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a b s t r a c t 

In 2020, the COVID-19 pandemic spreads rapidly around the world. To accurately predict the number of daily 

new cases in each country, Lanzhou University has established the Global Prediction System of the COVID-19 

Pandemic (GPCP). In this article, the authors use the ensemble empirical mode decomposition (EEMD) model 

and autoregressive moving average (ARMA) model to improve the prediction results of GPCP. In addition, the 

authors also conduct direct predictions for those countries with a small number of confirmed cases or are in 

the early stage of the disease, whose development trends of the pandemic do not fully comply with the law of 

infectious diseases and cannot be predicted by the GPCP model. Judging from the results, the absolute values of 

the relative errors of predictions in countries such as Cuba have been reduced significantly and their prediction 

trends are closer to the real situations through the method mentioned above to revise the prediction results out 

of GPCP. For countries such as El Salvador with a small number of cases, the absolute values of the relative errors 

of prediction become smaller. Therefore, this article concludes that this method is more effective for improving 

prediction results and direct prediction. 
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. Introduction 

Coronavirus disease 2019 (COVID-19) is a novel infectious disease

aused by a virus closely related to the SARS (severe acute respiratory

yndrome) virus. COVID-19 has caused hundreds of thousands of deaths

orldwide and was declared a global pandemic by the World Health

rganization (WHO) on 11 March 2020 ( WHO, 2020a ). The COVID-

9 pandemic has far-reaching consequences beyond the spread of the

isease itself; it also has influence on quarantine measures, including

olitical, cultural, and social implications. The WHO World Health As-

embly made a global commitment to unite the world to fight COVID-19

 WHO, 2020b ). The potential effects of COVID-19 have prompted exten-
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ive research to study the characteristics of the virus. Because the virus

s new, it is challenging to predict when this disease will disappear.

owever, it has been found that about 60% of confirmed global COVID-

9 cases have occurred in places with temperatures of 5 °C–15 °C. The

andemic spread to high latitudes in spring and summer, and countries

ocated in mid-latitudes face the risk of a second wave of COVID-19 this

utumn ( Huang et al., 2020a ). Therefore, short-term prediction is criti-

al to better manage the societal, economical, cultural, and public health

onsequences of the pandemic ( Petropoulos and Makridakis, 2020 ), es-

ecially in high-risk countries. 

Researchers worldwide have been predicting the development of the

utbreak by using existing mathematical and statistical methods, includ-
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ng stochastic simulations, lognormal distribution ( Linton et al., 2020 ),

achine learning, and artificial intelligence ( Tuli et al., 2020 ). The SEIR

susceptible, exposed, infectious, and removed) and SIR (susceptible, in-

ectious, and removed) infectious disease models are the most widely

sed ( Wu et al., 2020 ; Wang et al., 2020 ; Yang et al., 2020 ). A global

rediction system (Global Prediction System of the COVID-19 Pandemic;

PCP) based on the SIR model was recently developed ( Huang et al.,

020b ). The system determines the parameters through historical data

tting, which allows it to make targeted predictions for various coun-

ries and obtain better prediction results. However, the development of

he epidemic is complicated, and there are differences between the pre-

iction results of the GPCP system model and the real data; thus, the

esults need further revision. 

Various methods have been used to revise prediction results. For

xample, the analogue–dynamical approach is used to revise weather

orecast models ( Zheng et al., 2013 ; Yu et al., 2014 ). To modify the

odel results, it is necessary to analyze and predict the difference be-

ween the predicted results and the true values (forecast residuals). The

esiduals fitted by the model to historical data are nonstationary and

onlinear. In this study, we used the ensemble empirical mode decom-

osition (EEMD) method, which is an adaptive and temporal local data

nalysis method ( Wu et al., 2007 ; Wu and Huang, 2009 ). EEMD is a

ime series analysis method based on the empirical mode decomposi-

ion (EMD) method ( Huang et al., 1998 ; Huang and Wu, 2008 ), which

ecomposes complicated data series into finite quasi-periodic compo-

ents at different frequencies and is suitable for adaptive analysis of

onlinear and nonstationary time series. The EMD/EEMD method has

een used to analyze nonlinear and nonstationary data in climatic and

ceanic analyses ( Wu et al., 2011 ; Ji et al., 2014 ; Chen et al., 2017 ) and

or biomedical signal processing ( Colominas et al., 2014 ). 

Methods to predict time series include support vector machines

 Wang et al., 2010 ), artificial neural networks ( Jiang et al., 2003 ), and

enetic programming ( Koutroumanidis et al., 2009 ). Box and Jenkins in-

roduced a time series analysis approach called the autoregressive mov-

ng average (ARMA) method ( Box and Jenkins, 1976 ), which combines

he advantages of the autoregressive (AR) model and the moving av-

rage (MA) model. The AR model quantifies the relationship between

urrent data and previous data, and the MA model solves the problem

f stochastically changing terms. The ARMA model has been applied to

orecasting meteorological elements ( Torres et al., 2005 ) and macroeco-

omic evolution ( Anghelache et al., 2016 ). The model only needs time

eries data, so the residuals’ prediction of the infectious disease model

an be better applied in it. 

In this paper, we report upon work to improve the GPCP by applying

he ARMA and EEMD methods to the results of the SIR model for the

umber of new cases in each country. We then use the method to predict

he number of new cases in countries with fewer cases. 

. Data and methods 

.1. Data 

We used the cumulative number of cases from the COVID-19

ata Repository published by the Center for Systems Science and En-

ineering (CSSE) at Johns Hopkins University ( https://github.com/

SSEGISandData/COVID-19 ). The number of new cases is the differ-

nce between the cumulative number of cases on the current day and

he cumulative number of cases on the previous day. The fitting and pre-

iction data are from the GPCP system, and temperature in the model

as ignored. 

.2. EEMD method 

Based on the EMD method, the EEMD method has various im-

rovements ( Wu and Huang, 2009 ). White noise is added to the
2 
riginal sequence, and the sequence is decomposed into a set of

mplitude-frequency-modulated oscillatory components (intrinsic mode

unctions). These steps are repeated using a different white noise se-

uence each time, and the corresponding intrinsic mode functions are

btained as the final decomposition result. The detailed procedures can

e found in previous studies ( Huang et al., 1998 ; Huang and Wu, 2008 ;

u and Huang, 2009 ). 

We first performed seven-point smoothing on the original residual

equence and EEMD decomposition on the smoothed sequence. The ratio

f the additional noise to the standard deviation of the original sequence

as set to 0.1 and repeated 100 times. 

.3. ARMA method 

For the p -order AR ( p ) model, the current value of the time series is

xpressed as follows ( Box and Jenkins, 1976 ; Wang et al., 2015 ): 

 𝑡 = 𝜙1 𝑦 𝑡 −1 + 𝜙2 𝑦 𝑡 −2 + ⋯ + 𝜙𝑝 𝑦 𝑡 − 𝑝 + 𝜀 𝑡 . (1)

For the q -order MA ( q ) model, q previous values expressed as random

rrors, and the current value of the time series is expressed as follows:

 𝑡 = 𝜀 𝑡 − 𝜃1 𝜀 𝑡 −1 − 𝜃2 𝜀 𝑡 −1 − ⋯ − 𝜃𝑞 𝜀 𝑡 − 𝑞 . (2)

From the above, the ARMA model is expressed as follows: 

 𝑡 = 𝜙1 𝑦 𝑡 −1 + 𝜙2 𝑦 𝑡 −2 + ⋯ + 𝜙𝑝 𝑦 𝑡 − 𝑝 + 𝜀 𝑡 − 𝜃1 𝜀 𝑡 − 1 − 𝜃2 𝜀 𝑡 − 1 − ⋯ − 𝜃𝑞 𝜀 𝑡 − 𝑞 , 

(3) 

here 𝑦 𝑡 is the predictive value, 𝜙𝑖 is the correlation coefficient with

ach previous value, 𝜃𝑖 is the correlation coefficient with the previous

hite noise, 𝜀 𝑡 is the white noise process with zero mean and variance,

nd 𝜀 𝑡 − 𝑖 is the previous noise term. 

.4. Hybrid EEMD–ARMA method 

From the perspective of fitting the real data, the residuals of the

odel fitting and the real data are nonstationary and nonlinear time

eries. The EEMD method can extract signals from such sequences and

ecompose them into different oscillatory components. The GPCP sys-

em parameters are obtained by fitting real data, and the parameters in

he GPCP system are fitted from the real situation, so the initial model

rediction mainly represents the trend which depends on human factors

uch as government policies. Therefore, the residuals basically reflect

he oscillation of the infectious disease and are suitable for the EEMD

ethod. The ARMA method’s prediction only depends on the time series,

nd no other information is needed. In addition, the increase in cases

n countries with a small number of cases tends to show an increase

n oscillation, a decrease in oscillation, or a stable oscillation within

 certain range without obvious peaks, so the SIR model is not appli-

able. Owing to the advantages of the EEMD and ARMA methods, we

ropose a hybrid EEMD–ARMA method, which is motivated by the idea

f “decomposition and ensemble ” ( Yu et al., 2008 ; Guo et al., 2012 ).

he seven-point smoothed original residual sequence is decomposed

nto several subsequences by the EEMD method. Each of subsequence is

hen predicted by the ARMA method, and the final predicted value can

e obtained by summing the predicted values of each subsequences. The

ybrid EEMD–ARMA method has a better effect on the high-frequency

scillations. Therefore, in our work, we used the hybrid EEMD–ARMA

ethod to process sequences containing high-frequency oscillations. To

mprove the quality of the prediction, for the residual sequence, the first

ew days before the number of newly added cases reaches the peak are

https://github.com/CSSEGISandData/COVID-19
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Fig. 1. Flowchart of the prediction of the residuals (add the dotted line when 

directly predicting the number of new people, and remove the dotted line when 

predicting the residuals). 
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line with the real situation. 
elected as the starting time of the sequence. For the predicted num-

er of new cases series, the days around which the number of cases

tarts to fluctuate are selected as the starting time of the series. The

rocedures for the hybrid EEMD–ARMA predicting method are shown

n Fig. 1 . 

Seven-point smoothing is performed on the residual sequence of

he fitting result. The smoothed sequence is decomposed by the EEMD

ethod, and the residual difference component is removed. The first-

rder difference is calculated compared with other components, and

hen the ARMA model is used to predict each component. The predic-

ion results of the appropriate components are selected for summation

s the final residual prediction result. 
Fig. 2. The relative errors of the hindcast results before and af

3 
For countries with a small number of cases, after the original se-

uence of newly added cases is decomposed by EEMD, the components

re not removed and the ARMA predictions are made for each compo-

ent directly, yielding the prediction results. 

.5. Calculation of relative error 

The relative error is calculated as 

elative error = 

ave 
(
Result 𝑓 

)
− ave 

(
Result 𝑟 

)

ave 
(
Result 𝑟 

) × 100% , (4) 

here ave ( Result 𝑓 ) is the average of the prediction for several days, and
ve ( Result 𝑟 ) is the average of the real data for several days. 

. Results 

.1. Prediction improvements 

Fig. 2 shows the improvement of the prediction effect from 6 to 15

ay 2020 by some countries using the hybrid EEMD–ARMA method to

orrect residuals. Judging from the relative error of the 10-day predic-

ion before and after the revision, Italy is the one with the most ob-

ious improvement. The relative error has improved from 83.23% to

 10.22%. Netherlands has the best prediction effect after correction;

he relative error before correction is 35.65%, and the relative error af-

er correction is reduced to − 0.07%. Using the GPCP system for direct

rediction, only 15 of the 34 countries listed in Fig. 2 have a relative

rror with an absolute value of less than 40%. After correction, the num-

er of countries with an absolute value of less than 40% has increased

o 24. This method offers great improvements for prediction, and has

he potential to be effective for future predictions. 

Fig. 3 compares the prediction results of the number of newly in-

reased people before and after the 10-day (6–15 May) correction in

ix countries (Cuba, Romania, Italy, Spain, Netherlands, and Sweden),

nd gives the respective relative errors. The peak number of new cases in

hese countries has already appeared, and some countries are in a steady

tate (Spain and Sweden). Some countries are in the stage of decline

n the number of new cases (Cuba, Romania, Italy, and Netherlands).

hese countries experience better prediction effect after correction. The

bsolute values of the relative errors before and after the six countries’

orrections decreased by 32.44%, 3.46%, 73.01%, 23.55%, 35.58%, and

1.78%. Judging from the revised results, the relative error of the six

ountries has been reduced, and the new development trend is more in
ter correction from 6 to 15 May 2020 in some countries. 



C. Liu, J. Huang, F. Ji et al. Atmospheric and Oceanic Science Letters 14 (2021) 100019 

Fig. 3. Projections and relative errors before and after correction in six countries ((a) Cuba, (b) Romania, (c) Italy, (d) Spain, (e) Netherlands, and (f) Sweden) from 

the date of the emergence of confirmed cases to 15 May 2020. The reported confirmed cases (the date of the emergence of confirmed cases to 15 May) are shown as 

blue lines, while the historical simulated cases (the date of the emergence of confirmed cases to 5 May) are shown as red lines. The hindcast cases before revising 

(6–15 May) and after revising (6–15 May) are shown as orange and green lines, respectively. The two black dotted lines represent the time when the original residual 

sequence was used for correction (Tp) and the time when the prediction starts (Predict). The bar graphs show the relative errors of the results of projections before 

(orange bars) and after (green bars) correction. 
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.2. EEMD–ARMA direct prediction 

Fig. 4 shows the prediction results and relative errors of the new

ases based on the EEMD–ARMA method for 10 days (6–15 May) in 6

ountries. Some of these countries have a relatively small number of

ew cases (Sri Lanka), and the accuracy of the GPCP system prediction

s low. Some countries are still in the stage of rapid increase in the num-

er of new cases, and there has not been a peak (El Salvador, Kuwait,

outh Africa, Sri Lanka, and Bolivia). The EEMD–ARMA method is used

irectly for prediction, and the relative error of the 10-day prediction

n these six countries is less than 40%. This method performs well in El

alvador ( − 9.84%), Kuwait ( − 6.93%), South Africa ( − 0.09%), Sri Lanka

0.97%), and Bolivia (3.57%), where the fluctuation amplitude is small,

nd the prediction effect of Sudan ( − 38.21%), with a sudden increase in

mplitude, is slightly worse. Overall, this method has better predicted

he change range and trend of the new population in these 

ountries. 

. Conclusion 

COVID-19 has spread rapidly and severely affects human health and

conomic development worldwide. Therefore, it is paramount to accu-
4 
ately predict the development of the epidemic in various countries to

rovide data for relevant organizations. Overall, the SIR model provides

 good prediction, but it has some limitations. For example, there are

rrors in predictions for countries that enter a decline in new cases after

he peak, and the predictions for countries that have not yet reached the

eak are less accurate during the increase in cases. To improve our un-

erstanding of the global impact of COVID-19 and to better predict the

umber of COVID-19 cases in different countries, we developed a hybrid

EMD–ARMA method to correct the results of GPCP and make direct

redictions for countries with small numbers of daily new cases. Our

ethod provides more accurate and reliable predictions of the spread

f COVID-19, and we hope the method will eventually inform strategic

overnment responses. 

Based on our results, for cases that used the hybrid EEMD–ARMA

ethod to make corrections and predictions, within 10 days of the

ack-prediction, the changes and trends in the number of new cases

ere closer to the actual situation. The relative errors were lower,

nd the prediction was better. Fighting the epidemic requires a con-

erted international effort, which we believe will eventually control the

isease. 
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Fig. 4. Projections and relative errors in six countries ((a) El Salvador, (b) Kuwait, (c) South Africa, (d) Sri Lanka, (e) Sudan, and (f) Bolivia) from the date of the 

emergence of confirmed cases to 15 May 2020. The reported confirmed cases (the date of the emergence of confirmed cases to 15 May) are shown as blue lines, and 

the hindcast cases (6–15 May) are shown as green lines, respectively. The two black dotted lines represent the time when the original residual sequence was used 

for correction (Tp) and the time when the prediction starts (Predict). The bar graphs show the relative errors of the results of projections. 
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