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Abstract. Gap-filling eddy covariance CO2 fluxes is chal-
lenging at dryland sites due to small CO2 fluxes. Here, four
machine learning (ML) algorithms including artificial neural
network (ANN), k-nearest neighbors (KNNs), random forest
(RF), and support vector machine (SVM) are employed and
evaluated for gap-filling CO2 fluxes over a semiarid sage-
brush ecosystem with different lengths of artificial gaps. The
ANN and RF algorithms outperform the KNN and SVM in
filling gaps ranging from hours to days, with the RF be-
ing more time efficient than the ANN. Performances of the
ANN and RF are largely degraded for extremely long gaps
of 2 months. In addition, our results suggest that there is
no need to fill the daytime and nighttime net ecosystem ex-
change (NEE) gaps separately when using the ANN and RF.
With the ANN and RF, the gap-filling-induced uncertainties
in the annual NEE at this site are estimated to be within
16 g C m−2, whereas the uncertainties by the KNN and SVM
can be as large as 27 g C m−2. To better fill extremely long
gaps of a few months, we test a two-layer gap-filling frame-
work based on the RF. With this framework, the model per-
formance is improved significantly, especially for the night-
time data. Therefore, this approach provides an alternative
in filling extremely long gaps to characterize annual carbon
budgets and interannual variability in dryland ecosystems.

1 Introduction

The eddy covariance (EC) technique has been widely applied
for monitoring energy and water fluxes as well as net ecosys-
tem exchanges (NEEs) of carbon dioxide and other trace
gases between land and the atmosphere (Baldocchi, 2003;
Oncley et al., 2007; Stoy et al., 2013). However, due to mul-
tiple factors including power outages, instrument malfunc-
tions and maintenance, and data quality checks, there ex-
ist gaps with approximately 20 %–60 % of half-hourly data
points annually at many long-term EC sites (Dragoni et al.,
2007; Falge et al., 2001; Ma et al., 2007; Missik et al., 2019,
2021; Moffat et al., 2007; Pastorello et al., 2020; Soloway
et al., 2017; Wutzler et al., 2018). An average gap frac-
tion of 30 % in an annual dataset leads to an uncertainty of
±25 g C m−2 yr−1 for the annual NEE at forest sites (Moffat
et al., 2007), while some EC sites report much greater uncer-
tainties (Soloway et al., 2017). Therefore, gap-filling usually
accounts for one large source of uncertainties in the annual
NEE (Soloway et al., 2017), together with other sources of
uncertainties such as measurement errors and bias related to
non-closure of the surface energy balance (Gao et al., 2019;
Wilson et al., 2002).

Robust NEE gap-filling approaches are critical for quanti-
fying the annual and interannual variability of carbon bud-
gets (Falge et al., 2001; Irvin et al., 2021; Moffat et al.,
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2007; Pastorello et al., 2020; Richardson and Hollinger,
2007; Soloway et al., 2017; Wutzler et al., 2018). Previous
studies have developed and evaluated a number of NEE gap-
filling approaches including non-linear regressions (NLRs),
look-up tables (e.g., marginal distribution sampling, MDS),
machine learning (ML) algorithms (e.g., artificial neural net-
works), and process-based models (Falge et al., 2001; Huang
and Hsieh, 2020; Moffat et al., 2007; Reichstein et al., 2005;
Wutzler et al., 2018). NLR fills NEE gaps based on regres-
sion analyses between NEE and meteorological variables
such as temperature (e.g., air or soil temperature) and light
(e.g., photosynthetically active radiation), whereas MDS is
based on look-up tables for similar meteorological condi-
tions (i.e., global radiation, air temperature, and vapor pres-
sure deficit) (Falge et al., 2001; Moffat et al., 2007; Reich-
stein et al., 2005). By virtue of an easy-to-use R package
(Wutzler et al., 2018), MDS has become the standard method
for NEE gap-filling (e.g., Pastorello et al., 2020), although it
cannot effectively fill the gaps of longer than 12 d (Moffat
et al., 2007). ML-based methods are trained by presenting
them with numerous meteorological variables as inputs and
NEE as output data, which have the potential to fill long gaps
(Dengel et al., 2013; Kim et al., 2020; Moffat et al., 2007).
Artificial neural networks (ANNs), for instance, have been
widely used for gap-filling CO2 and CH4 fluxes across a vari-
ety of EC sites at forests, grasslands, croplands, and wetlands
(Dengel et al., 2013; Delwiche et al., 2021; Huang and Hsieh,
2020; Irvin et al., 2021; Kim et al., 2020; Knox et al., 2016;
Mahabbati et al., 2021; Moffat et al., 2007; Papale and Valen-
tini, 2003; Soloway et al., 2017). More recently, other ML
algorithms such as random forest (RF), k-nearest neighbors
(KNNs), and support vector machine (SVM) have recently
been assessed for flux gap-filling over different ecosystems,
and RF is found to have outperformed the other ML algo-
rithms as well as the MDS method (Huang and Hsieh, 2020;
Irvin et al., 2021; Kim et al., 2020; Mahabbati et al., 2021).
However, the performance of these ML-based algorithms has
not been evaluated in filling gaps in EC fluxes for dryland
ecosystems with low NEE.

Besides the selection of gap-filling algorithms, several
other factors may also degrade the performance of the al-
gorithms and cause uncertainties in gap-filled fluxes. For ex-
ample, the performance of gap-filling algorithms decreases
with increasing gap length (Huang and Hsieh, 2020; Irvin
et al., 2021; Kim et al., 2020), and thus long gaps in CO2
flux are considered one of the primary uncertainty sources
of NEE estimation (Aubinet at al., 2012). In addition, spatial
variability of CO2 flux and meteorological drivers (e.g., soil
temperature) due to heterogeneous landscapes around flux
towers (Chu et al., 2021; Stoy et al., 2013) can lead to un-
known bias in modeling research (Metzger, 2018). That is,
the trained ML algorithms using the measured CO2 flux and
meteorological variables may not well reflect their real rela-
tionship within flux footprints and induce bias to gap-filled
fluxes and the annual NEE.

Dryland ecosystems, comprising around 40 % of the
Earth’s land surface, play a critical role in determining the
trend and interannual variability of the global terrestrial car-
bon budgets (Ahlström et al., 2015; Missik et al., 2021; Yao
et al., 2020), though the expansion of projected global dry-
lands under climate change is still under debate (Berg and
McColl, 2021; Feng and Fu, 2013; Huang et al., 2016; Yao
et al., 2020). Long-term continuous measurements of land
surface fluxes over dryland ecosystems are critical for as-
sessing the impact of climate change on the dryland carbon
cycle (Missik et al., 2021; Yao et al., 2020). The motivation
of this gap-filling practice was driven by the fact that dryland
ecosystems are very sensitive to water availability, function-
ing as carbon sinks in wet years and carbon sources in dry
years (Biederman et al., 2017; Scott et al., 2015), and bias
in gap-filled NEE may alter conclusions in sources or sinks
of dryland ecosystems in the case of relatively long gaps for
eddy covariance data. In addition, different ML algorithms
have distinctive internal structures that account for the un-
derlying dependencies of outputs (i.e., NEE) on the inputs
(i.e., meteorological variables) in different ways, and uncer-
tainties associated with different ML-based methods can also
be assessed (Soloway et al., 2017).

In this study, we evaluate the performance of four com-
monly used ML algorithms (ANN, KNN, RF, and SVM) in
filling the extremely long gaps (i.e., couple months) in the
NEE data collected at an EC site over a semiarid sagebrush
ecosystem in central Washington, USA, from 2016 to 2019,
and we assess the uncertainties in the annual NEE introduced
by gap-filling methods. In order to fill the extremely long
gaps, we propose and examine a two-layer RF-based gap-
filling framework (RF-2L) as the RF benefits from better per-
formance and faster run-time than the other ML algorithms
(Huang and Hsieh, 2020; Irvin et al., 2021; Kim et al., 2020;
Mahabbati et al., 2021).

2 Materials and methods

In this section, we first describe the site condition and in-
struments, as well as the procedures for EC data processing,
quality control, and gap identification, following the standard
protocol (Mauder and Foken, 2004). We then briefly intro-
duce the four ML algorithms and the proposed framework
of RF-2L, as well as the input meteorological variables. Fol-
lowing the previous studies (Moffat et al., 2007; Kim et al.,
2020), four different lengths of artificial gaps are generated
and used to evaluate the performance of these four ML algo-
rithms, whereas the performance of RF-2L is evaluated with
gaps of 2 months. We also examine the performance of the al-
gorithms for different time-of-day scenarios: (1) all the data,
(2) daytime data, and (3) nighttime data. Finally, uncertain-
ties in monthly and annual NEE are quantified by compar-
ing with the results from the MDS method and the ensemble
mean of predictions of the ML algorithms.
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2.1 Site description

The eddy covariance flux tower is located at the Hanford
Site in the US state of Washington (AmeriFlux site: US-
Hn1; 46◦24′32′′ N, 119◦16′30′′W), and it started to collect
data in December 2015 (Gao et al., 2019, 2020a, b; Mis-
sik et al., 2019). This semiarid site is predominantly covered
by scattered shrubs and short grasses. Shrub species include
Artemisia tridentata and Chrysothamnus viscidiflorus, and
grasses include invasive weedy species (i.e., Bromus tecto-
rum and Salsola kali) and native grasses (i.e., Poa secunda,
Pseudoroegneria spicata, and Stipa comata) (Missik et al.,
2019). The long-term (1986–2015) mean annual precipita-
tion was 197 mm (varied between 100 and 300 mm for dry
and wet years), most of which occurred late in the fall and
early in winter (Missik et al., 2019). The soil texture in the
top layer of 30 cm is loamy sand with small rocks and gravel
interspersed (Gao et al., 2017; Missik et al., 2019). In this
study, the 4-year data from 2016 to 2019 are analyzed. An-
nual precipitation in these 4 years was 217, 242, 169, and
210 mm, respectively; and mean annual air temperature was
12.9, 11.4, 12.7, and 11.2 ◦C, respectively (Missik et al.,
2021).

2.2 Eddy covariance and meteorological measurements

The EC system included a three-dimensional sonic
anemometer (CSAT3, Campbell Scientific, Inc.) and an
open-path gas analyzer (LI-7500A, LI-COR, Inc.), and the
EC data were sampled at a rate of 10 Hz. In addition, a va-
riety of microclimate data were measured, including four-
component radiation, air temperature and relative humidity,
wind speed and direction, precipitation, soil heat flux, soil
temperature, and volumetric water content (Gao et al., 2017,
2019, 2020a; Missik et al., 2019). These data were sampled at
a rate of 1 Hz and stored as 30 min averages. Further, 15 min
meteorological data from two weather stations close to the
tower site were obtained from the Washington State Uni-
versity AgWeatherNet (AWN; https://weather.wsu.edu/, last
access: 13 July 2020). The two AWN stations are located
within 8 km of the tower. The 15 min data were averaged
to half-hourly values to fill gaps in the tower meteorologi-
cal data of global radiation (Rg), air temperature (Tair) and
relative humidity (RH), vapor pressure deficit (VPD), wind
speed (WS), precipitation (P ), and soil temperature (Tsoil).
Thus, these half-hourly meteorological data for the study pe-
riod are gap-free.

2.3 EC data processing, quality control, and gap
identification

Raw 10 Hz EC data were processed using the EddyPro® soft-
ware (version 7.06, LI-COR Biosciences, USA) to calculate
the 30 min average fluxes of CO2 (NEE) and latent (LE) and
sensible (H ) heat. The data were despiked and filtered for

physically impossible values and abnormal diagnostic values
of the sonic anemometer and the gas analyzer. The double
rotation method was applied to the sonic anemometer data.
Block averaging was used to determine the turbulent fluc-
tuations for each 30 min interval. The fluxes were corrected
for the effects of high- and low-pass filtering (Massman,
2000, 2001; Moncrieff et al., 2004) and air density fluctu-
ations (Webb et al., 1980). The corrected fluxes were quality
checked according to Mauder and Foken (2004). After qual-
ity checking, the “REddyProc” R package (Wutzler et al.,
2018) was used to determine the friction velocity (u∗) thresh-
old, and NEE data with low-turbulence conditions were re-
moved from the dataset.

For simplicity, we assigned a gap score of 2 to gaps due
to field operations (e.g., instrument maintenance), electrical
and/or instrument failures, a gap score of 1 to gaps due to
low data quality (i.e., quality control and u∗ filtering), and
a score of 0 to flux data with good quality. Only the data
with the score of 0 were used to train/test the gap-filling al-
gorithms. Note that, for the data gaps with a score of 1, me-
teorological data from the flux tower were still available for
NEE gap-filling, whereas for the data gaps with a score of 2,
meteorological data from the flux tower also had gaps, and
the data obtained from the two nearby AWN stations are thus
used for gap-filling.

2.4 Machine learning algorithms

Four ML algorithms including the ANN, KNN, RF, and
SVM were employed and evaluated for filling NEE gaps. In
the following sections, we briefly describe the characteris-
tics and implementation of each ML algorithm. The required
parameters in each algorithm (e.g., the number of nodes in
each hidden layer for the ANN; k value for the KNN) are op-
timized using the “caret” R package (Kuhn et al., 2020) with
a 10-fold cross-validation repeated 10 times.

2.4.1 Artificial neural network (ANN)

The ANN algorithm has been successfully applied for fill-
ing NEE gaps in various ecosystems (Baldocchi and Sturte-
vant, 2015; Knox et al., 2016; Moffat et al., 2007; Pa-
pale and Valentini, 2003; Tramontana et al., 2016). In this
study, we employed the “neuralnet” R package (Günther and
Fritsch, 2010), the resilient back-propagation algorithm that
has proven to be capable of gap-filling flux data (Dengel et
al., 2013; Jammet et al., 2015; Kim et al., 2020; Knox et al.,
2016). The required parameters for the ANN algorithm in-
clude the number of hidden layers and the number of nodes
in each layer. Here, based on the parameter tuning results,
we use two hidden layers with 12 and 10 nodes in the first
and second hidden layers. We train the neural network 1000
times, and the mean prediction results of the top 20 runs
based on their training and testing R2 values are used to
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fill NEE gaps (Baldocchi and Sturtevant, 2015; Knox et al.,
2016).

2.4.2 K-nearest neighbors (KNNs)

The KNN algorithm (Fix and Hodges, 1951) is a non-
parametric ML approach and has been used in many appli-
cations. For example, Chen et al. (2012) applied the KNN
algorithm for filling latent heat flux gaps, which fills the data
gaps based on a certain attribution of k neighbors in the fea-
ture space. In this study, we use the caret R package (Kuhn
et al., 2020) to build the KNN where a suitable k value needs
to be determined. Here, the optimized k value is 9.

2.4.3 Random forest (RF)

The RF algorithm (Breiman, 2001) has been applied for up-
scaling flux data to regional (Xu et al., 2018) and global (Jung
et al., 2017; Zeng et al., 2020) scales and recently for gap-
filling flux data (Huang and Hsieh, 2020; Kim et al., 2020).
The RF algorithm uses bootstrap aggregation and feature ran-
domness when generating each individual tree to try to create
many independent decision trees that operate as an ensemble
of the prediction results. In this study, we create 500 regres-
sion trees for each case using the “randomForest” R package
(Liaw and Wiener, 2002), in which the tuning parameter is
the number of randomly selected predictors (i.e., mtry equals
7). In addition, the RF allows the estimation of relative im-
portance of input variables, and such a feature has been uti-
lized in previous studies to help interpret the results (Irvin et
al. 2021; Kim et al., 2020).

2.4.4 Support vector machine (SVM)

The SVM algorithm (Cortes and Vapnik, 1995) has also been
applied for gap-filling (Huang and Hsieh, 2020; Kim et al.,
2020) and upscaling (Xu et al., 2018) flux data. The SVM
algorithm can convert nonlinear regressions into linear re-
gressions by projecting the original finite-dimensional space
into the much higher-dimensional space with a predefined
kernel function. In this study, we use the radial basic ker-
nel function and the “kernlab” R package (Karatzoglou et
al., 2004), where the tuning parameters include the inverse
kernel width (i.e., sigma= 0.13) and the cost regularization
parameter (i.e., C = 27).

2.4.5 A two-layer RF-based gap-filling framework
(RF-2L) for extremely long gaps

Numerous studies have suggested that the performance of
ML algorithms decreases with increasing the gap length and
that the ML algorithms are only reliable for gaps shorter than
a couple weeks (Huang and Hsieh, 2020; Irvin et al., 2021;
Kim et al., 2020; Mahabbati et al., 2021). In order to fill the
extremely long gaps (i.e., a couple months), we propose and
examine a two-layer RF-based gap-filling framework (RF-

2L) because the RF outperforms most of the other ML al-
gorithms in gap-filling the half-hourly fluxes over various
ecosystems (Huang and Hsieh, 2020; Irvin et al., 2021; Kim
et al., 2020; Mahabbati et al., 2021) and is more time efficient
than the ANN (Irvin et al., 2021). The procedures of the RF-
2L include the following: (1) train the RF model using the
half-hourly data and fill the NEE gaps shorter than 7 d; (2)
calculate daily means of the input variables and the partially
filled NEE data; and (3) train the RF model using the daily
data and fill the gaps in the daily NEE data.

2.5 Input variables

Besides the abovementioned meteorological variables, the
input variables for the ML algorithms also include the nor-
malized difference vegetation index (NDVI) and enhanced
vegetation index (EVI) from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) and three fuzzy variables
(i.e., decimal day of year and sine and cosine functions to
represent seasonal changes) following Moffat et al. (2007).
We obtained the NDVI and EVI data around the flux tower
location from the MOD13Q1 version 6 data product (https:
//lpdaac.usgs.gov/products/mod13q1v006/, last access: 13
July 2020) at 16 d temporal and 250 m spatial resolutions
(Didan, 2015). The 16 d NDVI and EVI data were resampled
to 30 min using cubic spline interpolation. Note that soil wa-
ter content (SWC) and groundwater table are not included in
the inputs because (1) the SWC measurements at these AWN
stations had some issues for the study period and could not be
used to fill the long gaps in tower SWC data, and (2) the sta-
tion is primarily fed by rainfall without groundwater access
(Missik et al., 2019, 2021).

With the RF, we estimate the relative importance of the
input variables for the three different time-of-day scenar-
ios, respectively (Fig. 1). For the model trained using all the
data and the daytime data, Rg is the most important vari-
able, while for the model trained using the nighttime data,
Tair and RH are the most important variables. Overall, the es-
timated variable importance indicates that, for the three dif-
ferent time-of-day scenarios, the meteorological inputs ex-
cept Rg for the nighttime data play a comparable role in the
trained gap-filling models. Note that there exists collinearity
among the various variables, and thus the model performance
might approach a plateau with certain input variables and in-
crease slightly with increasing number of inputs, resulting in
a slower, less efficient model. However, to be consistent with
previous studies (e.g., Kim et al., 2020; Moffat et al., 2007),
we also include all available meteorological variables as the
inputs to train and evaluate the models.

2.6 Artificial gap scenarios and performance
evaluation

In order to evaluate the gap-filling algorithms, artificial gaps
with different lengths are randomly generated in the origi-
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Figure 1. Variable importance for the random forest trained without separating the daytime and nighttime data (All) and separately for
daytime and nighttime data. The variables DOY, c, and s indicate decimal day of year and cosine and sine functions, respectively.

nal flux data, accounting for approximately 10 %–12 % of the
NEE data with a score of 0. Following Moffat et al. (2007)
and Kim et al. (2020), we consider four artificial gap lengths:
1 h (1-H), 1 d (1-D), 1 week (1-W), and 2 months (2-M). The
variations in the number of data points artificially removed
are because after quality control it is hard to locate even a
couple days of data without any missing points (Sect. 3.1).
In order to reduce the potential effect of uneven sample sizes
and gap positions on the performance evaluation, each gap
length scenario is permuted 10 times, resulting in 40 distinct
time series with artificial gap scenarios.

For each artificial gap scenario, we trained the models sep-
arately with only daytime or nighttime data and with both
daytime and nighttime data. The performance of gap-filling
algorithms is evaluated by comparing the estimated values
(ei) with the measured values (mi) for the artificial gaps.
Four commonly used performance metrics are used includ-
ing the coefficient of determination (R2), root-mean-square
error (RMSE), mean absolute error (MAE), and bias error
(BE).

R2
=

(∑n
i=1 (ei − ē) (mi − m̄)

)2∑n
i=1(ei − ē)2∑n

i=1(mi − m̄)2 (1)

RMSE=

√∑n
i=1(ei −mi)

2∑
i = 1n(mi)

2 (2)

MAE=
1
n

n∑
i=1

|ei −mi | (3)

BE=
1
n

n∑
i=1

(ei −mi) (4)

Here the overbar denotes the mean value.
Besides the above statistic metrics, we also calculate the

probability density functions of the measured and estimated
values to examine the performance of ML algorithms in
terms of different ranges of NEE values. Here, the proba-
bility density functions are calculated as the binned density

distribution of measured (estimated) NEE values divided by
the bin width (0.2 µmol m−2 s−1).

Previous studies also suggested that the model errors of
gap-filling algorithms should approach the measurement ran-
dom errors of the EC method (Kim et al., 2020; Moffat et al.,
2007; Richardson et al., 2008). In this study, we compare the
model errors with the random measurement errors as a refer-
ence. Here, the random measurement error is estimated fol-
lowing the method proposed by Finkelstein and Sims (2001).

2.7 Uncertainty estimation

With the 40 distinct artificial gap scenarios, we obtain
40 gap-filled NEE time series for each method. By replacing
the artificial gaps with the observed data, these time series
datasets allow for an evaluation of the model self-agreement
and reliability in filling the actual gaps. Monthly and annual
NEEs are then computed from the gap-filled flux time series.
The model self-agreement can be evaluated by investigating
the mean standard deviations of the monthly NEE (Soloway
et al., 2017), whereas the uncertainties in the monthly and
annual NEE can be assessed by comparing the monthly and
annual NEE obtained by each ML algorithm with their en-
semble means (Irvin et al., 2021; Kim et al., 2020; Soloway
et al., 2017). Here, the flux time series gap-filled separately
for the daytime and nighttime periods are combined to deter-
mine the monthly and annual NEEs.

3 Results

3.1 NEE data gap evaluation

At the US-Hn1 site, different lengths of gaps were found in
NEE data during the 4 years from 2016 to 2019 (Fig. 2).
Gaps with short to medium lengths were usually caused by
low data quality (i.e., gap score of 1), whereas gaps with
medium to extremely long lengths were mostly due to electri-
cal and/or instrument failures (i.e., gap score of 2). Data gaps
with a score of 1 frequently occurred in nighttime because
u∗ filtering mainly removes nighttime data. On average, gaps
with scores of 1 and 2 accounted for about 28.4 % and 30.2 %
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Figure 2. Distribution of NEE data gaps by day and hour from 2016
to 2019. NEE data gaps were classified as non-gaps (gap score: 0),
gaps due to low data quality (gap score: 1), and gaps due to electrical
and/or instrument failures (gap score: 2).

of half-hour NEE data, respectively (Table 1). There were
more extremely long gaps in 2018 and 2019 than 2016 and
2017 due to power failures in winter and early spring. There-
fore, it is worth examining the performances of gap-filling
algorithms in filling different lengths of gaps. Overall, about
43.7 % of NEE data were available to calibrate and validate
the gap-filling methods.

3.2 Performance of ML gap-filling algorithms with
different gap lengths

We first train and evaluate the ML algorithms without sep-
arating the daytime and nighttime data (i.e., using all the
data). The overall performance of each algorithm degrades as
the gap length increases, while the RF slightly outperforms
the other algorithms for all the gap scenarios (Fig. 3 and Ta-
ble 2). For the gap length of 1 h (1-H), all four ML algorithms
have the highest R2 and the lowest RMSE and MAE. As the
gap length increases, R2 for all ML algorithms decreases and
RMSE (MAE) increases. For 1-H, the RF has R2 and RMSE
of 0.77± 0.02 and 0.47± 0.02, respectively, whereas for the
gap length of 2 months (2-M), the R2 decreases to 0.60±0.22

and RMSE increases to 0.62± 0.17, respectively. The mag-
nitudes of BE for all ML algorithms also increase with the
increasing gap lengths. The performance of these ML algo-
rithms in NEE gap-filling at this semiarid sagebrush site is
comparable to that at some grassland sites (Huang and Hsieh,
2020), but lower than that at forest and cropland sites (Huang
and Hsieh, 2020; Moffat et al., 2007). The relatively low per-
formance might be caused by the spatial complexities of the
targeted CO2 flux and input meteorological drivers within the
flux footprints (Chu et al., 2021; Stoy et al., 2013), especially
for the scattered sagebrush ecosystems.

Following Moffat et al. (2007), we also perform the al-
gorithm training and evaluation separately for daytime and
nighttime data. For the daytime data, the performance of each
algorithm is similar to that for all the data, whereas the algo-
rithm performance for the nighttime data is degraded with
R2 of 0.1–0.2 and RMSE of 0.7–0.8, similar to the results
for some forest sites in Moffat et al. (2007). The poor per-
formance of the gap-filling algorithms for the nighttime data
is primarily attributed to the shortage of available nighttime
data for training the models (Fig. 2 and Table 1). However,
the change of BE with the increased gap length at night is
relatively small compared to that for the daytime data, es-
pecially for the ANN and RF. In addition, BE for long gaps
(e.g., 2-M) has opposite signs for the daytime and nighttime
data, resulting in a smaller BE for all the data.

3.3 Comparison of probability density functions
(PDFs) between measured and estimated NEE

Figure 4 shows the comparison of the probability density
functions (PDFs) between the measured and estimated NEE
of the gap-filling algorithms. The estimated NEE by the gap-
filling algorithms has a similar shape of PDFs, which is also
quite similar to that of the measured NEE with some dif-
ference in amplitudes. At this site, the measured half-hourly
NEE ranges from−6 to 4 µmol m−2 s−1, while the estimated
NEE varies from approximately −5 to 2 µmol m−2 s−1. For
all the data, the PDFs of the estimated NEE present two
peaks at around −0.2 and 0.2 µmol m−2 s−1, whereas the
PDF of the measured NEE only has one peak at around
0.2 µmol m−2 s−1. That means that the PDFs of the estimated
NEE have a higher amplitude than the measured NEE in the
range of −0.6 to 0.0 µmol m−2 s−1. However, in the range of
−2.0 to−0.8 µmol m−2 s−1, the amplitude of the PDFs of the
estimated NEE is lower than that of the measured NEE. The
PDFs of the estimated NEE for the daytime data show one
peak at around −0.2 µmol m−2 s−1, with their shapes similar
to those for all the data in the range with the negative NEE
values; for the nighttime data, the estimated NEE has a nar-
rower shape of PDF than that of the measured NEE. These re-
sults suggest that the gap-filling algorithms underestimate the
magnitudes of NEE in the range of−2.0 to 0.0 µmol m−2 s−1

and the magnitudes of the peak values of NEE.
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Table 1. Percentage of NEE data with different gap scores (0/1/2) for daytime and nighttime from 2016 to 2019. NEE gaps are classified as
non-gaps (gap score: 0), gaps due to low data quality (gap score: 1), and gaps due to electrical and/or instrument failures (gap score: 2).

Daytime Nighttime All

2016 36.1%/9.6%/2.7% 19.9%/26.1%/5.6% 56.0%/35.7%/8.3%
2017 31.5%/9.8%/7.1% 15.4%/22.3%/13.9% 46.9%/32.1%/21.0%
2018 27.8%/6.8%/14.1% 10.9%/16.5%/23.9% 38.7%/23.3%/38.0%
2019 23.4%/7.1%/17.9% 10.0%/18.1%/23.5% 33.4%/25.2%/41.4%
Overall 29.7%/8.4%/10.5% 14.0%/20.7%/16.7% 43.7%/29.1%/27.2%

Figure 3. Performance of NEE gap-filling algorithms for the four gap length scenarios (i.e., 1 h (1-H), 1 d (1-D), 1 week (1-W), and 2 months
(2-M)).

3.4 Comparison of measurement error and absolute
error of ML algorithms

Figure 5 shows the absolute errors as a function of bin-
averaged NEE values for the gap-filling algorithms with the
estimated random measurement errors (Finkelstein and Sims,
2001) as a reference. For all the data, the binned absolute
errors for the ML algorithms are quite close to each other,
and they are also close to the random errors in the range
of negative NEE values but slightly deviated from the ran-
dom errors in the range of positive NEE values. Note that
the large deviations from the random errors at the edges are
most likely due to the small number of data points as il-
lustrated in Fig. 4. The binned absolute errors for the day-
time data are close to the random errors in the NEE range of
about −4.0 to 1.0 µmol m−2 s−1, whereas the binned abso-
lute errors for the nighttime data are consistently higher than
the random errors. For all the data, the mean value of the

random errors is 0.56 µmol m−2 s−1, while the MAE of the
ML algorithms is 0.55, 0.59, 0.53, and 0.58 µmol m−2 s−1for
the ANN, KNN, RF, and SVM, respectively. For the day-
time data, the MAE of the ML algorithms (0.59, 0.62, 0.55,
and 0.62 µmol m−2 s−1) is smaller than the mean value of the
random error (0.66 µmol m−2 s−1), whereas for the nighttime
data, the MAE of the ML algorithms (0.46, 0.48, 0.47, and
0.49 µmol m−2 s−1) is larger than the mean value of the ran-
dom error (0.32 µmol m−2 s−1). Overall, the RF and ANN
have better performance in filling NEE gaps at this semi-
arid site, especially for the daytime data, although the RF
is more time efficient than the ANN. In addition, all four ML
algorithms have low performance in gap-filling the nighttime
data, though the BE for the nighttime data is relatively small
compared to the daytime data mostly due to the low magni-
tudes of the nighttime NEE.
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Table 2. Performance metrics of the four ML gap-filling algorithms for the four gap length scenarios. The ML algorithms are trained and
evaluated without separating daytime and nighttime data.

Gap length R2 RMSE MAE BE
scenarios (µmol m−2 s−1) (µmol m−2 s−1)

ANN 1 h 0.71± 0.02 0.52± 0.02 0.50± 0.01 −0.005± 0.016
1 d 0.70± 0.02 0.54± 0.04 0.51± 0.02 0.005± 0.017
1 week 0.69± 0.03 0.54± 0.03 0.51± 0.04 −0.009± 0.046
2 months 0.59± 0.23 0.63± 0.19 0.62± 0.07 −0.057± 0.158

KNN 1 h 0.71± 0.02 0.53± 0.02 0.50± 0.01 0.001± 0.020
1 d 0.66± 0.04 0.57± 0.04 0.55± 0.02 0.004± 0.033
1 week 0.63± 0.05 0.59± 0.04 0.57± 0.06 0.007± 0.040
2 months 0.51± 0.24 0.68± 0.19 0.69± 0.08 −0.059± 0.175

RF 1 h 0.77± 0.02 0.47± 0.02 0.43± 0.01 0.003± 0.017
1 d 0.73± 0.04 0.51± 0.04 0.48± 0.02 −0.008± 0.024
1 week 0.68± 0.03 0.55± 0.03 0.52± 0.05 −0.029± 0.033
2 months 0.60± 0.22 0.62± 0.17 0.61± 0.05 −0.061± 0.137

SVM 1 h 0.75± 0.02 0.48± 0.02 0.45± 0.01 0.014± 0.015
1 d 0.71± 0.03 0.52± 0.03 0.49± 0.02 0.022± 0.032
1 week 0.67± 0.03 0.56± 0.03 0.53± 0.04 −0.000± 0.031
2 months 0.47± 0.25 0.73± 0.22 0.77± 0.16 −0.062± 0.146

Figure 4. Comparison of probability density functions (PDFs) for the measured and estimated NEE of the gap-filling algorithms using
daytime and nighttime data together and separately. The PDFs are estimated from the binned density distributions divided by the bin width.
The bin width is 0.2 µmol m−2 s−1, and bins with fewer than 10 data points are excluded.

Atmos. Chem. Phys., 21, 15589–15603, 2021 https://doi.org/10.5194/acp-21-15589-2021



J. Yao et al.: Technical note: Uncertainties in eddy covariance CO2 fluxes 15597

Figure 5. Comparison of NEE measurement and model uncertainties of the gap-filling algorithms using the data and the daytime and
nighttime data. The random measurement error is estimated by Finkelstein and Sims (2001). The bin width is 0.2 µmol m−2 s−1, and bins
with fewer than 10 data points are excluded.

4 Discussion

4.1 Uncertainties in carbon budgets caused by
gap-filling

We now examine uncertainties in carbon budgets caused
by gap filling with a different training dataset and different
methods. Figure 6 compares the monthly NEE of the gap-
filled data during 2016–2019. The subscript A denotes that
the daytime and nighttime NEE data are gap-filled together
using the ML algorithms trained with all the data, and DN
denotes that the daytime and nighttime data are gap-filled
separately using the trained ML algorithms and then com-
bined together to determine the monthly NEE. The error bar
denotes 1 standard deviation of the monthly NEE of the 40
gap-filled time series. Here the gap-filled NEE using the most
commonly used MDS method is also included as a reference
for comparison.

With the 40 gap-filled NEE time series for each method,
we first investigate the self-agreement of each method as the
method with good self-agreement should have small varia-
tions in the accumulative NEE among different trails. For
months with gaps less than 7 d (Fig. 2; e.g., February to
October in 2016), all four ML algorithms have good self-
agreement, with the mean standard deviations of the monthly
NEE ranging from 0.4 (ANN) to 1.0 (SVM) g C m−2. Both
the RF and KNN have mean standard deviations of approx-
imately 0.7 g C m−2 during these months. For months with

long gaps (i.e., >7 d), the mean standard deviations of the
monthly NEE are 1.2, 1.3, 1.5, and 3.3 g C m−2 for the ANN,
KNN, RF, and SVM, respectively. From this perspective, the
ANN is the most reliable method in gap-filling because the
predicted values are averages of the 20 best runs (Sect. 2.4.1).
In other words, most of the ML algorithms are quite consis-
tent in filling the gaps, and the differences in the monthly
NEE caused by changes in training dataset are less than
1.5 g C m−2 except for the SVM.

The uncertainties in the monthly NEE as a result of the
differences in the methods are now assessed with the monthly
NEE from the MDS as a reference. The difference among
the methods ranges from 0.2 to 1.3 g C m−2 for months with
gaps less than 7 d and ranges from 0.8 to 10.2 g C m−2 for
months with long gaps, which is 0.8 to 4.8 g C m−2 without
including the SVM. For the ANN and RF, the differences in
the monthly NEE between A and DN are usually quite small
for all the months, whereas the KNN presents opposite signs
for A and DN in months with long gaps, which means that
the KNN is unable to handle the daytime and nighttime data
together. Overall, for months with short to medium gaps (i.e.,
<7 d), there is no significant difference in the monthly NEE
among the methods including the MDS method. For months
with long gaps (i.e., >7 d), the MDS method usually fails,
and the ANN and RF have the best performance, and they
have the potential to handle the daytime and nighttime data
gap-filling together, as also supported by the distribution of
estimated variable importance (Fig. 1).
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Figure 6. Monthly total net ecosystem exchange (NEE, g C m−2) at the US-Hn1 in (a)–(d) 2016–2019. The subscript A denotes that the
daytime and nighttime NEE data are gap-filled together using the ML algorithms trained with all the data, and DN denotes that the daytime
and nighttime data are gap-filled separately and then combined to determine the monthly total values. RF-2L denotes the proposed two-layer
RF-based gap-filling framework, and MDS is the marginal distribution sampling algorithm. The error bar denotes 1 standard deviation of the
monthly total NEE of the 40 gap-filled time series.

The uncertainties in the annual total NEE are estimated
by comparing the annual NEE obtained by each ML algo-
rithm with their ensemble means (Fig. 7). Obviously, both
the KNN and SVM are largely apart from the ensemble
means, whereas the ANN and RF are relatively close to
the ensemble means except for the RF in 2019. The mean
standard deviations of the 40 trials for the annual NEE by
ANN range from 2.5 to 4.3 g C m−2, the mean standard de-
viations by the RF vary from 3.4 to 7.1 g C m−2, and the
mean standard deviations by the KNN and SVM vary from
5.1 to 13.9 g C m−2. The differences between the ANN and
RF are within ±8.4 g C m−2, and the differences between
A and DN are less than 1.7 and 4.5 g C m−2 for the ANN
and RF, respectively. The overall uncertainties in the an-
nual NEE caused by the ANN and RF are usually less
than 15.5 g C m−2, while the uncertainties can be as large
as 27.2 g C m−2 if including the KNN and SVM. There-
fore, it is recommended to use the ensemble mean of the
ANN and RF as the best estimate of the annual NEE at
the semiarid sagebrush site. The annual mean NEE by the
ANN and RF is −15.4± 4.7, −50.0± 9.1, −31.4± 7.2, and

−40.3±8.7 g C m−2 for 2016, 2017, 2018, and 2019, respec-
tively. In addition, the annual total NEE by the MDS is about
5.6–15.6 g C m−2 larger than that by the ANN and RF.

4.2 Performance of the two-layer RF-based gap-filling
framework (RF-2L)

Following the same procedures as for evaluating the ML
algorithms above, the performance of RF-2L in filling the
long gaps (i.e., 2 months) in the daytime and nighttime daily
means is also accessed. Using a 10-fold cross-validation
repeated 10 times, the R2 of the second-layer RF model
is 0.78, 0.85, and 0.77 for all the data, the daytime data,
and the nighttime data, respectively. The mean BE for this
framework is 0.04 g C m−2 d−1, which is slightly smaller
than that of the original RF with the half-hourly NEE data
(0.06 g C m−2 d−1).

The uncertainties of the RF-2L are accessed by compar-
ing the monthly and annual NEE with other ML algorithms.
As shown in Figs. 6 and 7, the monthly and annual NEEs
by the RF-2L are quite close to those by the RF. For A (i.e.,
trained by all the data), the difference in the annual mean
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Figure 7. Comparison of the annual mean NEE from the ML algorithms and their ensemble mean. The subscript A denotes that daytime and
nighttime NEE data are gap-filled together using the ML algorithms trained with all the data, and DN denotes that the daytime and nighttime
data are gap-filled separately and then combined to determine the monthly total values.

NEE ranges from 0.0 to 2.2 g C m−2, whereas for DN (i.e.,
trained by the separated daytime and nighttime data), the dif-
ference varies from 0.8 to 3.3 g C m−2. This test suggests that
it is not necessary to fill all the gaps in the half-hourly NEE
data if the focus is on assessing the uncertainties in annual
mean NEE and interannual variability. Therefore, the RF-2L
provides an alternative in filling extremely long gaps to char-
acterize annual carbon budgets and interannual variability in
dryland ecosystems. In addition, the performance of the dif-
ferent ML algorithms is quite consistent when filling short
to medium gaps (e.g., <7 d), and thus a promising extension
of the proposed approach is that using the ensemble mean of
multiple methods as the input of the second RF layer, which
may have the potential to lower the uncertainties in the gap-
filled data. Of course, other reliable algorithms can also be
applied in the second layer to reduce bias estimation caused
by long gaps.

5 Conclusions

The performance of the four ML algorithms in filling the
NEE data gaps is evaluated at a semiarid sagebrush ecosys-
tem site. Due to the relatively small range of NEE variations,
the overall performance of these gap-filling algorithms at this
site is lower than that at other forest sites but comparable to
that at other grassland sites. The RF algorithm outperforms
the other algorithms in terms of the overall performance. It is
not necessary to train the model separately for daytime and
nighttime data when using the ANN and RF algorithms. The
uncertainties in the monthly and annual NEEs due to the gap-
filling approaches are evaluated by the standard deviations
of monthly NEE of multiple trials for each method and also

accessed by the difference in the monthly NEE by the meth-
ods. With the ANN and RF, the uncertainties in annual NEE
are usually within 16 g C m−2 at this semiarid sagebrush site.
Extremely long gaps in half-hourly NEE data due to power
failures cannot be confidently filled by either of the meth-
ods because of the high uncertainties in R2 and RMSE, and
thus we propose and test a two-layer RF-based gap-filling
framework. With this framework, the improvement in model
performance is significant, especially for the nighttime data.
Therefore, it is recommended that the two-layer RF-based
framework (RF-2L) be used if there are extremely long gaps
existed in the NEE dataset and if there is a need to investigate
its annual and interannual variability. However, it is hard to
assess the uncertainties caused by bias in the gap-filled mete-
orological variables using the current approaches and study
design, which need to be explored in future studies.
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