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Abstract Amplified regional warming suggests that some regions suffer more from global warming.
However, present knowledge is still not enough to understand this paramount aspect of global warming.
By using climate model simulations, we first highlight that regional warming amplifications directly
following anthropogenic emission would torment many undeveloped countries. Then, we find that cloud
has the largest contribution to polar amplification, rather than the frequently blamed sea ice decline. The
summertime sea ice decline plays the second role in generating strong wintertime polar amplification via
lagged energy release. Our findings also propose that heat uptake by the deeper ocean greatly favors the
terrestrial amplification. Additionally, the cloud also shows its importance in helping dryland amplification.
Our findings suggest that these robust regional warming amplifications are very likely inevitable under
anthropogenic emission, therefore strictest global mitigation is required to prevent unacceptable warming
over the high risk regions.

Plain Language Summary Amplified regional warming points out that some regions are more
suffering under global warming. Thus, we performed this study to figure out robust regional warming
amplifications directly following the anthropogenic greenhouse gas emission. We addressed the influences
of these regional warming amplifications to human society, such an amplified dryland warming (relative to
humid regions) has greater influences on some undeveloped countries. Furthermore, we achieved some
new scientific findings that are crucial to understanding causes of amplified regional warming, such as
cloud's dominant role on amplified pole warming (relative to lower‐latitudes) rather than the frequently
blamed sea ice decline. We also found the important role of deeper ocean heat uptake and cloud in helping
amplified land warming (relative to ocean) and amplified dryland warming, respectively. Taken together,
our study greatly helps to understand human influences on regional climate change.

1. Introduction

Global warming is a hot topic, if not the hottest, in climate change research. However, the previous global
“warming hiatus” caused doubts about the reality of human‐induced global warming (Fyfe et al., 2016;
Held, 2013; Huang, Xie et al., 2017; Xie et al., 2017). Then the consecutive record‐breaking hottest years that
have occurred since 2015 are highlighting the dominant role of human influence on long‐term global warm-
ing (Medhaug et al., 2017). Beyond the reality of global warming, the nonuniform magnitude of warming
across the world is vital, because which could be devastating for regions with amplified warming (Brown
et al., 2017; Fu et al., 2006; Manabe & Stouffer, 1980; Xie et al., 2016). Among the regional warming ampli-
fications, the most famous is polar amplification (Manabe & Stouffer, 1980; Screen & Simmonds, 2010;
Stouffer & Manabe, 2017).

However, the focus on polar amplification means that less attention is given to other warming amplifica-
tions. For example, a robust amplified warming over land than ocean is observed in observation and climate
models (Fasullo, 2010; Joshi et al., 2008; Sutton et al., 2007), hereafter referred as terrestrial amplification
analogously. It is lack of quantification in the causes of terrestrial amplification, although some explanations
existed (Dong et al., 2009; Fasullo, 2010; Joshi et al., 2008; Sutton et al., 2007). Regarding warming over glo-
bal land domain, amplified warming over dryland than humid regions is proposed (Huang et al., 2016;
Huang, Yu et al., 2017), hereafter referred as dryland amplification. Nevertheless, whether the dryland
warming has a directly anthropogenic origin is still not robust. Furthermore, substantial disagreement
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exists in explanations of polar amplification, such as the debate whether the leading factor is the snow/ice
albedo feedback or the temperature feedback (Pithan & Mauritsen, 2014; Screen & Simmonds, 2010).
Simply put, the understanding of regional warming amplifications is still insufficient.

Here, our focus is on long‐term regional warming amplifications induced directly by anthropogenic green-
house gas (GHG) emission. Therefore, the historical simulations forced only by anthropogenic GHG emis-
sion from multiple contemporary climate models, that is, the Coupled Model Intercomparison Project
Phase 5 (CMIP5) models (Taylor et al., 2012), are examined.

2. Data and Methods

All the models examined in this study are listed in Table S1. Only the first ensemble member from each
CMIP5 model was used. To acquire the ensemble mean regarding both spatial pattern and zonal mean
results, the results from models were bilinear interpolated into a 1.5° by 1.5° (latitude by longitude) grid.
Additional results that do not need a uniform grid were calculated directly from the raw data for eachmodel.

Surface energy budget is E↓
net ¼ R↓

SW‐R
↑
SW þ R↓

LW‐R
↑
LW‐H↑

S‐H
↑
L, in which the left‐hand term is the net energy

and the right‐hand terms are incident solar radiation, reflected solar radiation, incident thermal infrared
radiation, emitted thermal infrared radiation, upward sensible heat flux, and upward latent heat flux,
respectively. In this budget, the horizontal energy transport and surface heat uptake are not covered in
the right‐hand terms. Therefore, the left‐hand net energy term actually involves both the surface heat uptake
and horizontal energy transport. For the surface, the net solar radiation and incident thermal infrared radia-
tion are its energy source. Incident and emitted thermal infrared radiation as well as sensible heat flux are
the energy sources for the near‐surface air. The long‐term (e.g., centurial scale) changes in surface skin tem-
perature and near surface air temperature are nearly identical, because the thermal infrared radiation and
sensible heat couple them together (Figure S7). Thus, we can derive our conclusions clearly from the surface
energy budget without involving the complex and error‐prone offline radiation transfer calculations con-
cerning the explicit energy budget of near‐surface air.

The population data used here are gridded population of the world, version 4 (GPWv4) population density,
revision 10, which has a resolution of ~0.5°, and available for the years 2000, 2005, 2010, and 2015. The data
are managed by Center for International Earth Science Information Network Columbia University, 2017,
Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC), https://doi.org/10.7927/
H4DZ068D.

The gross domestic production per capita data are provided by Kummu et al. (2018), in which gross domestic
production is given in 2011 international US dollars. Data have global extent at 5 arc‐min resolution for the
26‐year period of 1990–2015.

3. Results
3.1. Regional Warming Amplifications in Response to Anthropogenic GHG Emission

In response to anthropogenic GHG emission, the most outstanding amplified warming is located in Arctic
over past one and a half centuries (Figure 1, top), which is why Arctic amplification is a top rated topic in
climate change realm. Then, the other remarkable phenomenon is amplified warming over land than ocean,
say terrestrial amplification. Solid evidences have been demonstrated for both Arctic and terrestrial ampli-
fications in previous studies (Collins et al., 2013). In sharp contrast, Antarctic look special at first glance,
because it shows no evident polar amplification, and where the land shows weaker warming than surround-
ing ocean (Figure 1, top). However, the ocean regions in Antarctic show a similar warming amplification
with which in Arctic ocean (although weaker in magnitude), especially over the regions with sea ice (see
Figure 4.7 in Vaughan et al., 2013). And the Antarctic continent actually has a larger warming than general
oceans without sea ice. In such sense, polar (Figure S1) and terrestrial amplifications actually are presented
in Antarctic, therefore Antarctic is also identical with the general case. Intuitively, sea ice plays an important
role in polar amplification (Screen & Simmonds, 2010), but quantified attribution is required before find a
robust explanation.

Given land is where humans live, the amplified regional warming over land domain should be given more
attentions from a utilitarian thinking. Previous work has proposed an amplified warming over dryland than
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humid regions (Huang et al., 2016; Huang, Yu, et al., 2017). Then, it is important to explore whether the
dryland amplification is robustly generated by anthropogenic GHG emission. Here, our results suggest
that the dryland amplification directly follows the anthropogenic GHG emission (Figure 1, bottom‐left).
The dryland amplification is evident in both summertime and wintertime, and observed in all the CMIP5
models (Figures S2–3). Therefore, the anthropogenic origin of dryland amplification is robust.

Given many parts of dryland are deserts, the dryland amplification would have no realistic influence on
human, if the warming amplification over dryland mainly occurred in depopulated zones. Therefore, the
practical impact of dryland amplification should be explored in order to tell a whole story. First, the result
shows that the warming is more amplified over the regions with less population (Figure 1, bottom‐middle),
which means dryland amplification only influence little people intuitively. However, you will find many
exceptions existed by comparing the population density distribution (Figure S4) with global warming map
(Figure 1, top). For example, some countries in western and southern Africa, western Asia, western
China, and western United States are in the reach of dryland amplification (Figure 1, top). On the other
hand, the national power is also a key factor to assess the regional impact of dryland amplification,
because wealthier countries have greater power to perform adaptation strategies. The result demonstrates
that wealthier regions generally experienced stronger warming (Figure 1, bottom‐right; Figure S4).
However, there are also many exceptions. Taken together, many undeveloped regions, such as western

Figure 1. Temperature changes for the period from 1861 to 2004 in response to anthropogenic greenhouse gas emissions.
The results are all ensemble means from the historical greenhouse gas simulations of CMIP5 models (listed in Table S1).
(top) The spatial pattern of annual mean near‐surface air temperature trends, in unit of °C per 144 years. (bottom‐left)
The regional mean trends of annual mean near‐surface air temperature as a function of the climatological precipitation of
land region. The shade represents the one standard deviation range of all CMIP5 models. (bottom‐middle, ‐right)
The same as bottom‐left but replacing climatological precipitation with the population density and gross domestic
production (GDP) per capita, respectively.
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Africa, western Asia, and western China, will suffer more from dryland amplification by considering all
the aforementioned conditions.

3.2. Causes of the Featured Regional Warming Amplifications

How are the foregoing three warming amplifications generated? We explore the answer via examining the
local energy budget at the surface. We begin by investigating the surface energy source changes in response
to GHG increases (Figure 2). On average, the energy increases substantially (Figure 2) due to increase of
downward thermal infrared radiation induced by increased GHGs (Figure S5), while solar radiation has little
contribution to the global mean changes. In terms of spatial patterns, changes in energy sources apparently
favor polar and terrestrial amplifications (Figure 2, left). The results also show an enhanced increase in
incoming energy over dryland (e.g., over Africa and Asia), which indicates that energy source changes also
favor dryland amplification.

By including the clear‐sky results, we show that cloud favors the enhanced energy gain in polar regions dur-
ing local winter, while the opposite impact is observed during local summer (Figure 2, middle). Therefore,
the pronounced energy increase over the summertime polar regions is probably generated by changes in sur-
face albedo due to the polar ice/snow decline. This origin of the energy increase is robustly indicated by the
very large reduction in clear‐sky reflected short wave radiation in the polar regions during local summer
(Figure S6), when the largest decline in sea ice occurs (Notz & Stroeve, 2016; Serreze et al., 2007; Stroeve
et al., 2012). Nevertheless, as constrained by the physical law concerning a constant temperature of the
ice‐water mixture, summertime polar amplification is nearly absent (Figure S1; Collins et al., 2013). Thus,
polar amplification exists mainly in the wintertime. Taken together, the results suggest that the direct effect
of cloud on polar amplification is positive because the observed negative effect of cloud on energy source in
the summertime has no direct influence on simultaneous temperature in the Arctic. Further quantified
investigations in relative contributions of cloud and other factors on polar amplification were
demonstrated later.

Besides energy source, how the changing incident energy is released is vital to the final warming pattern
(Sutton et al., 2007). The net energy in our formulated budget will not be zero (Figure 2, right) because
the net energy term involves both the surface heat uptake and horizontal energy transport (Chen & Tung,
2014; Fasullo, 2010). Remarkable positive and negative net energy changes are observed in polar oceans

Figure 2. The energy source (R↓
SW‐R↑

SW þ R↓
LW) and net energy (E↓

net) changes at the surface for the period from 1861 to
2004. R↓

SW, R↑
SW, and R↓

LW are incident and reflected solar radiation and incident thermal infrared radiation, respectively.
The results are all ensemble means from historical greenhouse gas simulations. (left) The linear trend of R↓

SW‐R↑
SW þ R↓

LW
during May to September, and November to March, respectively, in unit of W/m2 per 144 years. (middle) The effect of
cloud represented by the differences using all‐sky results (left) minus clear‐sky results (Figures S5–6). (right) Same as (left)
but for E↓

net. For a better illustration, the global average value annotated in the right corner of (left) and (right) is removed.
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during local summer and winter, respectively (Figure 2, right). This result suggests that the excess energy
absorbed by the melting sea ice and open water during summertime is later released during the following
winter (Screen & Simmonds, 2010), and this phenomenon is apparently responsible for the pronounced
polar amplification occurring during local winter rather than summer (Figure S1).

To achieve quantification, the surface energy budget changes for the three warming amplifications are
further examined (Figure 3). First, the wintertime Arctic amplification is clearly dominated by the enhanced
downward thermal infrared radiation, which is about two times of the contributions from summertime sea

ice change (Figure 3, top‐left,R↓
LW and ‐E↓

net). And the contribution from cloud to Arctic amplification is about
one point five times of which from summertime sea ice change. Note again, the negative effect of cloud on
summertime net solar radiation (Figure 3, top‐left) has little direct influence on simultaneous Arctic ampli-
fication due to a constant temperature of the ice‐water mixture. Therefore, cloud plays the first role in
observed Arctic amplification, rather than the commonly blamed sea ice change (Screen & Simmonds,
2010). The previous work (Screen & Simmonds, 2010) only examined changes during 20 years (1989–
2008), which must involve great influence from decadal variability (Steinman et al., 2015; Trenberth,
2015). Therefore, their conclusion is not suitable for long‐term global warming. This is why our conclusion
is quite different with theirs. The situation for Antarctic ocean is identical with which for Arctic (Figures S5–
6). Thus, our conclusion is applicable for general polar amplification.

In contrast to polar amplification, terrestrial and dryland amplifications show no substantial seasonal differ-
ence (Figure S7). As well, their energy budgets are mostly consistent between different seasons (Figure 3,
middle and bottom). Consistent with previous understanding (Huang, Yu, et al., 2017; Sutton et al., 2007),
it is clear that the allocation of gained energy between latent and sensible heat is the fundamental reason
of terrestrial and dryland amplifications (Figure 3 middle and bottom; Figure S8). However, the net

Figure 3. The energy budget changes at the surface for the period from 1861 to 2004. (top) The differences in the regional
mean linear trends of the energy budget components between Arctic and lower‐latitude regions, in unit of W/m2 per
144 years. The means of Arctic and lower‐latitude are averaged over 60 to 90 and 0 to 60°N, respectively. (middle) Same as
(top) but for differences between land and ocean. (bottom) Same as (top) but for differences between dryland and humid
regions. For May to September, dryland and humid regions are represented by precipitation less or more than 300 mm,
respectively, while the cutting line of precipitation is 200 mm for November to March.R↓

SW‐R↑
SW, R

↓
LW,H

↑
S,H

↑
L, and E

↓
net are

the net solar radiation, incident thermal infrared radiation, sensible, latent heat flux, and net energy, respectively. The
open column represents the clear‐sky result. Note that the original values for the six regions are presented in Tables S2–3.
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energy change is also about half of the enhanced downward thermal infrared radiation over land than ocean
(Figure 3, middle), which suggests horizontal energy transport and surface heat uptake may also play some
role. Given the net energy change over land is nearly balanced (zero), the difference of changes in net energy
between land and ocean regions is dominated by the ocean heat uptake transported to the deeper ocean
(Tables S2–3), and effect of horizontal heat transport is negligible. Thus, enhanced heat uptake by the deeper
ocean also plays an important role in favoring terrestrial amplification. Furthermore, cloud shows a domi-
nant contribution to enhanced downward thermal infrared radiation for dryland amplification (Figure 3,
bottom), while cloud has a little contribution to terrestrial amplification (Figure 3, middle). Our main
conclusions regarding energy budget analyses are robust, although discrepancies across models inevitably
exist (Figure 3).

4. Discussion

We show here that robust regional warming amplifications are directly following the anthropogenic GHG
emission. We address that the featured regional warming amplifications would have large impacts on many
undeveloped countries by considering both climate change and social‐economic conditions. Therefore, the
most rigorous GHGs reduction roadmap should be carried out to prevent the regions with warming ampli-
fication from miserable future (Brown & Caldeira, 2017; Chen & Tung, 2018; Rockström et al., 2016). New
scientific findings are also demonstrated in this study. First, we find that polar amplification is dominated by
cloud, rather than previously proposed sea ice changes or temperature feedback (Pithan & Mauritsen, 2014;
Screen & Simmonds, 2010). Second, we demonstrate that enhanced deeper ocean heat uptake makes
substantial contributions to terrestrial amplification. Additionally, the favoring of cloud to dryland amplifi-
cation is also highlighted.

Actually, the impacts of aforementioned regional warming amplifications on human are not fully assessed in
this paper. For example, terrestrial and dryland amplifications could directly facilitate the aridification of
human habitat (Huang, Yu, et al., 2017; Sherwood & Fu, 2014) and induce the expansion of existing dryland
(Huang et al., 2016). Therefore, terrestrial and dryland amplifications could lead to the substantial deteriora-
tion of human habitat. In addition to the direct influences on polar ecosystem (Post et al., 2009), polar ampli-
fication may have significant remote impacts, such as its influences on midlatitude weather and climate via
altering atmospheric circulation (Cohen et al., 2014; Huang, Xie, et al., 2017; Serreze & Barry, 2011; Wyatt &
Curry, 2014). Thus, achieving a right understanding of these warming amplifications is of
infinite significance.

Besides the three warming amplifications investigated here, there are some other regional warming ampli-
fications as well. For example, the elevation‐dependent warming (Minder et al., 2018; Pepin et al., 2015),
which is also suggested by warming amplification in Tibet Plateau (Figure 1). However, instead of examining
every detail, this studymainly focused themost remarkable and robust warming amplifications across all the
models. Although this study has arrived at a quantified attribution of the three warming amplifications, we
are still far from a whole story. Because some fundamental aspects are waiting to reveal, such as the connec-
tion between general atmospheric circulation changes and these regional warming amplifications.
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