panels (c), (f), and (i) are the correlation scores between the observed and forecasted PIVAC in 1998, 2011, and 2020, respectively.
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variability; and (2) it helps develop more skillful statistical models
for seasonal forecasts where the dynamical models currently lack
skill. The varying annual cycle perspective can be similarly adopted
for the improvement of seasonal forecasts in other regions that are
significantly impacted by major monsoon systems (e.g., India,
Africa, and Australia) and for other climate variables besides pre-
cipitation, such as surface temperatures over lands and Arctic
sea-ice extent.
4. Analysis procedures

4.1. Data

We use version 3 of the daily precipitation dataset compiled by
the National Meteorological Information Center of the China Mete-
orological Administration, covering the period of 1951–2020 [58].
The daily precipitation dataset is derived from surface hourly rain
gauge data over 2420 stations in China, most of which are located
in eastern China [59]. Before the analysis, we first grided the sta-
tion precipitation data over the domain of (21� to 43�N, 105� to
123�E) at the resolution of (1� � 1� using an interpolation algo-
rithm of Cessman style analysis. We then removed their 1980–
2009 means, obtained their zonal mean values, and performed a
4-month running mean. The resultant daily fields are denoted as
P(s,t) covering the period of 1980–2020, where s is latitude and t
is time. We note the main characteristics of the annual patterns
are not sensitive to the temporal scale of the smoothing scheme
(e.g., 1-month versus 4-month running mean) other than a shorter
time running mean would retain a substantial faction of day-to-
day variability at scales much shorter than semi-annual scale.
The 4-month running mean is used for robustly capturing the sig-
nals at annual and semi-annual scales for the annual patterns.

Supplementary Table S1 (online) lists the information of all
external factors considered in this study, including their abbrevia-
tions, definitions, and references whereas Supplementary Table S2
(online) provides the information of data sources for deriving the
external factors. The yearly time series of these external factors
are derived from their 6-month mean values starting at September
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of the previous year and ending at February of the current year,
covering the period of 1979/1980–2019/2020.

4.2. Extraction of annual patterns of P

Following Eq. (2) and Box A of Fig. S3 (online), we first write P(s,
t) into P(s,day,year). The annual patterns of P are obtained from EOF
analysis of P(s,day,year) over the 30-year period of 1980–2009 by
joining ‘‘day” with latitude ‘‘s” as the ‘‘space-day” domain for EOF
patterns and ‘‘year” as the domain for their associated PCs, namely

P s; day; yearð Þ ¼
X30
j¼1

EOFj s;dayð ÞPCj yearð Þ;

where < EOFj s; dayð Þ� �2
> � 1; ð6Þ

where ‘‘< >” represents the average over the domain of s and day
and PCj has the units of mm/d. As stated in the main text, the first
six EOFs are referred to as annual patterns. The yearly time series
of APs can be obtained from

PCj yearð Þ ¼< P s;day; yearð ÞAPj s;dayð Þ >; ð7Þ
whereAPj s;dayð Þ ¼ EOFj s;dayð Þ; j ¼ 1; 2; 3; 4; 5; and 6:Theyearly
time series of the fractional variance (RAP) of traditionally defined P0

explained by PIVAC (Fig. S8 online) is obtained from

RAP yearð Þ ¼
P6

j¼1 PC�
j yearð Þ

� �2

< P0 s;day; yearð Þ� �2
>
; ð8Þ

where PC�
j is defined in Eq. (5).

4.3. Ordering and orthogonalization of external factors

As sketched in Box B of Fig. S3 (online), we first normalize each
of the 30 external factors listed in Table S1 (online) so that their
1979–2008 means is zero and their variance is equal to one. For
easy reference, we denote the original yearly time series of exter-
nal factors as {Fm yearð Þ}. To remove the redundant information
among these 30 external factors, we follow the iterative proce-
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dures outlined below to order and successively orthogonalize these
external factors starting with m = 1:

(1) Construct a covariance matrix among these (31–m) factors
and find the external factor that explains the most amount
of the variance at all other factors (including itself). This fac-
tor will be selected as the mth ordered factor.

(2) Re-construct the time series of the remaining (30–m) factors
by removing the portion that is explained by the mth
ordered factor.

(3) Repeat (1) and (2) with the reconstructed time series with
the value of m increased by 1 till the variance of the remain-
ing (re-constructed) factors all is less than 25%.

The completion of the iterative procedures (1)–(3) yields a set of
M* (M* � 30) independent yearly time series in the period of 1979–
2008 with their variance no less than 25% of their original yearly
time series. These independent factors will be used to construct
multi-regression models for predicting AP amplitudes. According
to Fig. S9 (online), the first 14 external factors (or M*=14) can be
regarded as the independent predictors for AP amplitudes as the
remaining variance of each of the other 16 factors is no more than
25% after removing the part that can be explained by these 14 fac-
tors (see the last column of Fig. S9 online). For easy reference, we

denote these independent predictors as eFm.

4.4. Multi-regression model

As sketched in Box C of Fig. S3 (online), the multi-regression
model for predicting interannual variability of a specific APj is,cPC �

j yearð Þ ¼
X
m

am;j
eFm year � 1ð Þ; ð9Þ

where

am;j ¼
PC�

j yearð ÞeFm year � 1ð Þ
eFm year � 1ð Þ

� �2
: ð10Þ

In Eq. (9), the order of m is arranged according to values of

am;j
� �2 eFm year � 1ð Þ

� �2
= PC�

j yearð Þ
� �2

from the largest to the small-

est, as indicated in Fig. S11 (online). The percentage of PIVAC vari-
ance explained by external factors (EVm) shown in Fig. S12a
(online) is obtained from

EVm ¼
P6

j am;j
� �2 eFm year � 1ð Þ

� �2

P6
j¼1

PC�
j yearð Þ

� �2
: ð11Þ

The space-day patterns of PIVAC associated with external factors
(PFm s;dayð Þ, Fig. S12b–g (online) are obtained by

PFm s; dayð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieFm year � 1ð Þ
� �2

s X6
j¼1

am;jAPj s;dayð Þ: ð12Þ

The yearly PIVAC patterns regressed against the external factors
(Fig. S13 online) are obtained from Eq. (4) by replacing PC�

j yearð Þ
with cPC �

j Ykð Þ.

4.5. Prediction of PIVAC

We are now ready to predict AP amplitudes at the year Yk,
where Yk denotes the year of (2009 + k), k = 1, 2, ��� (Box D of
Fig. S3 online). To do this, we first re-normalize and re-
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orthogonalize the 14 independent predictors in the period from
1979 to the year (Yk–1) without changing their order during the

re-orthogonalization for obtaining eFm Yk � 1ð Þ. We next apply the

multi-regression model for predicting cPC �
j Ykð Þ with the under-

standing of (1) that the overbar in Eq. (10) is applied to the period
from 1980 to the year (Yk – 1) and (2) that the order of m in (9) is
the same as its original order for each j. The forecast for PIVAC at the
year Yk is obtained from Eq. (4) by replacing PC�

j yearð Þ withcPC �
j Ykð Þ.
4.6. Prediction skill evaluation of PIVAC

The yearly time series of the correlation scores of the forecasts
for PIVAC (Fig. 4) is obtained from

S1 yearð Þ ¼
P6

j¼1
cPC �

j yearð ÞPC�
j yearð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP6

j¼1

cPC �
j yearð Þ

� �2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP6

j¼1
PC�

j yearð Þ
� �2

s : ð13Þ
4.7. Spatial patterns of observed and predicted PIVAC

The spatial patterns associated with each AP can be obtained by
regressing the yearly varying daily full (i.e., traditionally defined)
anomalies on each grid point (or each station) against the yearly
time series (i.e., principal component) of its corresponding AP.
The resultant spatial patterns associated with each AP consist a
series of 365 continuously evolving daily maps. The daily spatial
patterns of the observed PIVAC in a given year can be obtained by
summing up (over all of the six APs) the products of spatial pat-
terns associated with each AP and its principal component value
in that year. Similarly, the daily spatial patterns of the predicted
PIVAC in a given year are obtained by summing up the products of
spatial patterns associated with each AP and the predicted value
of its principal component in that year.
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