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ABSTRACT: Fugitive road dust (FRD) particles emitted by Lanzhou
traffic-generated turbulence are an important contributor to s
urban ambient fine particulate matter (PM,;). Especially in
urban areas of developing countries, FRD PM, 5 emissions are a
serious environmental threat to air quality and public health.
FRD PM,; emissions have been neglected or substantially
underestimated in previous study, resulting in the under-
estimation of modeling PM concentrations and estimating
their health impacts. This study constructed the FRD PM,
emissions inventory in a major inland city in China (Lanzhou)
in 2017 at high-resolution (500 X 500 m?), investigated the
spatiotemporal characteristics of the FRD emissions in different
urban function zones, and quantified their health impacts. The
FRD PM,; emission was approximately 1141 + 71 kg d*,
accounting for 24.6% of total PM, ¢ emission in urban Lanzhou. Spatially, high emissions exceeding 3 X 10* ug m™> d™'
occurred over areas with smaller particle sizes, larger traffic intensities, and more frequent construction activities. The estimated
premature mortality burden induced by FRD PM, s exposure was 234.5 deaths in Lanzhou in 2017. Reducing FRD emissions
are an important step forward to protect public health in many developing urban regions.
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H INTRODUCTION aerodynamic diameter< 10 ym) concentrations in Delhi, India,
in 2010,'° 25.7% of PM,, in Brazil, Sio Paulo, in 2014,'® and
14—48% of PM,, in European urban areas from 2000 to
2009."

FRD particles are an important carrier for high levels of
harmful components such as heavy metal elements (i.e.,, Pb,
Mn, Fe, Cu, Co, and others),"®"? polycyclic aromatic

Particulate matter (PM), a major environmental threat around
the world, plays an important role in ambient air quality
degradation as well as in acute damage to public health.'™*
Fugitive road dust (FRD) particles are those emitted from
roads into the ambient atmosphere by traffic-generated

turbulence.”™” Sources of these particles include surrounding

soils, mud carried by vehicles, demolition and construction, fly hydrocarbons (i.e, acenaphthene, anthracene, fluoranthene,

20,21 . 2 . .
ash from asghalt, bioclastics, natural dust deposition, and other and ot‘hers), and other carcinogens, which exert a high
processes.” potential health burden on cardiovascular, respiratory, and

Over the recent decades, the contribution of ERD to the cancer diseases.”’ Therefore, understanding the magnitude and
total PM has become incrjeasingly important due in part to spatial and temporal distributions of FRD emissions is vital to
rapid growth of the global number of vehicles worldwide, i.e., better understand the interactions among FRD, air quality,
approximately 4% per year from 2006 to 2013.'® This

contribution is especially prominent in China, where the Received: January 31, 2019
vehicle number has increased at a rate of 15% per year from Revised:  May 7, 2019
2015 to 2018.'°"'* Global measurements indicated that FRD Accepted: May 21, 2019
emissions accounted for $5% of the PM,, (particles with Published: May 22, 2019
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Figure 1. (a) Spatial distribution of sampling points in the study area (the red, blue, and green points represent the sampling points in the major
roads, minor roads, and branch roads, respectively). And (b) GDP; (c) real estate investment growth rate; (d) number of university students
(thousand persons); and (e) industrial production as a proportion of GDP in the four urban function zones (UFZs) of Lanzhou in 2017. DET =
developed downtown; DIT = developing downtown; UT = university town; and ID = industrial district.

economic development, and public health. However, previous
studies neglected or greatly underestimated FRD emissions,”
resulting in high uncertainties in model estimates of PM
concentrations, especially for PM, s, and their environmental,
health, and climatic effects.'*'****° For example, FRD
emissions are not included in current Chinese emission
inventories,”* ">’ nor are they represented in many model
simulations which use these inventories.>*”'

FRD emissions are particularly important in developing
urban areas due to the large amounts of vehicles, dust sources,
and inhabitants. The urban environment can be separated into
several distinctive urban function zones (UFZs) differentiated
by the intensity of social/economic activities and the
characteristics of environmental pollution,”*™** such as
downtown, residential, educational, and industrial zones.® In
this study, we constructed a high-resolution (500 X 500 m?)
gridded inventory for FRD PM, emissions in 2017 in the
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urban area of Lanzhou, a major inland city in China threatened
by the heavy FRD pollution. And we further characterized the
spatial and temporal variability of emissions across different
UFZs of Lanzhou and estimated their potential health impacts.
Our results provided evidence to help plan and implement
emission control measures of FRD in developing urban
regions.

B EXPERIMENTAL SECTION

Study Area. Lanzhou, located in the center of mainland
China (103.73°E, 36.03°N), is an important industrial city and
transportation hub of northern China. Lanzhou has a unique
river valley topography (Figure 1a), with high concentrations
of PM in urban areas.”®*’” The urban area of Lanzhou is 1088
km?. The average annual temperature was 11.2 °C, and the
annual precipitation was 341.3 mm in 2017.

DOI: 10.1021/acs.est.9b00666
Environ. Sci. Technol. 2019, 53, 8455—8465
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Table 1. Cumulative Particle Volume Percentages and Revised Values of k for Each Type of Road in the Four UFZs

UFZ* type of road particle volume percentage (<2.5 ym)
DET major roads 3.561
minor roads 4.803
branch roads 3.651
DIT major roads 4.206
minor roads 4.5
branch roads 3.199
uT major roads 3.6
minor roads 4.505
branch roads 3.941
ID major roads 5.99
minor roads 10.12
branch roads 8.874

particle volume percentage (<1S ym) revised k (g vkt™")

13.44 1.46
17.57 1.50
14.16 1.42
15.18 1.52
16.72 1.48
12.33 1.43
15.53 127
16.63 1.49
13.91 1.56
19.78 1.67
33.82 1.65
31.82 1.53

“Urban function zones: UFZs= urban function zones; DET = developed downtown; DIT = developing downtown; UT = university town; and ID

= industrial district.

To characterize FRD emissions in different UFZs, we
divided urban Lanzhou into four regions (Figure la). The
developed downtown (DET) region, as the political,
economic, and trade center of Lanzhou, is located in the east
of the urban area and has the largest annual Gross Domestic
Product (GDP) of $14.6 billion among the four regions in
2017 (Figure 1b). The developing downtown (DIT) region, as
a transport hub connected to each district, is located in the
center of the urban area and has a rapidly increasing annual
GDP of approximately $6.7 billion in 2017. The real estate
investment growth rate is 59.53%, indicating frequent
demolition and construction activities (Figure 1b and c).
The university town (UT), located in the northwest of urban
area, has over 137 000 university students distributed among
17 universities and scores of primary and secondary schools. In
the industrial district (ID), as a large petrochemical industrial
base with several industrial factories, has a large share of
industrial production in its annual GDP (44.76%). Coal and
biomass burning are the dominant sources of anthropogenic
aerosol emissions in the ID region.””** Our sampling points
cover the four divided regions above, including 45 main roads,
60 minor roads, and 5SS branch roads (ie., road segments
between intersections) (Figure la).

Revised AP-42 Method. There exist a few methods to
quantify FRD emissions based on different hypotheses and
measurements, including the AP-42 method,”” Testing Re-
entrained Aerosol Kinetic Emissions from Roads (TRAKER)
method and upwind—downwind method.**~** Our calculation
was based on AP-42 but with updated parameters.

Especially, AP-42 was published in 1968 and has been
gradually updated by the United States Environmental
Protection Agency (USEPA). The method can be imple-
mented with a standard sampling procedure suitable for
constructing FRD emission inventories at a large scale. The
FRD PM, emission factor (EF, g vkt™', where vkt represents
the number of vehicle kilometers traveled) on each paved road
is calculated as follows:

0.65 15
EF=kx(&) x(m)

2 3 (1)

where k is a particle size multiplier for PM, ¢ smaller than i ym

(unit: g vkt™!); sL is the silt loading, which is defined as the

amount of PM less than 75 pm on the road surface per unit

area (unit: ¢ m™2); and W is the average vehicle weight (unit:
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tons). The values of sL and W were obtained from our actual
sampling in Lanzhou.

In this study, we divided the study domain into the grid of
1450 square cells (500 X 500 m*). Aggregated FRD PM,
emissions (E, g d') from paved roads are calculated as
follows:

P n
E=(1_4_N)X 2 BB, X E; XL,

ij=1

@)

where P is the number of days (unit: days) when the daily
precipitation exceeds 0.254 mm during the study period, which
was taken from National Oceanic and Atmospheric Admin-
istration (NOAA)-National Climatic Data Center Surface
(NCDC) (ftp://ftp.ncdc.noaa.gov/pub/data/gsod/); N is the
study period (unit: days); F is the traffic volume on road i in
grid cell j provided by the Traffic Police Detachment of the
Public Security Bureau in Lanzhou (unit: vehicle h™'); and L is
the length of road i in grid cell j (unit: km) obtained from the
Open Street Map (https: //www.openstreetmap.org/#map=
12/36.0781/103.7880).

The particle size multiplier (k) is a function of particle size.
The default values of k were conducted based on sampling in
the U.S.A. Moreover, the differences are also attributed to
different method of estimating FRD emission factor. There-
fore, the default value of k in AP-42 could lead to large
uncertainties on the quantities of the FRD PM, ; emissions in
developing regions (such as Lanzhou). We revised the values
of k based on sampling in Lanzhou as follows:

I
k=22 X kg
15

(©)

where [ is the mass percentage of particle mass with
aerodynamic diameter less than 2.5 and 15 pm, ks is the
recommended value from AP-42 guidance document for 5.5 g
vkt™!. The results are shown in Table 1.

Estimate of Premature Mortality Rate. We further
simulated the FRD PM,  concentrations based on the Weather
Research and Forecasting model coupled with Chemistry
(WRF-Chem) Model and further estimated their health
impacts by a pollution-exposure model.

The traditional epidemiological relation approach has been
unanimously recognized and widely used to estimate the
premature mortality rate attributable to PM, g exposure with
respect to the international trade, residential, industrial,

DOI: 10.1021/acs.est.9b00666
Environ. Sci. Technol. 2019, 53, 8455—8465
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Figure 2. Average size distributions of road-deposited sediment in the study area (Figure 3a) and in the four UFZs including DET (Figure 3b),
DIT (Figure 3c), UT (Figure 3d), and ID (Figure 3e). The error bar represents one standard deviation.

transportation and energy sectors.””* In this study, we
calculated the premature mortality burden (M, deaths y™')
attributable to FRD PM, 5 for chronic obstructive pulmonary
disease (COPD), lung cancer (LC), ischemic heart disease
(IHD), cerebrovascular disease (stroke), and acute lower
respiratory infections (ALRI) through eq 4:

N N N
M= M X DR

ij=1 ij=1 ij=1

(4)

where P is the population in UFZ i; and IM is the incidence
mortality of the disease j in UFZ i attributable to exposure to
FRD PM,; (unit: deaths 107 population y™') calculated as
follows:

N N N RR.. —
IENIE P

N
ij=1 j=1 Zi,,:l RRi,j (5)

Y is the baseline mortality for disease type j (unit: deaths 107>
population y_l);44 RR is the relative risk for the disease j in
UFZ i, which is estimated by the integrated exposure—
response (IER) function:*

1

1+ a[l — exp(=y(C = C,)°] forC> C
RR(C) = xp(—y( o) 0
1for C < C,

(6)

where C is the simulated FRD PM, g concentrations based on
the WRF-Chem model (see Table S2 of the Supporting
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Information, SI); C, represents the theoretical minimum risk
exposure level, ¢, y, and 6 are parameters specific to disease j.45
The key parameters for calculations of premature mortality
have shown in Table S3.

B RESULTS

Size Distribution of Road-Deposited Sediment. The
particle size of road-deposited sediment is critical to the
assessment of FRD emissions and associated pollutant
concentrations.'® For urban Lanzhou as a whole, the particle
volume distribution of road-deposited sediment showed the
bimodal pattern, where the first peak was more dominant than
the second peak. The first mode peaked at 40—79 pm, and the
second mode peaked at 159—316 um (Figure 2a). The size
distributions of road dust deposited in the four UFZs differed
significantly (Figure 2b—e). The percentage contributions of
particles smaller than 100 ym to the total road-deposited
sediment were ordered as follows: ID (83.8%) > UT (65.0%)
> DET (57.3%) > DIT (57.2%). The size distributions in the
DET and UT both showed a bimodal pattern, with a large
median size of 76 um. In the ID and DIT, the road-deposited
sediment samples had unimodal distributions with small
median sizes ranging from 33 to 65 um, because of a large
amount of fly ash emitted from coal-fired factories and
demolition and construction activities that greatly increase the
proportion of fine particles.**

Silt Loading. The silt loading in the four UFZs decreased
in the following order: DIT (0.62 gm™2) > ID (0.44 g m™) >
UT (0.34 ¢ m™*) > DET (0.28 g m™?). These values were

DOI: 10.1021/acs.est.9b00666
Environ. Sci. Technol. 2019, 53, 8455—8465
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Figure 3. (a) Silt loading on three types of roads in each of the four UFZs (unit: g m

Spatial distribution of silt loading on sampling sites (unit: g m™2).

=% the error bar represents one standard deviation). (b)

averaged over major, minor, and branch roads. Among the
types of roads and UFZs, the highest value of silt loading, 1.1 +
034¢g m™?, occurred in the minor roads of the DIT, which was
almost 4 times higher than that in the DET (0.3 + 0.02 g m™>)
with frequent street sweeping (3—4 times day™'). This highest
value was in the DIT because of frequent construction, seldom
sweeping, and thus high proportion of bare soil on the roads
(Figure 3a). The UT had the fewest population and relatively
few human activities, where the value of silt loading was small
on major and minor roads and high on branch roads, with
average values of 0.24, 0.15, and 0.62 g m~2, respectively
(Figure 3b). The ID had relatively high silt loading values of
approximately 0.4 g m™ on minor and branch roads due to the
mud carried by vehicles. Averaged over all UFZs, the amount
of the silt loading for the three types of road were ordered as
follows: minor roads (0.54 g m™?) > branch roads (0.33 gm™)
> major roads (0.29 g m™?).

Traffic Conditions. Lanzhou has about 0.9 million vehicles
in 2017, and the resulting traffic intensity highly affects FRD
emissions. Among the four UFZs, the DET had the highest
traffic volume, with more than 34 000 vehicles day™ on major
roads and 10 000 vehicles day™" on minor and branch roads
together. The DIT, with the second highest traffic volume,
supported more than 30 000 vehicles day™ on major roads.
The traffic volumes in the UT and ID ranging from 2500 to
32500 vehicles day™' were lower than that the DET traffic
volume (Figure 4a and b).

Traffic volumes had an apparent diurnal cycle, with a
minimum value in the nighttime, a rapid increase after 7:00,
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and a more gradual decrease after 23:00 local time (LT = UTC
+ 8 h). The traffic volumes ranging from 600 to 1500 vehicles
h™, are remained stable and high in the daytime, attributable
to traffic congestion in urban areas caused by an imperfect
transportation infrastructure. Further contrasting data in
weekdays and in weekends shows that the high-traffic periods
are delayed by approximately one to 2 h on weekends
compared with those on weekdays.

FRD PM,;s Emissions. The daily FRD PM, emission
inventory in Lanzhou was constructed with high-resolution
(500 X 500 m”) as shown in Figure Sa. Due to highly dense
road networks and high silt loadings, a few locations in the
central DET and eastern DIT have the highest FRD PM,
emissions between 3 X 10* and 6 X 10* ug m™2 d~". Relatively
low FRD PM, g emissions (0.2 X 10°~1.2 X 10* ug m™>d™")
occurred in the UT and ID zones (Figure Sa). The
anthropogenic PM, 5 emission fluxes were 7.2 X 10 5.7 x
10* 0.5 x 10% and 4.1 X 10* ug m™* d~! in the DET, DIT, UT,
and ID, respectively, based on the PKU PM,  inventory.*® The
value of PM, s emissions from FRD was about two-fifths of that
from combustion and industrial process sources in DET and
DIT. Overall, the total FRD emission in urban Lanzhou was
1141 + 71 kg d™". The road dust accounted for 24.6% of urban
PM,  emissions (Figure 6a). Especially, the contributions of
road dust to PM, 5 emissions varied widely among four UFZs,
ranging from 16.2% to 51.7% (Figure 6¢c—f). The magnitude of
FRD PM,; emissions in the four UFZs decreased in the
following order: DET (415 + 31 kg d™') > DIT (367 + 43 kg

DOI: 10.1021/acs.est.9b00666
Environ. Sci. Technol. 2019, 53, 8455—8465
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Figure 4. (a) Spatial distribution of daily traffic volume in Lanzhou (unit: vehicles d™'); (b) average daily traffic volumes on three level roads in
each UFZ; (c) diurnal cycle of traffic volume (unit: vehicles h™') on weekdays and weekends (dashes in the boxes denote the median traffic
volumes; the lower and upper parts of the boxes represent the 25 and 75" percentiles for each data set, respectively. The dotted lines extending

from the boxes indicate the maximum and minimum values).

1) > 1D (250 + 62 kg d™") > UT (109 =+ 13 kg d™") (Figure
Sb).

The diurnal cycle of total FRD PM, emissions mainly
follows the variations in traffic volume. Summed over urban
Lanzhou, the lowest hourly emission with value of 7.11 kg h™*
occurred at 5:00 LT in urban Lanzhou, after which emissions
rose dramatically to $8.63 kg h™" at 11:00 LT. Emissions
remained high from 8:00 to 23:00 LT, a period with intensive
human activities (Figure S5d). Meteorological condition,
especially precipitation, dominates the seasonal variation of
FRD PM, ; emissions for urban Lanzhou (Figure Sc). Summed
over urban Lanzhou, the monthly average FRD PM, 5 emission
was the highest in winter (3.1 X 10* kg month™), followed by
spring and autumn (both 2.8 X 10* kg month™) and summer
(2.7 x 10* kg month™"). The monthly variations of PM,
concentration at Lanzhou from observation and WRF-Chem
model were shown in Figure 6b. Overall, the WRF-Chem
model without FRD reproduced the temporal variation of
PM, s well but always underestimated the observed PM,
concentrations of approximately 20 yg m™>. The temporal
variation of simulated PM,s concentrations including FRD
emissions are more consistent with that of observations
especially in winter. However, the simulations always under-
estimated the observed PM, 5 concentrations in spring due to

8460

not covering all of the natural dust source regions in the
simulated domain.

Estimate of Premature Mortality Rate Induced by
FRD PM,; Exposure. The premature mortality rate due to
exposure to FRD PM, s is estimated at 30.2 premature deaths
107° population y™' in urban Lanzhou in 2017 (Confidence
interval (CI) 95%: 27.4; 33.3), that is, 234.5 premature deaths
for the total population of 2.5 million in urban Lanzhou. Of
these deaths, 13.9% is related to COPD mortality, 9.7% to LC,
21.5% to ALRI, 31.8% to IHD, and 23.1% to stroke. The
variation in the premature mortality rates for each disease is
attributed to the difference in baseline mortality. In Lanzhou,
IHD and stroke account for the most deaths, with values
reaching 9.6 (CI 95%: 9.0; 10.1) and 6.9 (CI 95%: 6.4; 7.9)
deaths 10™° population y~', respectively (Figure 7a). The
estimated mortality rate from FRD PM, g varied substantially
among the four UFZs, with relatively small values of 3.8
premature deaths 107> population y ™' in the ID (Figure 7b).
Owing to the interaction of a larger population, higher baseline
mortality, higher emission, the premature mortality burden was
obviously large in the DET and the DIT with high value of
157.1 and 44.9 premature deaths, respectively (Figure 7c).

DOI: 10.1021/acs.est.9b00666
Environ. Sci. Technol. 2019, 53, 8455—8465
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Figure 5. (a) Road dust PM, s emission fluxes (unit: ug m™> d™"); (b) the total amounts of road dust PM, ¢ emission in the four UFZs (unit: kg
d™); (c) monthly variations (unit: kg month™"); and (d) diurnal variations (unit: kg h™") of road dust PM, 5 emissions.

B DISCUSSION

In the process of urbanization, a large (sometimes the largest)
fraction of urban PM,  comes from FRD, which cause ambient
air quality degradation and acute damage to public
health.">~"7?** UFZs, which are closely related to daily urban
activities, are associated with distinctive characteristics of road-
deposited sediment and FRD PM,; emissions.'**> We
constructed a high-resolution gridded FRD PM, emission
inventory based on a revised AP-42 method™ to investigate
the characteristics of FRD PM, s emissions in the four UFZs
and their mortality impacts through a traditional epidemio-
logical relation approach™~** in the study.
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The road-deposited sediment in Lanzhou predominantly
comprises smaller particles (<100 um, 57—84%), which can be
easily released into atmosphere.'® In particular, the road dust
particles deposited in the ID region are much smaller than
those deposited in other regions, with a median size of 33.11
um, because of a large amount of deposited fine particles
originating from coal-fired factories and demolition and
construction activities.””*® Thus, these particles could be
suspended in the ambient atmosphere over a longer period,
contain more heavy metal contents, and be more harmful to
human health in the ID region than in the other regions.'**
Silt loading values are highly related to anthropogenic
activities, e.g., frequent street sweeping reduces the silt
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Figure 7. (a) Premature mortality rates in 2017 associated with FRD PM, s exposure for chronic obstructive pulmonary disease (COPD), lung
cancer (LC), acute lower respiratory infections (ALRI), ischemic heart disease (IHD), and cerebrovascular disease (stroke). (b) Premature
mortality rates in the four UFZs. And (c) premature mortality burden in 2017 associated with FRD PM, ; exposure. The error bar denotes the 95%
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loadings, but transportation and construction activities lead to
2—10 times increases in silt loading.

The characteristics of FRD PM, emissions varied
substantially among different UFZs. The FRD PM,  emission
is an one of main contributor to urban PM, emissions,
accounting for 16.2% to 51.7% of the PM2.5 emission among
four UFZs. The total FRD PM, s emission in the study area

was approximately 1141 kg d™'. The FRD PM, emission in
the DET ranked the highest (415.35 kg d™") due to the largest
traffic volume, despite the frequent street sweeping. The DIT,
ranked second (367.27 kg d™"), has the largest emission factor
mainly due to the intensive construction activities. The spatial
distribution of FRD PM, 5 emissions demonstrates a significant
relationship between FRD PM, emissions and human

8462 DOI: 10.1021/acs.est.9b00666
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activities: high emissions with values over 3 X 10*ug m™ d™"
are mainly concurrent with relatively infrequent street
sweeping, frequent construction activities, and high density
of road networks. Compared with observation, the WRF-Chem
model with FRD reproduced the monthly variation of PM, g
better than that without FRD. It is noted that the revised AP-
42 method used here only accounts for a limited number of
factors including particle size of FRD, silt loading, vehicle
weight, and precipitation. However, the previous studies
pointed out that road characteristics (e.g, vehicle speed,
types of vehicles, location, and topography),so other human
activities (street cleaning activities and policies), and
meteorological conditions (e.g., temperature, wind direction
and wind speed, and relative humidity) also play important
roles in FRD emissions.”’ The AP-42 method should be
improved by including more factors in the future.

The estimated premature mortality rate induced by FRD
PM,; exposure based on the traditional epidemiological
relation approach was 234.5 (CI 95%: 212.2; 258.3) premature
deaths in urban Lanzhou in 2017. Mortality due to FRD PM, 5
varied substantially among four UFZs. Compared to mortality
from the other UFZs, premature deaths rates were the largest
in the DET with value of 12.0 (CI 95%: 10.9; 13.2) premature
deaths 1075 population y~' owing to higher baseline mortality
and larger dust emission. Note that the estimation of
premature mortality induced by FRD exposure in the study
may be underestimated due to ignoring the influence of the
size distribution of particles, heavy metals, and polycyclic
aromatic hydrocarbon.'®**>

As emission reduction measures are being implemented
rapidly for fossil fuel burning, vehicle exhaust, and the power
sector, FRD PM, g emissions may represent a larger proportion
of air pollution.” FRD PM emissions abatement could
significantly improve urban air quality and protect public
health.** Effective FRD PM, 5 mitigation measures may differ
among the UFZs. Increasing the frequencies of street sweeping
could reduce FRD PM,  emissions in the DIT, in combination
with dust control measures for construction activities.’'
Moreover, use of dust suppressants with high hygroscopic
and deliquescent properties is an effective mitigation measure
in the DIT and ID, which areas have high silt loading and
smaller particles.'"” Moreover, the utilization of emission
control technologies of factories should be promoted in the
long run, such as implementing retirement of small and low-
efficient power plants and applying end-of-pipe controls,”>** to
fundamentally reduce fine particles in FRD in the ID.
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The FRD sample Collection and Measuring characteristics of road-deposited
sediment

We collected FRD samples using a domestic vacuum cleaner (Philips FC6400)
from July to November 2017 during a dry weather period and wind velocities less
than 7.9 m s”'. Samples were collected every 0.8 km along the length of roads longer
than 2.4 km and at three random sample sites for roads less than 2.4 km (Figure S1a).
At each sampling location, a rectangular sampling grid was selected, with a width of
0.5 m and a length being the width of the road (Figure Sla and c). The handheld
cordless vacuum cleaner can collect road-deposited sediment conveniently (Figure
S1b). Moreover, the vacuum cleaner has high efficiency to catch both fine and coarse
particulates with air filtration, dust bucket, the dust separator and the cyclone. The
FRD samples were preserved in numbered vacuum cleaner bags and dried at 35 °C
for 7 days (Figure S1d).

We measured the value of silt loading at each sampling site by a 200-mesh sieve
(<75 pm) an electronic weighting scale. And the silt loading (sL, units: g m?) is

calculated as follow:

g7 = Mot ~M7sum

o (1)
Where myoal is the mass of total FRD samples; m7sum is the mass of FRD samples
lager than 75 um; S is sampling area.
The size distribution of FRD samples was measured in laboratory. A 10-mesh
sieve (<2 mm) is used to screen out leaves, scree and cigarette butts. The gross
samples were divided by using coning and quartering'. To measure the size of dust
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particles more accurately, the remaining particles were further oxidized by using
hydrogen peroxide solution and hydrochloric acid solution to remove potential
contaminants (organic matter and calcium carbonate) from the FRD samples. And
then the samples were tested by a laser particle sizer (Malvern Mastersizer, 2000) to

determine the size distribution of the FRD.

Simulation of FRD PM: ;s concentrations based on the WRF-Chem model

1. WRF-Chem model

The Weather Research and Forecasting coupled with Chemistry (WRF-Chem)
mode was investigated to simulate FRD PM> s concentrations in the study. Gas-phase
chemical mechanisms, photolysis schemes, and aerosol schemes are coupled into the
WRF-Chem model, which considers a variety of coupled physical and chemical
processes such as aerosol emission, transport, deposition, aerosol interactions,
chemical transport, and radiative forcing?.

2. Model configuration

The key physical and chemical schemes used in simulations are listed in Table
S2. It is noted that Peking University (PKU) emission inventory has six sectors
including energy production, industry, transportation, residential & commercial,
agriculture and deforestation & wildfire for CO,, CO, PM2s, PMio, TSP, BC, OC, SO,,
NOx, and NH3, and polycyclic aromatic hydrocarbons®®. PKU emission inventories
with 0.1 by 0.1 degree spatial resolution and monthly temporal resolutions in 2014
have been included in the WRF-Chem model in this study. And FRD emission
inventory is constructed in this study.

In this study, we divided the study domain into the grid of 1450 square cells with
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a horizontal grid interval of 500 m. The domain covered the whole urban Lanzhou in
China, as shown in Fig. S3. The model atmosphere was divided into 35 vertical layers,
and the top pressure of the model was 100 hPa. The simulation period was from
December 15st, 2016—December 31st 2017. Only the results from the whole year in
2017 were used in this study. The initial and boundary meteorological conditions
were constructed from the National Center for Environmental Prediction Final
Analysis (NCEP/FNL) data at a 6 h temporal interval and 1 degree horizontal
resolution. To produce a more realistic simulation, the modeled u- and v-wind
components and atmospheric temperatures were nudged towards the NCEP/FNL data

with a nudging timescale of 6 h.

Ground monitoring PM» s Data

Daily PM>s data from January to December 2017 in Lanzhou, China were
obtained from the website of the China National Environmental Monitoring Center
(http://113.108.142.147:20035/). Based on using the tapered elementoscillating
microbalance to measure PMz s, the platform displays the real-time concentration of
PMas. This data has covered all cities at prefecture level since 2015 and has been

widely used to investigate the acute health effects of ambient PM,.s%°.

The diurnal cycle of traffic volume

The data of traffic volume is provided by Traffic Police Detachment of Lanzhou
Public Security Bureau. The traffic volume is counted by monitors at each road
intersection. Based on quality control, we get diurnal cycle of traffic volume on each
road (“roads” refers to the road segment between intersections), including 45 main
roads, 60 minor roads, and 55 branch roads. Compared with our observation, the data

of traffic volume from monitor is reliable.

S4



108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

The diurnal cycle of traffic volumes on the major road, minor road, and branch
road are shown in Figure S2. The traffic volumes show the lowest at 5:00 local time
with average value about 250, 100, 80 vehicles h™! on the major, minor, and branch
road, respectively, and maintained the high value during 9:00 to 23:00 local time (LT)
with dramatic increase after 7:00 local time and down at 23:00 LT. Especially, the
magnitude of traffic volumes is the highest on the major road, followed by the minor
road and branch road. The traffic volumes have a slight variation during the day time
mainly ranging from 1000 to 2500, 800 to 1400 vehicles h'! and 500 to 1000 vehicles
h! on the major road, minor road, and the branch road, respectively. The high periods
on three types of roads are all delayed about one or two hours on weekends compared
with those on weekdays. The traffic volumes change more significantly on major
roads than those on minor road, and the slight variations of traffic volumes occur on

branch roads.

FRD PMj emission.

The spatial distribution of FRD PM10 emission fluxes in Lanzhou is constructed
in Figure S3a. The magnitude of FRD PMa.s emission in Lanzhou is estimated to be
approximately 3216 kg d!'. The FRD PMys emission fluxes are enhanced over the
regions with large traffic volumes and high density of road network, predominantly in
the central of the DET and the eastern of the DIT, where the value is larger than 3x10*
ug m? d!. The FRD PM10 emission fluxes with comparatively lower values varying
from 11.8x10* pg m? d-!' to 7.5x10* ug m? d! are occurred in the UT and ID (Figure
S3a). The spatial distributions of the FRD PMjo emission fluxes are found to be quite
similar to that of the PMz 5 emission fluxes. The FRD emissions with the PM2 s/PMio
ratio of 0.35 can sufficiently increase the amount of fine particulate matters in urban
areas, which could be suspended in the ambient atmosphere over a longer time and be
more harmful for human health compared to its coarse fraction’. The FRD PMjo
emission factors, as an indicator of the FRD emission ability, are sensitive factors in
the construction of emission inventory. The FRD PMjo emission factors are
approximately 3 times lager than the PMzs emission factors. The interaction of large
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silt loading and small particle size causes high values of FRD PMio emission factors
in the DIT and ID, with average value of 1.13 and 0.96 g VKT-!, respectively (Figure
S3b). And the magnitude of FRD PM10 emission in the different UFZs decrease in
the order DET (1188 kg d') > DIT (1023 kg d!) > ID (693 kg d'') > UT (312 kg d)
(Figure S3c). The diurnal cycle of FRD PMio emission is mainly consistent with
variation of traffic volumes, that is, the lowest FRD PM o emission occurs at 5:00 LT
with value as low as 19.98 kg h'! while rises dramatically to 165.42 kg h'! at 11:00 LT.
It maintains the high value from 8:00 to 23:00 LT accompanied by human activities,
exposing citizen to high PMjo level (Figure S3d). Moreover, meteorological
conditions also influence FRD emission as the monthly FRD PMio emission is the
largest (8.5x10* kg month™') in winter, followed by spring (8.0x10* kg month-1) and
smallest (7.8x104 kg month!) in summer which aligns with the precipitation cycles
(Figure S3e).
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Table S1. The WRF-Chem configuration in this study

Atmospheric Process Model Option
Physics Land surface Noah
Boundary layer YSU

Cumulus clouds New Grell scheme

Cloud microphysics Morrison 2-mom
Long-wave radiation RRTMG
Shortwave radiation RRTMG
Chemistry Gas-phase chemistry CBM-7
Aerosol chemistry MOSAIC
Photolysis Fast-J
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Table S2. The average of PM.>.5s concentrations (unit: ug m->)

UFZs* Spring Summer Autumn Winter Annual

(°FRD/Total®) (FRD/Total) (FRD/Total) (FRD/Total) (FRD/Total)

DET 13.1/45.7 10.1/31.9 14.6/44.6 19.9/66.2 14.4/47.1
DIT 9.2/41.4 5.9/27.7 11.2/41.2 16.8/63.6 10.8/43.5
UT 6.7/38.9 3.7/25.4 7.5/37.6 12.1/58.9 7.5/40.2
ID 5.3/37.4 3.1/24.9 7.0/37.1 9.9/56.7 6.3/39.0

AUrban function zones: UFZs= urban function zones; DET=developed downtown;
DIT=developing downtown; UT=university town; ID=industrial district; °)FRD: the
FRD PM: s concentration simulated by the Weather Research and Forecasting model
coupled with Chemistry (WRF-Chem) Model; 9Total: the simulated PMas

concentrations including FRD, natural dust and anthropogenic sources

Table S3. The key parameters for estimation of premature mortality

parameters ~ COPD* LC? ALRI® IHD* stroke®

a 0.565 0.841 1.854 1.043 1.579

/4 0.019 0.014 0.002 0.104 0.013

) 0.861 0.915 1.281 0.684 1.235

Co 5.8 5.8 5.9 5.8 5.8
Baseline 43.8 (CI: 234 (CI: 286 (CI: 105.7 (CI: 423 (CI:

mortality” 40.4;49.1) 17.3;27.3) 25.5;/30.6) 98.8;111.9) 39.6;48.7)

“Disease: COPD= chronic obstructive pulmonary disease; LC= lung cancer; ALRI=
acute lower respiratory infections;, IHD= ischemic heart disease; and stroke=
cerebrovascular disease; "Baseline mortality: CI denotes the 95% confidence

intervals
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Figure S1. The process of gathering samples. (a) Sampling locations; (b) road-deposited

sediments were sampled by a vacuum cleaner; (c) measuring the areas of the sampling grid;

(d) FRD samples collected in vacuum cleaner bags.
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Figure S2 The diurnal cycle of traffic volume on (a) major road; (b) minor road; (c)
branch road. (Dashes in the boxes denote medians of traffic volume. Opening and
closing of the boxes presents 25 and 75" percentiles for each dataset. The dotted line

tops of the boxes are maximum and minimum, respectively).
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243 Figure S3. (a) The pattern of FRD PM;o emission fluxes (unit: pg m?2 d'); (b) emission
244 factors (unit: g VKT), (¢) Total amount (unit: kg d!), (d) Diurnal variations (unit: kg h'),

245  and (¢) Monthly variations (unit: kg month™') of FRD PM o emission in four UFZs.
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Figure S4 The spatial distributions of simulated FRD PM2.5 concentrations in (a)

spring, (b) summer, (¢) autumn and (d) winter based on the WRF-Chem model.
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