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Abstract 13 

COVID-19 is now in an epidemic phase, with a second outbreak likely to appear 14 

at any time. The intensity and timing of a second outbreak is a common concern 15 

worldwide. In this study, we made scenario projections of the potential second 16 

outbreak of COVID-19 using a statistical-epidemiology model, which considers both 17 

the impact of seasonal changes in meteorological elements and human social 18 

behaviors such as protests and city unblocking. Recent street protests in the United 19 

States and other countries are identified as a hidden trigger and amplifier of the 20 

second outbreak. The scale and intensity of subsequent COVID-19 outbreaks in the 21 

U.S. cities where the epidemic is under initial control are projected to be much greater 22 

than those of the first outbreak. For countries without reported protests, lifting the 23 

COVID-19 related restrictions prematurely would accelerate the spread of the disease 24 

and place mounting pressure on the local medical system that is already overloaded. 25 

We anticipate these projections will support public health planning and policymaking 26 

by governments and international organizations. 27 
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1 Introduction 28 

Recently, the COVID-19 pandemic has spread rapidly and poses a dire threat to global 29 

public health, which claimed over 0.49 million lives, along with 9.8 million confirmed 30 

cases as of June 28th 1. Beyond the spread itself, the outbreak may have far-reaching 31 

consequences, negatively affecting the economic development worldwide and posing a 32 

series of long-standing social problems2,3. There is an urgent need for a global prediction 33 

system that can provide scientific guidelines for the World Health Organization and 34 

international decision-makers to implement effective containment measures capable of 35 

curbing the spread of COVID-194. Researchers worldwide have developed various models 36 

with mathematical and statistical methods, including stochastic simulations, lognormal 37 

distribution5, machine learning, and artificial intelligence6. Among them, the 38 

susceptible-infectious-removed infectious disease model (SIR) is the most widely used7–9. 39 

However, this simple model is built under a series of idealized assumptions, which may 40 

limit the accuracy and reliability of the prediction. In order to obtain the prediction results 41 

with higher credibility, more complex models with fewer assumptions should be developed 42 

so as to simulate the actual situations in a more realistic manner10. 43 

Although it is difficult to establish an accurate epidemiological model describing the 44 

spread of a pandemic, the reported global pandemic data contain particular solutions to the 45 

mathematical equations incorporated in epidemiological models3,6. It is theoretically 46 

possible to remedy the defects of prior epidemiological models by introducing the latest 47 

pandemic data and hence improve the pandemic prediction2,4,6. Based on this idea, we have 48 

developed a Global Prediction System of the COVID-19 Pandemic (GPCP)11. The system 49 

develops a modified version of the SIR model and determines the parameters through 50 

historical data fitting12,13, which allows it to make targeted predictions for various countries 51 

and obtain better prediction results. The first version of GPCP (CPCP-1) can capture the 52 

major features of the daily number of confirmed new cases and provides reliable 53 

predictions. However, the prediction of GPCP-1 is only valid for one month11.  54 
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In this study, the second version of the Global Prediction System for COVID-19 55 

Pandemic (GPCP-2) is developed based on a modified SEIR model14. The system considers 56 

both the seasonal changes of meteorological elements and human social behaviors 57 

including protests and city unblocking. The paper is arranged as follows: the details of the 58 

datasets and the methodology used are given in section 2. In section 3, projections of 12 59 

cities in the United States are presented. The projections of 15 countries with reported 60 

protests and 15 countries without reported protests are shown in section 4 and section 5, 61 

respectively. Discussion and conclusion are presented in section 6. 62 

2 Method 63 

2.1 The modified SEIR model 64 

The second version of Global Prediction System for COVID-19 Pandemic (GPCP) is 65 

built based on a modified SEIR model15. The traditional SEIR model10,14 defines seven 66 

states of the disease: susceptible cases (S), insusceptible cases (P), potentially infected 67 

cases (E, infected cases in a latent period), infectious cases (I, infected cases that have not 68 

been quarantined), quarantined cases (Q, confirmed and quarantined cases), recovered 69 

cases (R), and cases of mortality (D). The SEIR model is able to emulate the time curve of 70 

an outbreak. The model is consisted of the following equations: 71 

�����/�� � �	���
�������/� � �����，                (1) 72 

�
���/�� � �����，                                 (2) 73 

�����/�� � 	���
�������/� � ��������，               (3) 74 

�
���/�� � �������� � ����
���，                 (4) 75 

�����/�� � ����
��� � �������� � ��������             (5) 76 

�����/�� � ��������                                (6) 77 

�����/�� � ��������                                (7) 78 

The sum of the six categories is equal to the total population (N) at any time. 79 

S + P + E + I + Q + R + D = N 80 
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We modified the model by introducing the timing of community reopening collected 81 

from news reports. If the timing collected from news reports is not explicit enough as an 82 

input to our model, the timing will be indicated by the daily new cases on the day of 83 

reopening (dQc). As the number of newly confirmed cases on a given day falls lower than 84 

dQc, local authority begins to lift or loose the lockdowns. 85 

In addition, the temporal variation of transmission rate due to changes in local 86 

temperature as well as human behaviors are considered. Generally, the transmission rate 87 

(	���) can be expressed by the following equations: 88 

	��� � �	�                                          � � ����	�                             ���� � � � �����	� � � � ����                   � � ����� � 
where 	� represents the transmission rate in the non-intervention period at the early stage 89 

of the pandemic (� � ����); 	� represents the transmission rate during the intervention 90 

period (���� � � � �����); 	� represents the transmission rate after the restriction is lifted. 91 

	� and 	� are fitted against the actual reported data, while 	� is the assumed value in 92 

possible future scenarios. We assume a 14-day delay in the effect of the intervention on the 93 

infection rate. ���� is the PDF function obtained by Huang et al.16, who found that 60.0% 94 

of confirmed COVID-19 cases occurred in places where the air temperature ranged from 95 

5°C to 15°C. Using the NCEP reanalysis data, we calculated the global distribution of 96 

probability distribution function (PDF) values on each day of the year and included its 97 

influence on the infection rate. Figure 1 shows the PDF values for the four seasons in a year. 98 

High PDF values correspond to the ambient temperature that is conducive for the virus to 99 

spread. For the northern hemisphere, the optimal band generally moves northward in 100 

summer (June, July, and August) and moves southward in winter (December, January, and 101 

February), while for southern hemisphere the optimal band moves southward in summer 102 

(December, January, and February) and moves northward in winter (June, July, and 103 

August). 104 
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 105 
Figure 1: The optimal temperature zone for the spread COVID-19. Regions with warm 106 

shadings indicate more conducive temperature for the spread of the virus and vice versa. 107 

 Since the seasonality of transmission is still disputed and future trajectory of the 108 

outbreaks may be influenced by the intensity of intervention measures, four future 109 

scenarios are designed to project the epidemic after easing COVID-19 related restrictions: 110 

- Scenario 1: The restrictions are completely lifted after ���� �	� � 	��. The seasonal 111 

forcing on the transmission rate is considered (E = 1). 112 

- Scenario 2: The restrictions are partially lifted after ����  �	� � �	� � 	��/2 �. The 113 

seasonal forcing on the transmission rate is considered (E = 1). 114 

- Scenario 3: The restrictions are completely lifted after ���� �	� � 	��. The seasonal 115 

forcing on the transmission rate is not considered (E = 0). 116 

- Scenario 4: The restrictions are partially lifted after ����  �	� � �	� � 	��/2 �. The 117 

seasonal forcing on the transmission rate is not considered (E = 0). 118 

2.2 Parameter fitting and numerical solutions 119 

In order to enhance the stability of the traditional least square method (Gauss-Newton 120 

algorithm), we use an improved damped least square method called Levenberg-Marquardt 121 
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algorithm17. This method inserts a damping coefficient into the Gauss-Newton method 122 

when calculating the Hessian matrix. The benefit of introducing this damping coefficient is 123 

that it can converge very quickly in the steepest direction in many cases even when the 124 

initial solution is very far from ideal values, which makes the parameter determination 125 

more robust18. In addition, for all damping coefficient greater than 0, the coefficient matrix 126 

is positive definite which makes the Hessian matrix in the descending direction. The input 127 

variables to obtain fitted parameters (�, 	, �, �, �, and �) are the time series of confirmed 128 

(���� � ���� � ����), death (����), and recovered (����) cases provided by from Johns 129 

Hopkins University Center for Systems Science and Engineering1. The equations are solved 130 

using the classic 4th order Runge-Kutta method. 131 

3 Projections of the US cities 132 

Unfortunately, the recent protests against police violence in cities across the United 133 

States have gone ahead despite the current rising COVID-19 pandemic and potential 134 

subsequent outbreaks, possibly with higher intensity. Large public gatherings, shouting, and 135 

marching shoulder to shoulder may have already sown the seeds of the second outbreaks in 136 

regions under initial control19,20 and made it even more difficult to contain the epidemic in 137 

regions where the curve is still increasing. The use of tear gas and pepper spray against the 138 

protesters may also have produced violent coughing and runny noses, forcing protesters to 139 

remove their masks and making the crowds even more susceptible to the virus. A certain 140 

number of patients with the latent disease may have participated in the protests and spread 141 

the disease to healthy protesters, police officers, and national guards who are not yet 142 

immune to the virus21. If the close contacts of the infectious are not fully tracked, they may 143 

spread the virus to other groups of people, increasing the risk of a larger size of outbreaks. 144 

Here, we simulated the impact of large-scale protests on the potential second outbreaks in 145 

several cities of the United States22 (Figure 2 and Table 1). The model generally predicted a 146 

second wave of COVID-19 in the second half of 2020. We estimated the increase in the 147 

population of potentially infected people (δEt) for each city based on the ratio of the 148 
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number of infected persons (Qt) to the total population of the city (N). The timing of 149 

protests and the number of protesters in each city were collected from local news reports 150 

(Table 1). The increase in the population of potentially infected people (δEt) and the 151 

populations of protesters (δSt, regarded as an increase in the population of susceptible) 152 

were used as the force input for the model calculations to simulate the impact of protests on 153 

the outbreaks. When the protests begin, we force group E and group S to increase δEt and 154 

δSt, respectively.  155 

 156 

Figure 2: The impact of protests on the possible second outbreak in Minneapolis. The 157 

blue dots denote the reported daily incidence of COVID-19 cases. The blue line represents 158 

the simulation and projections without protests, while the dashed red line denotes the 159 

simulation and projections with protests. Four scenarios with protests and four scenarios 160 
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without protests are simulated. (a)~ (b), (c)~(d), (e)~(f), (g)~(h) are the simulation for 161 

Scenario 1, 2, 3, 4, respectively. (a)~(b) and (c)~(d) are the simulations with seasonal 162 

forcing; (e)~(f) and (g)~(h) are the simulations without seasonal forcing. (a)~(b) and (e)~(f) 163 

are the simulations where the restrictions are completely lifted; (c)~(d) and (g)~(h) are the 164 

simulations where the restrictions are partially lifted. 165 

Figure 2 shows the projections for Minneapolis in 8 scenarios (4 scenarios with protests 166 

and 4 without). After the COVID-19 restrictions were lifted, an upward trend of daily new 167 

cases has been observed. The protests would significantly amplify the intensity of the 168 

second outbreak but may not be able to advance it. In scenarios 1, the second outbreak of 169 

Minneapolis will peak in mid-August 2020. The comparison between scenarios indicates 170 

that the effect of intervention measures outweighs the seasonal forcing. For the rest of the 171 

12 cities, the model also predicted enhanced second outbreaks when the impact of protests 172 

is considered (Table 1). Due to space constraints, the details of the projection results are not 173 

presented in the manuscript and can be accessed at http://covid-19.lzu.edu.cn/. 174 

  175 
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Table 1 Projections of the second outbreaks in some US cities in Scenario 1 176 

Countries 

Population 

(million) 

Start date of 

Protests 

Estimated 

participants 

The peak time 

of the second 

outbreaks 

Peak time daily new 

incidence without protests 

Peak time daily new 

incidence with protests 

End of the second 

outbreak 

Accumulated 

Confirmed Cases 

New York City (New 

York) 

8.33 May, 29th 25,000 Mid-August Around 8,000 Around 18,000 End of 2020 Around 900,000 

Chicago (Illinois) 5.15 May, 28th 30,000 Mid-September Around 2700 Around 4100 End of 2020 Around 390,000 

Minneapolis (Minnesota) 1.26 May, 26th 30,000 Mid-September Around 400 Around 700 End of 2020 Around 48,000 

Columbus (Ohio) 1.31 May, 28th 10,000 Late-September Around 120 Around 380 End of 2020 Around 35,000 

Westchester (Illinois) 0.97 May, 29th 30,000 Mid-August Around 3,500 Around 5,500 September, 2020 Around 150,000 

Philadelphia 

(Pennsylvania) 

10.04 May, 30th 10,000 Mid-October Around 800 Around 1,700 End of 2020 Around 120,000 

Seattle (Washington) 2.25 May, 29th 50,000 Late-August Around 2,00 Around 600 End of 2020 Around 35,000 

Washington, D.C. 0.70 May, 29th 10,000 Mid-October Around 180 Around 650 September, 2020 Around 70,000 

San Francisco (California) 0.88 May, 30th 30,000 Mid-August Around 100 Around 400 October, 2020 Around 22,000 

Detroit (Michigan) 1.75 May, 29th 30,000 Early-September Around 1,000 Around 2,200 October, 2020 Around 70,000 

Miami-Dade (Florida) 2.72 May, 30th 20,000 Mid-August Around 1,800 Around 3,000 September, 2020 Around 120,000 

San Diego (California) 3.34 May, 29th 30,000 Late-August Around 1,000 Around 1,600 September, 2020 Around 130,000 
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4 Projections of countries with reported protests 177 

 178 
Figure 3: The impact of protests on the possible second outbreak in the United Kingdom. 179 

The blue dots denote the reported daily incidence of COVID-19 cases. The blue line 180 

represents the simulation and projections without protests, while the dashed red line denotes 181 

the simulation and projections with protests. The scenarios in these subplots are the same as 182 

Figure 2. 183 

In addition to the United States, protests of a certain scale also broke out in other 184 

countries. Using similar parameterization of the protests, Table 3 presents the projections of 185 

the second outbreaks in the United Kingdom, the United States, Germany, Italy, Australia, 186 

Canada, Spain, Mexico, Switzerland, Belgium, Netherlands, Ireland, and Denmark. For the 187 

United Kingdom (Figure 3), the second outbreak is likely to peak during August. Under the 188 
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impact of protests, when the restrictions are lifted completely, a second wave with a peak of 189 

14,160 is expected, which is 75.6% higher than the scenario without protests (Scenario 1). 190 

The protests and the lifting of restrictions, along with the enhancement in the ability of virus 191 

transmission in the cold seasons due to temperature change may cause the recurrence of an 192 

outbreak that was initially under control. If the same intervention measures are implemented 193 

during the second outbreak, the second outbreak would be brought under control again by the 194 

end of 2020.  195 
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Table 2 Projections of the second outbreaks in some countries (with protests) 196 

Countries 
Population 

(million) 

Start date 

of Protests 

Estimated 

participants 

The peak time 

of the second 

outbreaks 

Peak time daily new 

incidence without 

protests 

Peak time daily new 

incidence with 

protests 

End of the second 

outbreak 

Accumulated 

Confirmed Cases 

with protests 

United 

Kingdom 
66.48 May, 28th 70,000 Early-August Around 8,000 Around 14,170 End of 2020 Around 1,150,000 

United States 328.2 May, 26th 1,500,000 Late-July Around 40,000 Around 120,000 End of 2020 Around 16,000,000 

Germany 82.93 May 30th 160,000 Early-September Around 4,500 Around 7,000 End of 2020 Around 450,000 

Italy 60.43 June, 30th 150,000 Early-October Around 6,000 Around 95,000 End of 2020 Around 600,000 

Australia 25.44 June, 2nd 14,000 Early-August Around 500 Around 1,900 End of 2020 Around 45,000 

Canada 37.05 May, 30th 100,000 Late-September Around 1,800 Around 2,500 End of 2020 Around 250,000 

Spain 46.73 June, 1st 10,000 Early-September Around 7,600 Around 9,400 End of 2020 Around 1,100,000 

Mexico 126.2 May, 30th 50,000 Late-August Around 5,800 Around 7,600 End of 2021 Around 1,500,000 

Switzerland 8.57 May, 31st 20,000 Early-August Around 1,400 Around 2,100 October, 2020 Around 80,000 

Belgium 11.42 June, 1st 50,000 Late-August Around 2,000 Around 4,200 End of 2020 Around 230,000 

Netherlands 17.26 June, 1st 56,000 Late-July Around 1,800 Around 2,800 End of 2020 Around 170,000 

Ireland 4.81 May, 31st 20,000 Mid-July Around 600 Around 1,500 End of 2020 Around 90,000 

Denmark 5.73 May 31st 20,000 Late-August Around 600 Around 1,000 End of 2020 Around 60,000 

 197 
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5 Projections of countries without reported protest 198 

 199 

Figure 4: Projections of the second outbreak in India in different scenarios. Scenarios 1 200 

and 2 are simulated with seasonal forcing, while scenarios 3 and 4 are simulated without 201 

seasonal forcing. Scenarios 1 and 3 are the projections where restrictions are fully lifted, 202 

while scenarios 2 and 4 are the projections where restrictions are partially lifted. 203 

Mass gathering events during the epidemic should be restricted or even banned since 204 

they have the potential to enhance the second outbreak and pose further radical 205 

public-health challenges for health authorities and governments23,24. Lifting the restrictions 206 

too early may also have the potential to trigger subsequent outbreaks and further increase 207 

the pressure on the medical system. Fig 4 shows the projections of India in the four 208 

scenarios. With seasonal forcing, it is predicted that the first peak of the epidemic will 209 

occur in September while the second peak with higher intensity, caused environmental 210 

changes, will arrive in January 2021. Without seasonal forcing, there would be only one 211 

peak in September 2020. We also projected the epidemic curve for other countries 212 

including Russia, Brazil, Chile, etc. that are still in the rapid growing period. We classified 213 

them as ‘non-protesting countries’, not because there are no protests. Indeed, there might 214 

have been many protests and mass gatherings in India, Brazil, and other regions that may 215 

impact the outbreak on varying degrees, but the information on the timing and size of these 216 

protests are currently not available. Therefore, the role of these protests on the timing and 217 

size of the outbreaks can not be isolated and may not be incorporated as a force into the 218 

model.  219 
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From Table 3 we can see that the peak time and size of the second outbreak varies from 220 

countries to countries, due to different levels of interventions measures, environmental 221 

conditions, medical resources, etc. Regions with high population density are at higher risk 222 

of enhanced second outbreaks. When control measures are lifted too soon and 223 

environmental temperatures are more suitable for the spread of disease25, an enhanced 224 

second outbreak is expected. Therefore, when considering the timing of lifting the 225 

restrictions to restore the economy, it is necessary to analyze epidemic situations as well as 226 

climate factors. For example, during cold seasons when the transmission rate is higher, 227 

reopening would easily light up the second outbreaks, since conducive environmental 228 

factors and related human social behaviors (more frequent indoor gatherings) would, 229 

directly and indirectly, increase the transmission ability of the virus, leaving more people 230 

vulnerable to infection. Therefore, the peak of the second wave of the outbreak is most 231 

likely to synchronize with the fall of environmental temperature, displaying strong 232 

seasonality. During winter months, the temperate regions of the Northern and Southern 233 

Hemispheres experience highly synchronized annual influenza epidemics26. Additionally, 234 

when restrictions are lifted, personal protection (wearing face masks, keeping appropriate 235 

interpersonal distance, sterilization, etc)27. is still required or even mandatory in indoor 236 

places so as to minimize the infection rate by cutting off the infection routine. 237 
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Table 3 Projections of the second outbreaks in some countries in Scenario 1 (without reported protests) 238 

Countries 
Population 

(million) 

The peak time of the second 

outbreaks 

Peak time daily new incidence without 

protests 

End of the second 

outbreak 

Accumulated Confirmed 

Cases 

India 1324 Early-November, 2020 Around 41,000 February, 2021 Around 6,000,000 

Russia 144.5 Late-September, 2020 Around 12,000 April, 2021 Around 2,800,000 

Brazil 209.5 Early-October, 2020 Around 60,000 February, 2021 Around 11,200,000 

Peru 32.05 Late-October, 2020 Around 13,000 May, 2021 Around 2,500,000 

Chile 18.60 Late-July, 2020 Around 11,000 April, 2021 Around 1,500,000 

Argentina 44.49 January, 2021 Around 5000 April, 2021 Around 600,000 

Pakistan 212.2 Early-August, 2020 Around 30,000 November, 2020 Around 2,700,000 

Saudi 

Arabia 
32.55 Late-July, 2020 Around 13,000 May, 2021 Around 3,500,000 

Bangladesh 161.4 Late-August, 2020 Around 15,000 January, 2021 Around 1,600,000 

Qatar 2.64 Early-September, 2020 Around 2,400 December, 2020 Around 240,000 

Colombia 49.64 February, 2021 Around 12,500 May, 2021 Around 55,000 

Belarus 9.51 Mid-August, 2020 Around 2,800 May, 2021 Around 2,800,000 

Egypt 102.27 Mid-November, 2020 Around 2,800 March, 2021 Around 420,000 

Ecuador 17.08 Mid-August, 2020 Around 5,000 December, 2020 Around 300,000 
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6 Discussion and conclusion  239 

New treatments and vaccines are not yet available for any COVID-19-affected areas28. 240 

With the presence asymptomatic of carriers that may spread the virus, and the lack of herd 241 

immunity, a second outbreak is inevitable as confirmed cases of COVID-19 increase. Our 242 

results show that the timing and intensity of the second outbreaks are seasonally modulated 243 

and depend largely on local reopening policies. Higher seasonal variations in COVID-19 244 

transmission may lead to a greater incidence of recurrent wintertime outbreaks29. The 245 

current mass protests in the United States and other regions of the world could lead to 246 

amplified second outbreaks, overlapping the wintertime outbreaks and threatening more 247 

lives. This is because the extremely crowded environments facilitate the spread of the virus, 248 

leading to high rates of the second attack, as seen in both the 1918 pandemic and the 1957 249 

Asian influenza pandemic30–32. 250 

If the transmission capacity of the second outbreak increases, it could place a 251 

catastrophic burden on the health system and create even more serious social and economic 252 

crises. However, if the chain of transmission is cut during the first outbreak, there will be 253 

no further outbreak similar to the first wave. The necessary drug therapies and vaccines 254 

currently require long-term development and testing, so nonpharmaceutical interventions 255 

are the only direct means available to suppress the spread of the disease33. In the face of a 256 

powerful pandemic, everyone must help to fight the virus. We must collectively follow the 257 

distancing limits recommended by global public-health organizations to effectively reduce 258 

the potential cost in the lives of the second wave of infection. Our findings should 259 

encourage close monitoring and early warning of the development of a global pandemic, as 260 

well as safeguards for our global prediction system to best contain the second wave34. 261 

These results provide a powerful scientific basis for governments to adjust their policies 262 

and control measures in real-time, to achieve the most effective allocation of medical 263 

resources before the second outbreak and to reduce the associated health risks. 264 

 265 
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