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Abstract Accurate representation of cloud vertical overlap in climate models is particularly
significant for predicting the total cloud fraction (TCF) and calculating radiative budget. It refers to
the parameterization of overlap parameter—decorrelation length scale L—but the potential of
dynamical factors in developing parameterization of L has still received far less attention. Using
ground‐based radar observation over Atmospheric Radiation Measurement Southern Great Plains site,
here long‐term seasonal‐averaged L is retrieved and shows a very high anticorrelation with TCF from
different data sets, indicating that TCF is sensitive to the way of cloud overlap. Therefore, combined
with meteorological reanalysis data set, a robust multiple regression model between L and dynamical
factors is built and exhibits smaller TCF bias compared with previous parameterization of L.
Contribution calculation further verifies that atmospheric instability contributes 70% of L variation,
indicating that it dominates the long‐term variation of L over Southern Great Plains site. This finding
implies that dynamical factors should be taken into account in the parameterization of L.

Plain Language Summary The total cloud fraction plays a key role in modulating the Earth's
radiation budget. Its calculation in atmospheric models involves many microphysical/dynamical processes
and related parameterizations. One of the outstanding but less concerned challenges involves how to
reasonably parameterize the cloud overlap parameter—decorrelation length scale L in these models. In this
study, we demonstrate the potential of dynamical variables in developing the adjustable parameterization of
L. By using the ground‐based radar observations and meteorological reanalysis data set, the long‐term
climatology of L and a robust multiple regression model between L and dynamical factors are built.
Statistical results indicate that new parameterization of L effectively reduces the bias of total cloud fraction
compared with previous one. Such a long‐term climatology of L is also enough to interpret the key issue
of what factor dominates the long‐term temporal variability of L over a fixed location. Here, we find that the
atmospheric instability contributes 70% of L variation over SGP site. This finding implies that dynamical
factors should be considered in the parameterization of L.

1. Introduction

Total cloud fraction (TCF) plays a key role in modulating the Earth's radiation budget (Jian et al.,
2018; Seinfeld et al., 2016; Stephens, 2005). Its calculations in atmospheric models refer to many
microphysical/dynamical processes and related parameterizations and thus contribute to one of the lar-
gest uncertainties in climate modeling when estimating and interpreting changes in the Earth's energy
budget (Boucher et al., 2013). However, the challenges still remain even if cloud microphysical processes
(e.g., condensate) are pretty well simulated, because atmospheric models have to make some assump-
tions about how the cloud layers overlap in the vertical direction, such as maximum, random, and mini-
mum assumptions, to calculate the TCF (Geleyn & Hollingsworth, 1979; Weger et al., 1992). Previous
studies have shown that these overlap assumptions may bias TCF calculations and lead to considerable
differences in radiative budgets and heating/cooling rate profiles (Barker et al., 1999; Morcrette &
Fouquart, 1986; Morcrette & Jakob, 2000; Pincus et al., 2005; Stephens et al., 2004; Wang et al.,
2016). Thus, a more robust cloud overlap parameterization in climate models is imperative to improve
the calculation of the radiative budgets.
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Active sensors (e.g., lidar and radar) have been proven able to largely improve the treatment of cloud
overlap behavior in the models and have thus been widely used to study the cloud overlap properties over
different locations (e.g., Hogan & Illingworth, 2000; Huang et al., 2015; Li et al., 2018; Naud et al., 2008).
Currently, the most widely used assumption is the exponential random overlap (Hogan & Illingworth,
2000), which expresses the mean observed cloud fraction between higher and lower cloud layers (hereafter,
Ci and Cj are the cloud covers at higher and lower layers, respectively) as the linear combination of the max-
imum (Cmax

i;j =max{Ci, Cj}) and random overlaps (Cran
i;j = Ci + Cj − Ci × Cj) in terms of an “overlap factor” α:

α ¼ Cobs
i;j −C

ran
i;j

� �
= Cmax

i;j −Cran
i;j

� �
. The overlap factor α can be further fitted as an inverse exponential function

of decorrelation length scale L and layer distance D, α = e−D/L. Here, the cloud overlap parameters α and L
are both used to characterize the progressive transition from the maximum to random overlap assumption
with increasing layer distances. Until now, many studies have verified the validity of the exponential ran-
dom overlap using ground‐based or spaceborne radar observations (e.g., di Giuseppe & Tompkins, 2015;
Li et al., 2015; Mace & Bensontroth, 2002; Willén et al., 2005); however, they also found that the retrieved
values of parameter L have wide ranges and vary with seasons, locations and spatiotemporal resolutions
(e.g., Barker, 2008; Oreopoulos & Norris, 2011). Thus, an adjustable parameterization of L with some
variables is better than a fixed L, such as the latitude‐dependent scheme (Shonk et al., 2010), which parame-
terizes L as a function of latitude. In fact, the sensitivity of L to seasons and locations suggests that factors
such as dynamical process or atmospheric state could be connected to the way cloud layers overlap. For
example, a more unstable atmosphere during the summer season tends to favor a maximum overlap and
larger decorrelation scales (e.g., Naud et al., 2008). As a result, recent studies have made a preliminary
attempt to build statistical relationships between L and dynamical factors (e.g., wind shear or instability)
by using spaceborne active observations (di Giuseppe & Tompkins, 2015; Li et al., 2018). However, the poten-
tial of dynamical variables that can be used to develop the parameterization of L has still received far less
attention. In particular, the above studies only use short‐term satellite observations and are insufficient to
interpret the key issue of what factor dominates the long‐term temporal variability of L over a fixed location.

To date, the Atmospheric Radiation Measurement (ARM; Ackerman & Stokes, 2003) program and related
radar observations have performed well for 20 years. Based on the plentiful ground‐based cloud properties
and radiative flux observations over the SGP site, many studies have found that the cloud radiative effect
highly correlates with TCF and thus verified the importance of accurate simulation of TCF in models
(e.g., Dong et al., 2006; Dong & Mace, 2003). Delightedly, such a long‐term ground‐based radar observation
also allows us to build long‐term decorrelation length scale L climatology over a fixed site and further focuses
on two key points: (1) how to parameterize Lmore reasonably and (2) what factor dominates the long‐term
temporal variability of L over a fixed location. The data and methods are described in section 2, the results
and discussions are shown in section 3, and section 4 provides the summary.

2. Data Sets and Methods
2.1. Ground‐Based Active Measurement

The ARM program Active Remote Sensing of Clouds (ARSCLs) Value‐Added Product (VAP) for the SGP
site (January 1997 to December 2010) is used to derive the long‐term variation of cloud overlap properties
over this site. This product combines radar reflectivities, and micropulse lidar returns to provide a contin-
uous time series of the cloud vertical mask at 10‐s and 45‐m resolutions (Clothiaux et al., 2000). We use the
parameters “ReflectivityBestEstimate” and “CloudBaseBestEstimate” to locate the atmospheric hydrome-
teors. For simplicity, this investigation defines the reflectivity values between −40 and −10 dBZe as
“cloud”; those profiles with reflectivity values larger than −10 dBZe are considered as “drizzle or precipita-
tion” and eliminated from present analysis (Zhao et al., 2017). The CloudBaseBestEstimate parameter from
lidar is used to provide the best estimate of cloud base height and assist in reducing the contamination of
clutter (e.g., insects). Based on these limitations, a complete two‐dimensional cloud mask can be generated
at 10‐s and 45‐m resolutions. Because previous studies have pointed out that precipitation may bias cloud
overlap statistics toward maximum overlap (di Giuseppe & Tompkins, 2015; Mace et al., 2009), we thus use
the ground‐based hourly precipitation measurements to further remove the cloud profiles during entire
hours with precipitation (Naud et al., 2008). To match the hourly precipitation measurement, cloud cover
profiles during 1 hr (e.g., about 360 profiles) are collected to generate the 1‐hr averaged cloud cover profile.
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Similar with previous studies (e.g., Mace & Bensontroth, 2002; Naud et al., 2008), we combine eight high‐
resolution (e.g., 45 m) vertical sublayers into one layer with 360‐m resolution and consider this layer as
“cloud layer” as long as any sublayer is cloudy. It possibly causes some potential uncertainties in
retrieving the overlap parameter because the probability of a cloud occupying the layer increases with
increasing grid spacing.

For each 1‐hr averaged cloud cover profile, the overlap factor α between any two atmospheric layers in
this profile is calculated if the cloud covers (Ci and Cj) of the two layers exceed 0 and their cloud top
heights are both lower than 10.5 km (Naud et al., 2008). Ground‐based radar observations have indi-
cated that α is sensitive to the spatial and temporal resolutions (e.g., Hogan & Illingworth, 2000;
Mace & Bensontroth, 2002). Tompkins and Giuseppe (2015) have attributed this sensitivity to data trun-
cation, where the overcast or single cloud layers are discarded from the samples when the sampling
scale is smaller than the cloud system scale, thus biasing the calculation of overlap parameters and
enhancing the sensitivity of overlap parameters to the spatial scale. Here, the sampling scale can be
translated from the temporal resolution (e.g., 1 hr) and mean wind speed (Hogan & Illingworth,
2000). To reduce the sensitivity of α to the spatial scale caused by data truncation, Tompkins and
Giuseppe (2015) further suggested that the scenes with cloud cover exceeding 50% should be removed
from the analysis when the sampling resolution is smaller than the cloud system scale. Although this
simple cloud filter decreases the available sample number, the sensitivity of α to the spatial resolution
is largely reduced. Following their suggestion, we apply an upper limit of cloud cover (50%; i.e., 0.0 <
Ci < 0.5 and 0.0 < Cj < 0.5) at any atmospheric layer, instead of 100%, to perform the calculation of

α based on the equation: α ¼ Cobs
i;j −C

ran
i;j

� �
= Cmax

i;j −Cran
i;j

� �
. To ensure the statistical significance, all calcu-

lated values of α during one season are collected to derive the seasonal‐averaged α profile. Finally, we
exclude those separations for which there are fewer than 150 points and calculate L by performing a
least squares fit to each seasonal‐averaged α profile.

Figure 1 indicates the averaged seasonal variations of α and its dependences on the layer distance for
noncontiguous and contiguous cloud layers during 1997–2010 year. Here, we define those nonadjacent
layers without clear sky between them as a contiguous cloud pair. Otherwise, they are classified as a
noncontiguous cloud pair (Hogan & Illingworth, 2000). For the noncontiguous cloud pair (solid lines in
Figure 1), the seasonal and vertical variations of α with layer distance are small; its values range from 0
to 0.1 and follow the random overlap very well (e.g., Di Giuseppe & Tompkins, 2015; Hogan &
Illingworth, 2000). For the contiguous cloud pair (dash lines), we can see that α gradually decreases from
0.93 to 0.15 with an increasing layer distance. This indicates that contiguous cloud pairs tend to follow
the maximum overlap more for a large layer distance, which is consistent with previous studies (e.g.,
Di Giuseppe & Tompkins, 2015; Hogan & Illingworth, 2000). The seasonal variation of overlap parameter
can be related to the atmospheric state and will be discussed in the section 3. Based on the results from
Figure 1, the following analysis only focuses on the contiguous cloud pairs. After performing data screen-
ing, the contiguous cloud pairs (i.e., 0.0 < Ci < 0.5 and 0.0 < Cj < 0.5), which are used to retrieve α and
L, reach 521,738 samples. In section 3, we divide these samples into two different subsets, one for the
creation of a regression model of L (251,524 samples) and the other one for the evaluation of the model
(270,214 samples). It is worth further noting that those cloud layer pairs with cloud cover larger than 0.5
(i.e., 0.5 < Ci < 1.0 and 0.5 <Cj < 1.0) are also included in evaluating the regression method. Thus, this
subset eventually includes 630,900 samples (see Figure 5).

2.2. Meteorological Reanalysis Data Set

The daily 3‐hr meteorological products (zonal wind u, meridional wind v, relative humidity rh,
specific humidity sh, vertical velocity ω, and atmospheric temperature T profiles) from the Modern‐
Era Retrospective Analysis for Research and Applications Version 2 (MERRA2; Rienecker et al.,
2011), which have a gridded resolution of 0.5° × 0.625°, are used to calculate the wind shear and atmo-
spheric instability between two atmospheric layers over the SGP site. For any two atmospheric layers in
each 1‐hr averaged cloud cover profile, the wind shear dV/dzi,j between the layers i and j is defined as
follows:
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dV=dzi;j ¼
max Vi;Vj

� �
−min Vi;Vj

� �
Di;j

; (1)

where Vi and Vj are the horizontal wind speeds for layers i and j, respectively, and Di,j is the layer separation
distance. Similarly, the degree of the conditional instability of themoist convection is expressed as the vertical
gradient of the saturated equivalent potential temperature between the same two layers (i.e., ∂θes/∂zi,j). Here,

θes ¼ θexp
Lvrs
CpT

� �
;

θ ¼ T
1000
p

� �0:286

;Lv ¼ 2:5×106−2323× T−273:16ð Þ;

rs ¼ sh
rh× 1−shð Þ;

8>>>>>>>><
>>>>>>>>:

(2)

where θ is the potential temperature, P is the pressure, Lv is the latent heat of vaporization, Cp is the specific
heat capacity at a constant pressure, rs is the saturation mixing ratio, and T is the atmospheric temperature.
Generally, the larger the ∂θes/∂zi,j, the more stable the atmosphere. In addition to the wind shear and atmo-
spheric instability, the vertical velocity at 500 hPa, whose positive values are for updrafts and whose negative
values are for subsidence, is also analyzed.

3. Results and Discussion
3.1. Cloud Overlap Parameterization Based on Dynamical Factors

Based on the method of section 2.1, Figure 2 further provides the time series of seasonal‐averaged TCF, dec-
orrelation length scale L, and their anomalies over the SGP site. Here, the TCFs are derived from different
data sources. Based on the cloud profiles of the ARSCLs VAP product, the hourly mean TCF from radar
observation is defined as the ratio of cloudy profiles to total sample profiles within a temporal resolution of
1 hr. Thus, the CF_Radar is the seasonal‐averaged value of hourlymean TCFs based on theARSCLsVAP pro-
duct. The TCF from the second edition data set of the CLARA (“Cloud, Albedo and Surface Radiation data set
from Advanced Very High Resolution Radiometer (AVHRR) data” is also used in this study (hereafter,
referred as CF_ CLARA‐A2). Here, the CLARA‐A2 is the second edition of the Climate Monitoring
Satellite Application Facility cloud and radiation data set and is derived from the 34 years of global
AVHRR observations onboard the polar‐orbiting National Oceanic and Atmospheric Administration and
MetOp meteorological satellites (Karlsson et al., 2017). CF_ERA and CF_MERRA 2 are derived from ERA‐

Figure 1. The averaged seasonal variations of overlap parameter α and its dependences on the layer distance for noncon-
tiguous (solid lines) and contiguous cloud layers (dash lines) based on 14‐year observations. It is worth noting that those
statistical results of α with layer distance larger than 6 km are excluded due to limited sample numbers.
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Interim (Dee et al., 2011) and MERRA2 reanalysis data sets, respectively. In Figure 2, we can see that the
seasonal cycles of TCF are consistent for different data sets. However, the difference of cloud fraction
seems to be large between them. It possibly refers to the remote sensing method (passive vs. active) and
spatial‐scale difference (Kennedy et al., 2011). In particular, CF_CLARA‐A2 data set is based on the
AVHRR, which is a passive sensor carried by the polar‐orbiting satellite. It means that CF_CLARA‐A2 will
underestimate the TCF because passive sensors (e.g., MODIS) generally fail to detect the optically thin
clouds (optical depth < 0.3; Sun et al., 2015). Although CF_CLARA‐A2 data set cannot provide the diurnal
cycle of TCF, the TCF difference between CF_CLARA‐A2 and CF_Radar is impossible caused by the
diurnal cycle of TCF because radar observation has revealed the weak diurnal cycle of TCF over the SGP site
(e.g., Dong et al., 2006). The underestimations of TCF in CF_MERRA 2 and CF_ERA may be due to the fact
that these reanalysis products both incorporate satellite data into their assimilation process.

A Student's t test has been performed for the relationship between TCF and L. The low P‐values (P < 0.05)
indicate that the TCFs from four data sets all have significant negative correlation with L, either their normal
value or deseasonalized anomalies. For the normal values of TCF and L, the correlation coefficients from dif-
ferent TCF data sets range from −0.54 to −0.66 (Figure 2a). Although the correlation coefficients between
their anomalies drop to approximately −0.45, they are still significant (Figure 2b, P < 0.05), which means
that TCF is sensitive to cloud overlap way, and thus, a reliable parameterization of the L will contribute
to improved simulation of TCF in climate models.

The first question is then how to parameterize Lmore reasonably. Naud et al. (2008) pointed out that the sen-
sitivity of L to the season and location possibly relates to the dynamical process and atmospheric state.
Indeed, the annual cycle and long‐term series of L in Figure 3 indicate that its variation is related to the atmo-
spheric states and cloud covers at different layers (i.e., Ci and Cj). For the annual cycle of L (Figure 3a), its
maximum andminimum values occur during summer and winter seasons, respectively. The cycle is anticor-
related with wind shear and instability. Generally, weaker wind shear and a more unstable atmosphere tend
to favor the development of clouds and result in maximum overlap (larger L values) between cloud layers (Li
et al., 2018; Naud et al., 2008), which possibly explains why L is sensitive to the season.

In addition, because the calculation of overlap factor α is related to the cloud cover at different levels, an
opposite annual cycle between L and cloud cover can also be seen in Figure 3c. This anticorrelation may
be explained by considering an isolated cloud: (1) given a study region, if the cloud cover decreases, then
the degree of overlap must increase (Hogan & Illingworth, 2000); (2) if this cloud refers to a strong

Figure 2. Time series (55 seasons) of (a) seasonal‐averaged total cloud fraction and decorrelation length scale L and (b) their anomalies over the SGP site. The cor-
relation coefficients between total cloud fraction from different data sets and L are also given in the figures. Here, the seasonal‐averaged L that is retrieved based on
the cloud layer pairs with cloud cover is smaller than 0.5 (i.e., 0.0 < Ci < 0.5 and 0.0 <Cj < 0.5), and sample number reaches 521,738. All of the correlation coef-
ficients in this figure (Corr.) are the Pearson's rank correlation coefficient. The values of P calculated using the Student's t test are smaller than 0.05 (P < 0.05).
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convective system, it tends to develop vertically rather than horizontally and thus results in a smaller cloud
cover at a horizontal level. In Figure 3d, it is clear that atmospheric instability exhibits maximum negative
correlation with the time series of L (Corr. = −0.75, P < 0.05), and wind shear also has obvious
correlation with L (Corr. = −0.57, P < 0.05). Moreover, only Cj is obviously negatively correlated with L
and its correlation coefficient reaches −0.61 (P < 0.05). Although the annual cycle of vertical velocity does
not show correlation with L, its time series still exhibits significant but weak negative correlation with L
(Corr. = −0.31, P < 0.05). These statistical relationships are consistent with previous global or regional
studies (Di Giuseppe & Tompkins, 2015; Li et al., 2018; Naud et al., 2008). Previous study has pointed out
the importance of cloud type to the Earth's climate system and discussed the overlap properties between
different cloud types based on the space‐based lidar and radar observations (e.g., Li et al., 2015). For the
different cloud types, the cloud vertical overlap and its associated impact factor should be different. In this
analysis, but, different cloud‐type pairs are divided into same group if they have the same layer
separation, which causes that the dependence of overlap parameter on cloud type is masked. However,
different cloud types refer to different dynamical conditions. As such, deep convective cloud or cumulus
tends to occur at an instability atmosphere, whereas status clouds have high occurrence frequency at a
stability atmosphere. Thus, this study does not include the information of cloud type and mainly focuses
on the dependences of cloud overlap parameters on dynamical factors instead of cloud types. The
sensitivity of L on dynamical parameters found in our study thus still partly reflects the impact of cloud

Figure 3. (a, c) Annual cycles and (b, d) long‐term series of L and different dynamical factors. The correlation coefficients between L and dynamical factors series
are also given in the figures. All of the correlation coefficients in this figure (Corr.) are the Pearson's rank correlation coefficient. The values of P calculated using the
Student's t test are smaller than 0.05 (P < 0.05).

Figure 4. (a) Observed and regressed time series (55 seasons) of L based on the regression modelL ¼ 3:27−0:46× ∂θes
∂Z . The correlation coefficients between observed

and regressed L are also given in the figure. (b) Similar with (a) but is their scatter plot. Here,DiffL ¼
∑
i¼55

i¼1
∣Liretrieved−Liregressed∣

55
and represents the averaged value of

absolute differences between retrieved and predicted L. The correlation coefficient in this figure (Corr.) is the Pearson's rank correlation coefficient. The value
of P calculated using the Student's t test is smaller than 0.05 (P < 0.05).
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types on the overlap parameter. However, further researches are needed to study the overlap properites and
related impact factor for specific cloud type.

The above analysis indicates that dynamical factors and cloud cover can be regarded as the predictors to
build a regression model for L. Note that the regression model for L only considers those variables for which
their time series show significant correlation with L (confidence level >95%). After testing the collinearity
between different variables, the stepwise regressionmethod is used to filter the predictors and build the opti-

mal regression model. Ultimately, the seasonal data subset (251,524 samples) yields the following model: L

¼ 3:27−0:46× ∂θes
∂Z . This model captures a significant amount of the variability in L over the 1997–2010 record

(see Figure 4), and the R‐squared values (R2) and averaged value of absolute differences between retrieved

and predicted L (i.e.,DiffL ¼
∑
i¼55

i¼1
∣Liretrieved−Li

regressed∣

55
) for this regression model are 0.57 (correlation coeffi-

cient Corr. = 0.76, P < 0.05) and 0.52 km, respectively. In addition, the regression model reveals that atmo-
spheric instability is the primary factor that controls the seasonal cycle of L, with wind shear and other
variables playing an insignificant role over the SGP site. This result is different from previous ones that

attempted to parameterize L as a function of wind shear alone ( L ¼ 4:4−0:45× dV
dz ; Di Giuseppe &

Tompkins, 2015) or wind shear and atmospheric instability (L ¼ 2:18−0:09× dV
dz −0:15×

∂θes
∂z ; Li et al., 2018).

In the above studies, wind shear is considered as an important factor, but the wind shear effect on cloud
overlap varies by as much as a factor of 5 in these two studies. Note that the above wind shear‐dependent
schemes are either from short‐term satellite observations or aim at a specific region. Comparison between
them cannot demonstrate which is superior or has universal application. However, the inconsistency
between different schemes indicates that the sensitivity of the L on dynamical factors varies with large‐scale
meteorological conditions. Indeed, Jing et al. (2018) showed that the vertical velocity‐dependent scheme of L
may significantly reduce biases in the cloud fraction and radiation fields in tropical convective regions com-
pared with traditional overlap schemes. However, over the extratropical regions, vertical velocity exhibits a

Figure 5. Biases of cloud fraction caused by the latitude and dynamical schemes. (a) Absolute value of relative difference
(abRCFD) between predicted and observed cloud fractions caused by the latitude scheme. (b) Absolute value of relative
difference between predicted and observed cloud fractions caused by the dynamical scheme. (c) Probability density
functions of relative cloud fraction difference and overlap factor difference (inset in Figure 5c) for the two schemes, with
the sample number value (630,900 samples). (d) Variation of abRCFD with layer distance; the subplot represents the
variation of cumulative percentage of sample number with layer distance. In addition, the color shading represents five
standard deviations of the mean.
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weak correlation with L, which is similar to recent statistical results over the Tibetan plateau (Li et al., 2018),
and an insignificant contribution to the seasonal cycle of L.

3.2. Comparison Between Different Overlap Parameterization and Contribution Calculation

To assess performance of the new model (hereafter, the dynamical scheme), we calculate the bias of cloud
fraction caused by the dynamical scheme (see Figure 5b). The bias is represented by using the absolute value
of relative difference between predicted and observed cloud fractions. Here, the relative cloud fraction differ-
ence RCFD = (CFpredicted − CFobserved)/CFobserved and its absolute value may be expressed as follows:
abRCFD =|RCFD|. For comparison, the bias of the latitude scheme presented by Shonk et al. (2010) is also
presented (Figure 5a). The latitude scheme parameterizes L as a function of latitude based on the ground‐
based radar observations (L= 2.899− 0.02759 × ∣ ϕ∣, ϕ is latitude) and exhibits smaller TCF bias compared
with random and maximum assumptions (Li et al., 2018). However, given the cloud covers at higher and
lower atmospheric levels as Ci and Cj, we find that the abRCFD between these two layers from the latitude
scheme even exceeds 15% when Ci and Cj have low but similar values (Figure 5a). Compared with the lati-
tude scheme, the dynamical scheme improves the calculation of α (see Figure S1 in the supporting informa-
tion) and reduces the cloud fraction bias (Figure 5b). Especially, Figure 6 shows that the improvement of
TCF from dynamical scheme is more prominent during the summer season and at small layer distance
(e.g., <1 km). Our statistical results further indicate that the abRCFD from these two schemes tends to
increase with increasing layer distances between two atmospheric layers (Figure 5d). The values of bias
range from 3% (5.3%) to approximately 7% (8%) for dynamical (latitude) schemes. On average, the cloud frac-
tion bias caused by the dynamical scheme is always smaller than the abRCFD from the latitude scheme,
especially for those cloud layers with small separation (e.g., <1 km). When the layer distance exceeds 1
km, the abRCFD from these two schemes keeps the values constant. These results verify that the dynamical
scheme may further improve the calculation of TCF over the SGP site compared with latitude scheme.

If given the cloud covers at higher and lower atmospheric levels as Ci and Cj and Cj<Ci, the difference
between predictions based on any scheme and observed cloud fractions can then be expressed as
ΔC = Δα × Cj × (Ci − 1). It is clear that a negative α (or L) bias will result in a positive cloud fraction bias.
Figure 5c indicates that latitude and dynamical schemes have a similar positive α bias and comparable nega-
tive RCFDs based on these two schemes. Compared with the latitude scheme, we can see that the dynamical
scheme reduces the percentage of underestimation for α and increases the percentage of no bias and reduces
the overestimation of cloud fraction.

Another key question that needs to be answered is which factor dominates the long‐term variation of L over
the SGP site. To answer this question, the seasonal anomalies of different predictors based on 521,738 sam-
ples, which are already deseasonalized, detrended, and normalized, are used to build the regression relation-

ship. Similarly, we first test the collinearity between different variables (e.g., ΔCi,ΔCj,Δ ∂θes
∂z ,Δ

dV
dz, and Δω) and

then use the stepwise regression method to remove the insignificant terms from the multilinear models.

Figure 6. The dependence of total cloud fraction biases caused by the different overlap schemes on the layer distance and month; (a) Absolute value of relative
difference (abRCFD) between predicted and observed cloud fractions for the latitude scheme (L = 2.899 − 0.02759 × ∣ ϕ∣,ϕ is latitude; Shonk et al., 2010). (b)
Absolute value of relative difference between predicted and observed cloud fractions for the dynamical scheme. Here, abRCFD = |(CFpredicted − CFobserved)/
CFobserved|.
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Finally, we obtain the following model: ΔL ¼ −0:27×ΔCj−0:63×Δ ∂θes
∂z . The calculation of the relative

contributions of different variables to ΔL is based on the following equation (Huang & Yi, 1991):

RCj ¼ 1
m

∑
m

i¼1
T2
ij= ∑

n

j¼1
T2
ij

 !" #
; (3)

wherem is the length of the data series and n is the number of predictors. Tij= bjxij, bj denotes the regression
coefficients of each term, xij represents predictor variables, and j is the number of predictor variables.

Figure 7a indicates the agreement between the observed and regressed time series of ΔL in which the corre-
lation coefficient reaches 0.83 (P < 0.05). This means that the regression model of ΔL based on anomalies of
cloud cover and instability has the ability to reproduce long‐term variations of L. Based on the contribution
calculation, we find that the long‐term variation of L over the SGP site is mainly controlled by the atmo-
spheric instability anomalies and that its contribution reaches 70% (Figure 7b). In addition, it is interesting
to see that the variation of cloud cover at lower atmospheric levels (i.e., ΔCj) also contributes 30% of ΔL,
although Cj has a negligible effect on the seasonal cycle of L.

4. Summary

TCF has been considered as the key variable modulating the Earth's radiation budget. Recent research has
indicated that the contribution of TCF to long‐term variation of the planetary albedo (PA) may reach 70%
over the oceans at middle and low latitudes (Jian et al., 2018). However, one of the remaining challenges
is that atmospheric models have to develop adjustable parameterizations of overlap parameter—decorrela-
tion length scale L—instead of fixed ones to accurately calculate the TCF. Due to the inability of passive sen-
sors in detecting cloud vertical structure (Chang & Li, 2005a, 2005b; Huang et al., 2005, 2006), this study uses
ground‐based radar observation to derive the long‐term seasonal‐averaged L over the SGP. By matching the
meteorological reanalysis data set, we demonstrate that the potential of dynamical variables can be used to
develop the adjustable parameterization of L and find that a dynamical‐dependent scheme of Lmay reduce
the TCF bias over the SGP site compared with the previous one. More importantly, our statistical results
show that atmospheric instability is the most important control factor of L variation over the SGP site,
and its contribution even reaches 70%.

The present cloud overlap parameterization only refers to the cloud fraction of nonprecipitating clouds other
than in‐cloud properties. If we further focus on the vertical alignment of highly variable in‐cloud microphy-
sical properties, the cloud fraction overlap needs to be replaced by a probability density function (PDF) over-
lap of in‐cloud and precipitation properties (e.g., cloud liquid and ice, rain, and snow; Ovchinnikov et al.,
2016). Although cloud radiative effect bias caused by above PDF overlap is proven to be quarter to half of
the bias from cloud fraction overlap, the uncertainty in PDF overlap scheme still is nonnegligible (Wang,
2017). Recent study further points out that hydrometeor fall speeds can be used to improve the representa-
tion of vertical alignment of cloud and precipitation properties and develop PDF overlap parameterization in
climate models (Ovchinnikov et al., 2019). Above studies and our result thus suggest that the effects of

Figure 7. (a) Observed and regressed time series of ΔL based on all 521,738 samples. (b) Relative contributions of different variables to ΔL. Similar with Figure 2; ΔL
is retrieved based on the cloud layer pairs with cloud cover smaller than 0.5 (i.e., 0.0 <Ci < 0.5 and 0.0 < Cj < 0.5). The correlation coefficient in this figure (Corr.) is
the Pearson's rank correlation coefficient. The value of P calculated using the Student's t test is smaller than 0.05 (P < 0.05).
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dynamical variables should be considered in the parameterizations of either cloud fraction overlap or PDF
overlap to improve the calculation of radiative budget and further reduce the uncertainties in projection
of future climate.

In fact, the related methods used to calculate L and quantify the relative contributions can also be used at
other ARM sites. However, the chief goal of this study is not to develop a superior or universal parameteriza-
tion of L but to demonstrate the potential of dynamical‐dependent parameterization and further quantify the
contribution of different dynamical factors to long‐term variation of L over SGP site. Thus, the parameteri-
zation of L derived from SGP site is not always feasible for other climate regimes, and dominant contribution
factor of long‐term variation of L also varies with regions. The varied sensitivity may be caused by different
factors. First, besides cloud dynamics, other variables (e.g., cloud microphysical properties) also play a non-
negligible role in determining cloud overlap properties (Heymsfield, 1972). Second, present study cannot
entirely remove the effect of data truncation on the calculation of L by using a simple sample filter. The var-
iation of cloud system scale with region and height may result in different retrieval bias of L if given the tem-
poral resolution (or sampling scale). However, the retrieval uncertainty of L could be reduced using global
statistics of cloud system scales as a function of dynamical factors (Guillaume et al., 2018), and a more robust
parameterization of L will be built.

References
Ackerman, T. P., & Stokes, G. M. (2003). The atmospheric radiation measurement program. Physics Today, 56(1), 38–44. https://doi.org/

10.1063/1.1554135
Barker, H. W. (2008). Overlap of fractional cloud for radiation calculations in GCMs: A global analysis using CloudSat and CALIPSO data.

Journal of Geophysical Research, 113, D00A01. https://doi.org/10.1029/2007JD009677
Barker, H. W., Stephens, G. L., & Fu, Q. (1999). The sensitivity of domain‐averaged solar fluxes to assumptions about cloud geometry.

Quarterly Journal of the Royal Meteorological Society, 125(558), 2127–2152. https://doi.org/10.1002/qj.49712555810
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., et al. (2013). In T. F. Stocker, D. Qin, G.‐K. Plattner, M. Tignor,

S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Clouds and aerosols, in: Climate Change 2013: The physical
science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (pp. 571–657).
Cambridge, UK, New York: Cambridge Univesity Press. https://doi.org/10.1017/CBO9781107415324

Chang, F. L., & Li, Z. (2005a). A new method for detection of cirrus overlapping‐low clouds and determination of their optical properties.
Journal of the Atmospheric Sciences, 62(11), 3993–4009. https://doi.org/10.1175/JAS3578.1

Chang, F. L., & Li, Z. (2005b). A near global climatology of single‐layer and overlapped clouds and their optical properties retrieved from
TERRA/MODIS data using a new algorithm. Journal of Climate, 18(22), 4752–4771. https://doi.org/10.1175/JCLI3553.1

Clothiaux, E. E., Ackerman, T. P., Mace, G. G., Moran, K. P., Marchand, R. T., Miller, M. A., & Martner, B. E. (2000). Objective determi-
nation of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. Journal of Applied
Meteorology and Climatology, 39, 645–665. https://doi.org/10.1175/1520‐0450(2000)039<0645:ODOCHA>2.0.CO;2

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA‐Interim reanalysis: Configuration and
performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. https://doi.org/
10.1002/qj.828

Di Giuseppe, F., & Tompkins, A. M. (2015). Generalizing cloud overlap treatment to include the effect of wind shear. Journal of the
Atmospheric Sciences, 72(8), 2865–2876. https://doi.org/10.1175/JAS‐D‐14‐0277.1

Dong, X., & Mace, G. G. (2003). Arctic stratus cloud properties and radiative forcing derived from ground‐based data collected at Barrow,
Alaska. Journal of Climate, 16(3), 445–461. https://doi.org/10.1175/1520‐0442(2003)016<0445:ASCPAR>2.0.CO;2

Dong, X., Xi, B., & Minnis, P. (2006). A climatology of midlatitude continental clouds from the ARM SGP central facility: Part II. Cloud
fraction and surface radiative forcing. Journal of Climate, 19(9), 1765–1783. https://doi.org/10.1175/JCLI3710.1

Geleyn, J. F., & Hollingsworth, A. (1979). An economical analytical method for the computation of the interaction between scattering and
line absorption of radiation. Contributions to Atmospheric Physics, 10(3), 826–841. https://doi.org/10.1002/2017MS001190

Guillaume, A., Kahn, B. H., Yue, Q., Fetzer, E. J., Wong, S., Manipon, G. J., et al. (2018). Horizontal and vertical scaling of cloud
geometry inferred from CloudSat data. Journal of the Atmospheric Sciences, 75(7), 2187–2197. https://doi.org/10.1175/JAS‐D‐17‐
0111.1

Heymsfield, A. (1972). Ice crystal terminal velocities. Journal of the Atmospheric Sciences, 29, 1348–1357. https://doi.org/10.1175/1520‐
0469(1972)0291348:ICTV.2.0.CO;2

Hogan, R. J., & Illingworth, A. J. (2000). Deriving cloud overlap statistics from radar. Quarterly Journal of the Royal Meteorological Society,
126(569), 2903–2909. https://doi.org/10.1002/qj.49712656914

Huang, J., Guo, J., Wang, F., Liu, Z., Jeong, M. ‐J., Yu, H., & Zhang, Z. (2015). CALIPSO inferred most probable heights of global dust and
smoke layers. Journal of Geophysical Research: Atmospheres, 120, 5085–5100. https://doi.org/10.1002/2014JD022898

Huang, J., & Yi, Y. (1991). Inversion of a nonlinear dynamical model from the observation. Science in China, 34B, 1246–1251.
Huang, J. P., Minnis, P., & Lin, B. (2005). Advanced retrievals of multilayered cloud properties using multispectral measurements. Journal

of Geophysical Research, 110, D15S18. http://doi.org/10.1029/2004JD005101
Huang, J. P., Minnis, P., & Lin, B. (2006). Determination of ice water path in ice‐ over‐water cloud systems using combined MODIS and

AMSR‐E measurements. Geophysical Research Letters, 33, L21801. http://doi.org/10.1029/2006GL027038
Jian, B., Li, J., He, Y., Wang, G., Zhang, M., & Huang, J. (2018). The impacts of atmospheric and surface parameters on long‐term variations

in the planetary albedo. Journal of Climate, 31(21), 8705–8718. https://doi.org/10.1175/JCLI‐D‐17‐0848.1
Jing, X. W., Zhang, H., Satoh, M., & Zhao, S. Y. (2018). Improving representation of tropical cloud overlap in GCMs based on cloud‐

resolving model data. Journal of Meteorological Research, 32(2), 233–245. https://doi.org/10.1007/s13351‐018‐7095‐9

10.1029/2019JD030954Journal of Geophysical Research: Atmospheres

LI ET AL. 10

Acknowledgments
This research was jointly supported by
the Foundation for Innovative Research
Groups of the National Science
Foundation of China (Grant 41521004)
and the National Science Foundation of
China (Grants 41575015 and 91837204).
The authors declare that they have no
conflict of interest. We would like to
thank the Atmospheric Radiation
Measurement Program sponsored by
the U.S. Department of Energy and
MERRA2 science teams for providing
excellent and accessible data products.
The ARSCLs data set is available from
this link (http://www.archive.arm.gov/
discovery/#v/home/s/), and MERRA2
daily product may be accessed from this
link (https://disc.gsfc.nasa.gov/data-
sets/).

https://doi.org/10.1063/1.1554135
https://doi.org/10.1063/1.1554135
https://doi.org/10.1029/2007JD009677
https://doi.org/10.1002/qj.49712555810
https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.1175/JAS3578.1
https://doi.org/10.1175/JCLI3553.1
https://doi.org/10.1175/1520-0450(2000)039%3c0645:ODOCHA%3e2.0.CO;2
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/qj.828
https://doi.org/10.1175/JAS-D-14-0277.1
https://doi.org/10.1175/1520-0442(2003)016%3c0445:ASCPAR%3e2.0.CO;2
https://doi.org/10.1175/JCLI3710.1
https://doi.org/10.1002/2017MS001190
https://doi.org/10.1175/JAS-D-17-0111.1
https://doi.org/10.1175/JAS-D-17-0111.1
https://doi.org/10.1175/1520-0469(1972)0291348:ICTV.2.0.CO;2
https://doi.org/10.1175/1520-0469(1972)0291348:ICTV.2.0.CO;2
https://doi.org/10.1002/qj.49712656914
https://doi.org/10.1002/2014JD022898
http://doi.org/10.1029/2004JD005101
http://doi.org/10.1029/2006GL027038
https://doi.org/10.1175/JCLI-D-17-0848.1
https://doi.org/10.1007/s13351-018-7095-9
http://www.archive.arm.gov/discovery/#v/home/s/
http://www.archive.arm.gov/discovery/#v/home/s/
https://disc.gsfc.nasa.gov/datasets/
https://disc.gsfc.nasa.gov/datasets/


Karlsson, K.‐G., Anttila, K., Trentmann, J., Stengel, M., Meirink, J. F., Devasthale, A., et al. (2017). CLARA‐A2: The second edition of the
CM SAF cloud and radiation data record from34 years of global AVHRR data. Atmospheric Chemistry and Physics, 17(9), 5809–5828.
https://doi.org/10.5194/acp‐17‐5809‐2017

Kennedy, A. D., Dong, X. Q., Xi, B. K., Xie, S. C., Zhang, Y. Y., & Chen, J. Y. (2011). A comparison ofMERRA and NARR reanalyses with the
DOE ARM SGP data. Journal of Climate, 24(17), 4541–4557. https://doi.org/10.1175/2011JCLI3978.1

Li, J., Huang, J., Stamnes, K., Wang, T., Lv, Q., & Jin, H. (2015). A global survey of cloud overlap based on CALIPSO and CloudSat mea-
surements. Atmospheric Chemistry and Physics, 15(1), 519–536. https://doi.org/10.5194/acp‐15‐519‐2015

Li, J., Lv, Q., Jian, B., Zhang, M., Zhao, C., Fu, Q., et al. (2018). The impact of atmospheric stability and wind shear on vertical cloud overlap
over the Tibetan Plateau. Atmospheric Chemistry and Physics, 18(10), 7329–7343. https://doi.org/10.5194/acp‐18‐7329‐2018

Mace, G. G., & Bensontroth, S. (2002). Cloud‐layer overlap characteristics derived from Long‐term cloud radar data. Journal of Climate,
15(17), 2505–2515. https://doi.org/10.1175/1520‐0442(2002)015<2505:CLOCDF>2.0.CO;2

Mace, G. G., Zhang, Q., Vaughan, M., Marchand, R., Stephens, G., Trepte, C., & Winker, D. (2009). A description of hydrometeor layer
occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. Journal of Geophysical Research, 114, D00A26.
https://doi.org/10.1029/2007JD009755

Morcrette, J. J., & Fouquart, Y. (1986). The overlapping of cloud layers in shortwave radiation parameterizations. Journal of the Atmospheric
Sciences, 43(4), 321–328. https://doi.org/10.1175/1520‐0469(1986)043<0321:TOOCLI>2.0.CO;2

Morcrette, J. J., & Jakob, C. (2000). The response of the ECMWF model to changes in the cloud overlap assumption. Monthly Weather
Review, 128(6), 1707–1732. https://doi.org/10.1175/1520‐0493(2000)128<1707:TROTEM>2.0.CO;2

Naud, C. M., del Genio, A., Mace, G. G., Benson, S., Clothiaux, E. E., & Kollias, P. (2008). Impact of dynamics and atmospheric state on
cloud vertical overlap. Journal of Climate, 21(8), 1758–1770. https://doi.org/10.1175/2007JCLI1828.1

Oreopoulos, L., & Norris, P. M. (2011). An analysis of cloud overlap at a midlatitude atmospheric observation facility. Atmospheric
Chemistry and Physics, 11(12), 5557–5567. https://doi.org/10.5194/acp‐11‐5557‐2011

Ovchinnikov, M., Giangrande, S., Larson, V. E., Protat, A., & Williams, C. R. (2019). Dependence of vertical alignment of cloud and pre-
cipitation properties on their effective fall speeds. Journal of Geophysical Research: Atmospheres, 124, 2079–2093. https://doi.org/
10.1029/2018JD029346

Ovchinnikov, M., Lim, K. S. S., Larson, V. E., Wong, M., Thayer‐Calder, K., & Ghan, S. J. (2016). Vertical overlap of probability density
functions of cloud and precipitation hydrometeors. Journal of Geophysical Research: Atmospheres, 121, 12,966–12,984. https://doi.org/
10.1002/2016JD025158

Pincus, R., Hannay, C., Klein, S. A., Xu, K. M., & Hemler, R. (2005). Overlap assumptions for assumed probability distribution function
cloud schemes in large‐scale models. Journal of Geophysical Research, 110, D15S09. https://doi.org/10.1029/2004JD005100

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., et al. (2011). MERRA: NASA'S modern‐era retrospective
analysis for research and applications. Journal of Climate, 24(14), 3624–3648. https://doi.org/10.1175/JCLI‐D‐11‐00015.1

Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea, E. J., et al. (2016). Improving our fundamental understanding
of the role of aerosol‐cloud interactions in the climate system. Proceedings of the National Academy of Sciences, 113(21), 5781–5790.
https://doi.org/10.1073/pnas.1514043113

Shonk, J. K., Hogan, R. J., Edwards, J. M., & Mace, G. G. (2010). Effect of improving representation of horizontal and vertical cloud
structure on the Earth's global radiation budget. Part I: Review and parametrization. Quarterly Journal of the Royal Meteorological
Society, 136(650), 1191–1204. https://doi.org/10.1002/qj.647

Stephens, G. L. (2005). Cloud feedbacks in the climate system: A critical review. Journal of Climate, 18(2), 237–273. https://doi.org/10.1175/
JCLI‐3243.1

Stephens, G. L., Wood, N. B., & Gabriel, P. M. (2004). An assessment of the parameterization of subgrid‐scale cloud effects on radiative
transfer. Part I: Vertical overlap. Journal of the Atmospheric Sciences, 61, 715–732. https://doi.org/10.1175/1520‐0469(2004)061<0715:
AAOTPO>2.0.CO;2

Sun, W., Baize, R. R., Videen, G., Hu, Y., & Fu, Q. (2015). A method to retrieve super‐thin cloud optical depth over ocean background with
polarized sunlight. Atmospheric Chemistry and Physics, 15(20), 11,909–11,918. https://doi.org/10.5194/acp‐15‐11909‐2015

Tompkins, A., & Giuseppe, F. D. (2015). An interpretation of cloud overlap statistics. Journal of the Atmospheric Sciences, 72(8), 2877–2889.
https://doi.org/10.1175/JAS‐D‐14‐0278.1

Wang, X. C. (2017). Effects of cloud condensate vertical alignment on radiative transfer calculations in deep convective regions.
Atmospheric Research, 186, 107–115. https://doi.org/10.1016/j.atmosres.2016.11.014

Wang, X. C., Liu, Y. M., & Bao, Q. (2016). Impacts of cloud overlap assumptions on radiative budgets and heating fields in convective
regions. Atmospheric Research, 167, 89–99. https://doi.org/10.1016/j.atmosres.2015.07.017

Weger, R. C., Lee, J., Zhu, T., & Welch, R. M. (1992). Clustering, randomness and regularity in cloud fields: 1. Theoretical considerations.
Journal of Geophysical Research, 97(D18), 20,519–20,536. https://doi.org/10.1029/92JD02038

Willén, U., Crewell, S., Baltink, H. K., & Sievers, O. (2005). Assessing model predicted vertical cloud structure and cloud overlap with radar
and lidar ceilometer observations for the Baltex Bridge Campaign of CLIWA‐NET. Atmospheric Research, 75(3), 227–255. https://doi.
org/10.1016/j.atmosres.2004.12.008

Zhao, W., Marchand, R., & Fu, Q. (2017). The diurnal cycle of clouds and precipitation at the ARM SGP site: Cloud radar observations and
simulations from the multiscale modeling framework. Journal of Geophysical Research: Atmospheres, 122, 7519–7536. https://doi.org/
10.1002/2016JD026353

10.1029/2019JD030954Journal of Geophysical Research: Atmospheres

LI ET AL. 11

https://doi.org/10.5194/acp-17-5809-2017
https://doi.org/10.1175/2011JCLI3978.1
https://doi.org/10.5194/acp-15-519-2015
https://doi.org/10.5194/acp-18-7329-2018
https://doi.org/10.1175/1520-0442(2002)015%3c2505:CLOCDF%3e2.0.CO;2
https://doi.org/10.1029/2007JD009755
https://doi.org/10.1175/1520-0469(1986)043%3c0321:TOOCLI%3e2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128%3c1707:TROTEM%3e2.0.CO;2
https://doi.org/10.1175/2007JCLI1828.1
https://doi.org/10.5194/acp-11-5557-2011
https://doi.org/10.1029/2018JD029346
https://doi.org/10.1029/2018JD029346
https://doi.org/10.1002/2016JD025158
https://doi.org/10.1002/2016JD025158
https://doi.org/10.1029/2004JD005100
https://doi.org/10.1175/JCLI-D-11-00015.1
https://doi.org/10.1073/pnas.1514043113
https://doi.org/10.1002/qj.647
https://doi.org/10.1175/JCLI-3243.1
https://doi.org/10.1175/JCLI-3243.1
https://doi.org/10.1175/1520-0469(2004)061%3c0715:AAOTPO%3e2.0.CO;2
https://doi.org/10.1175/1520-0469(2004)061%3c0715:AAOTPO%3e2.0.CO;2
https://doi.org/10.5194/acp-15-11909-2015
https://doi.org/10.1175/JAS-D-14-0278.1
https://doi.org/10.1016/j.atmosres.2016.11.014
https://doi.org/10.1016/j.atmosres.2015.07.017
https://doi.org/10.1029/92JD02038
https://doi.org/10.1016/j.atmosres.2004.12.008
https://doi.org/10.1016/j.atmosres.2004.12.008
https://doi.org/10.1002/2016JD026353
https://doi.org/10.1002/2016JD026353


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


