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ABSTRACT

Planetary albedo (PA; shortwave broadband albedo) and its long-term variations, which are controlled in a
complex way by various atmospheric and surface properties, play a key role in controlling the global and
regional energy budget. This study investigates the contributions of different atmospheric and surface
properties to the long-term variations of PA based on 13 years (2003–15) of albedo, cloud, and ice coverage
datasets from the Clouds and the Earth’s Radiant Energy System (CERES) Single Scanner Footprint edition
4A product, vegetation product from Moderate Resolution Imaging Spectroradiometer (MODIS), and
surface albedo product from the Cloud, Albedo, and Radiation dataset, version 2 (CLARA-A2). According
to the temporal correlation analysis, statistical results indicate that variations in PA are closely related to the
variations of cloud properties (e.g., cloud fraction, ice water path, and liquid water path) and surface pa-
rameters (e.g., ice/snow percent coverage and normalized difference vegetation index), but their temporal
relationships vary among the different regions. Generally, the stepwise multiple linear regression models can
capture the observed PA anomalies for most regions. Based on the contribution calculation, cloud fraction
dominates the variability of PA in the mid- and low latitudes while ice/snow percent coverage (or surface
albedo) dominates the variability in the mid- and high latitudes. Changes in cloud liquid water path and ice
water path are the secondary dominant factor over most regions, whereas change in vegetation cover is the
least important factor over land. These results verify the effects of atmospheric and surface factors on
planetary albedo changes and thus may be of benefit for improving the parameterization of the PA and
determining the climate feedbacks.

1. Introduction

The planetary albedo of Earth, which is the ratio of
shortwave radiation reflected by Earth to the incoming
shortwave radiation at the top of the atmosphere, may
be considered a key parameter in regulating the global
climate system and its variability due to its substantial
role in controlling the global energy budget and surface
temperature (Stephens et al. 2015; Wielicki et al. 2005;
Donohoe and Battisti 2011). For example, a small change
of 0.01 in the planetary albedo corresponds to a change
in the shortwave net flux of 3.4 W m22, which would

approximately compensate for the radiative forcing of
double the amount of CO2 in the atmosphere (IPCC 2001;
Wielicki et al. 2005; Bender et al. 2006). Moreover,
Budyko (1969) found that small variations in the plane-
tary albedo could be sufficient for the development of
Quaternary glaciations. Although many studies have in-
dicated that the current albedo of Earth maintains a rel-
ative stable value (approximately 0.29) and displays a
high degree of hemispheric symmetry (e.g., IPCC 2001;
Loeb et al. 2009; Voigt et al. 2013; Stephens et al. 2015),
our understanding of albedo remains limited owing to an
incomplete understanding of its underlying physical pro-
cesses. Thus, existing models exhibit relatively large dis-
crepancies among simulations of the regional planetary
albedo (e.g., Halthore et al. 2005; Wild 2005). For ex-
ample, when analyzing albedo simulations from phase 3
of the Coupled Model Intercomparison Project (CMIP3),
Donohoe and Battisti (2011) found that the intermodel
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spread in albedo was predominantly due to the differ-
ences in the atmospheric albedo among the different
models. Therefore, a reasonable evaluation of the im-
pacts of different feedback processes (e.g., cloud and
surface properties) on the long-term albedo variability
would be very helpful for improving our understanding of
regional climate change and predicting how the planetary
albedo will respond to climate changes.

Generally, changes in the planetary albedo are com-
plicatedly controlled by both atmospheric and surface
properties, for example, the cloud fractional coverage,
cloud liquid water path, cloud ice water path, water
vapor, and atmospheric aerosol amounts (Klein and
Hartmann 1993; Held and Soden 2000; Christopher and
Zhang 2002; Bender et al. 2006; Guo et al. 2011;
Engström et al. 2015; Zhao and Garrett 2015; Lin et al.
2013; Xie et al. 2017), in addition to vegetation cover,
land use, desertification, and snow and ice cover (Myhre
and Myhre 2003; Zeng and Yoon 2009; Barnes and Roy
2008; Kashiwase et al. 2017). Joint influences from these
factors and their interactions can complicate the simu-
lations and predictions of planetary albedo. Further-
more, uncertainty in scene type can also complicate the
observed flux. Until now, many efforts have been made
to lessen the intermodel spread in albedo model simu-
lations, based on satellite observations or in situ mea-
surements (Qu and Hall 2005; Wang et al. 2006; Bender
et al. 2006; Kato et al. 2006; Engström et al. 2015;
Stephens et al. 2015; Loeb et al. 2016; Bender et al.
2017). For example, Donohoe and Battisti (2011) used
the Clouds and the Earth’s Radiant Energy System
(CERES; Wielicki et al. 1996; Corbett and Loeb 2015)
flux data to quantify the relative contributions of the
surface and atmosphere to planetary albedo on a global
scale. Their results indicated that most of the observed
planetary albedo is caused by atmospheric reflection and
that the atmosphere attenuates the surface contribution
to the planetary albedo. By using the International
Satellite Cloud Climatology Project (ISCCP) D-series
flux dataset, Qu and Hall (2005) found that the in-
terannual variability in the planetary albedo within ice-
and snow-covered regions is mainly attributable to
variations in the surface albedo, but the atmospheric
processes can attenuate 90% of the surface albedo effect
on changes in planetary albedo. Pistone et al. (2014)
pointed out that changes in cloudiness appear to play a
negligible role in the observed Arctic darkening and that
cloud albedo feedback may not be effective in offsetting
Arctic warming. In addition, several other studies have
focused mainly on the impacts of different atmospheric
and surface properties on the components of planetary
albedo (e.g., cloud and surface albedo). For example,
as considerable portions of the surface of Earth are

becoming greener as a result of climate change, causing a
rise in CO2 concentration and nitrogen deposition (Piao
et al. 2015), Forzieri et al. (2017) used the leaf area index
(LAI) to study the effects of vegetation changes on the
local climate and found that an increase in the LAI
contributed to a reduction in the surface albedo. In ad-
dition, some studies have also shown that the macro-
physical properties of clouds (e.g., the cloud fractional
coverage and cloud liquid water path) dominate the at-
mospheric albedo (Stephens 2005) and that changes in
the cloud fraction dominate changes in planetary albedo
(Loeb et al. 2007; Bender et al. 2017). However, most of
these studies are limited to specific locations, short in-
vestigation periods, or specific contributory variables.
Systematic studies concerning the statistical relationships
between long-term variations in the planetary albedo and
different contributory variables at the regional scale have
received far less attention.

To better understand the long-term variations in the
regional planetary albedo, two key questions must be
addressed in this investigation. First, what are the factors
that drive the temporal variability in the planetary al-
bedo at the regional scale? Second, which one of these
factors is more important? In the following study, we
will use multiple satellite datasets to build a regression
relationship between planetary albedo and various
variables to further quantify the relative contributions
of different factors to the observed variability in plane-
tary albedo. This paper is organized as follows. A brief
introduction to all of the datasets and methods used
in this study is given in section 2. Section 3a describes
the global characteristics of planetary albedo and the
difference between Aqua and Terra. Further analysis
regarding the impacts of atmospheric and surface pa-
rameters on long-term variations in planetary albedo
and the contribution evaluations are provided in section
3b. Finally, the conclusions and discussion are presented
in section 4.

2. Datasets and methods

In the following study, 13 years (from 2003 to 2015) of
data from multiple satellite datasets are collected to
analyze the impacts of different factors on the long-term
variability in regional-scale planetary albedo (PA).

a. Terra and Aqua

Terra was launched on 18 December 1999 and placed
into a near-polar, sun-synchronous orbit at an altitude of
705 km with a 1030 local time (LT) descending node.
Complementary to Terra, Aqua was launched on 4 May
2002, with a 1330 LT ascending node. Here, we use the
products from two instruments (CERES and MODIS)
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carried by the Terra and Aqua satellites to provide the
monthly mean radiative flux, cloud properties, and sur-
face vegetation index.

The CERES instrument can accurately measure the
top-of-atmosphere (TOA) radiances and convert radi-
ances into fluxes via the use of angular dependence
models (Su et al. 2015a,b). The instantaneous fluxes are
converted to daily mean fluxes using empirical diurnal
albedo models based on the cloud, atmosphere, and
surface conditions at the time of the observation
(Doelling et al. 2013; Loeb et al. 2018). In the following
study, the TOA outgoing SW flux (all sky) in the
CERES Single Scanner Footprint 1.08 (SSF1deg)
monthly edition 4A (Ed4A) dataset is used to calculate
the all-sky albedo. For clear-sky albedo, we use the clear-
sky TOA SW fluxes in the CERES Energy Balanced and
Filled (EBAF) monthly Ed4A dataset instead of CERES
SSF monthly product. This is because the EBAF product
combines both Terra and Aqua clear-sky measurements,
and it also includes CERES subfootprint flux clear-sky
measurements and thus greatly increases the sampling
over those persistent cloud domains (e.g., the Southern
Ocean). However, the TOA outgoing SW flux (clear
sky) from CERES SSF1deg product is only used to
study the Terra and Aqua cloud albedo forcing differ-
ences in the section 2c. The CERES SSF1deg product
assumes that there is a solar zenith angle dependency
of the clear-sky albedos, and it also assumes that the
solar zenith angle dependency is symmetric about noon.
In addition, note that the SSF product is a combina-
tion of CERES radiation data and coincident cloud
properties from MODIS measurements (Sun et al. 2006;
Zhan and Davies 2016). Thus, this product includes
some cloud parameters [e.g., the daytime cloud area
fraction (CF), ice water path (IWP), and liquid water
path (LWP)], which can be used as cloud variables to
assess the impacts of different cloud properties on the
planetary albedo. It is worth noting that the time-
averaged cloud parameters in the Ed4 are weighted
by the cloud fraction. For example, the liquid and ice
cloud properties were temporally weighted by the cor-
responding liquid or ice fractions to determine the daily
or monthly mean (optical depth is the log of the optical
depth and cloud fraction weighted). This ensures that
the CF and LWP (or IWP) are the independent pre-
dictors of each other.

In addition, the CERES SSF dataset also provides the
surface ice/snow percent coverage (I/SPC) data from the
National Snow and Ice Data Center (NSIDC) (Nolin
et al. 1998). This parameter is particular important at
high latitudes and over the Tibetan Plateau, where snow
and ice significantly affect the surface albedo (Pistone
et al. 2014).

In addition to the snow/ice coverage, the local vege-
tation cover is also one of the most important factors
in evaluating the variations in the surface albedo (Betts
2000; Sandholt et al. 2002). Here, we utilize the MODIS
normalized difference vegetation index (NDVI) monthly
product (MYD13C2.006) to describe the surface vege-
tation cover with a spatial resolution of 0.058 3 0.058.
The NDVI has been proven to be a robust indicator
of the terrestrial vegetation productivity; it exhibits a
sensitive response to vegetation dynamics and thus is
considered as a useful tool for effectively reflecting the
vegetation cover (Tucker et al. 2005; Beck et al. 2006).
The quality of MODIS NDVI data is greatly improved
as a consequence of the narrow MODIS red and NIR
bandwidths (Huete et al. 2002). The definition of the
NDVI is as follows:

NDVI 5
RNIR 2 Rred

RNIR 1 Rred
, (1)

where RNIR and Rred are the reflectances in the near-
infrared (NIR) and red bands, respectively. Higher in-
dex values typically indicate a wider vegetation cover in
a pixel.

b. CLARA-A2 dataset

In this investigation, we also use the monthly sur-
face albedo information with a spatial resolution of
0.258 3 0.258 from the Cloud, Albedo, and Radiation
dataset, version 2 (CLARA-A2) satellite product. The
CLARA-A2 product is retrieved by the Advanced Very
High Resolution Radiometer (AVHRR) operated on-
board polar-orbiting NOAA satellites as well as by the
MetOp polar-orbiting meteorological satellites oper-
ated by EUMETSAT. Compared with the CLARA-A1
(version 1) product, the CLARA-A2 product signifi-
cantly enhances the quality of the surface albedo esti-
mates through several important improvements (e.g.,
dynamic aerosol optical depths are used instead of a
constant AOD, and wind speed data are used to describe
the sea surface roughness and to retrieve the sea sur-
face albedo) (Karlsson et al. 2017). The improved sur-
face albedo product has been validated against in situ
albedo observations and compared with a MODIS
product (MCD43C3). This comparison showed that the
CLARA-A2 surface albedo product is in good agree-
ment with the surface albedo product from MODIS
(MCD43C3) at the global scale and that the differences
in the albedo estimates are less than 5% (Karlsson et al.
2017). Compared with the MCD43C3, an obvious ad-
vantage of the CLARA-A2 product is that albedo infor-
mation over water bodies can also be derived. In addition,
by checking time consistency (e.g., exclusively choosing
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afternoon satellite), the CLARA-A2 product achieves
relatively homogeneous observation conditions to
reduce the influence of orbital drift. And a major ef-
fort has been made to correct and homogenize the
basic AVHRR level-1 radiance record (Karlsson
et al. 2017).

c. Methodologies

In this study, the cloud albedo forcing acloud is roughly
estimated as follows:

acloud 5 aall-sky 2 aclear-sky , (2)

where aall-sky and aclear-sky are the planetary albedo values
under all-sky and clear-sky conditions, respectively. Here,
it is worth noting that the cloud albedo forcing acloud also
includes some noncloud effects (e.g., aerosol direct radi-
ative forcing) (Erlick and Ramaswamy 2003). In addi-
tion, the accurate estimation of the clear-sky two-way
atmospheric transmittance T2 is rather difficult to ob-
tain based on current datasets used in our study. To do
this, we define the clear-sky reflected shortwave as

Sclear-sky 5 ST2asurface , (3)

where S is the incoming shortwave at top of atmosphere
and asurface is the surface albedo. If aclear-sky is consid-
ered as

aclear-sky 5 Sclear-sky/S , (4)

then T2 can be roughly approximated as

T2 5 aclear-sky/asurface . (5)

This parameter represents the atmospheric extinction
ability to solar radiation when radiation from the TOA
arrives at the surface and is then reflected back to the
TOA. The impacts of water vapor and aerosols on the
radiation are already included in the T2.

The planetary albedo is known to be affected by the
variations in surface properties, which are determined
by the land use (e.g., urbanization) as well as changes in
the snow/ice and vegetation covers (e.g., desertification,
forest cover changes) (National Research Council 2005;
Wang et al. 2006). In this study, the I/SPC and NDVI
(i.e., only for land areas, except for in polar regions) are
used as proxies for representing the surface properties.
Note that the surface albedo (SA) is considered a sur-
face parameter only if both the NDVI and I/SPC fail to
pass the t test. The atmospheric parameters include
cloud properties and the atmospheric two-way trans-
mittance T2. Recent studies have shown that cloud
variability, especially the macrophysical cloud proper-
ties (i.e., the LWP and CF), dominate the variability of
PA (Stephens et al. 2015; Seinfeld et al. 2016). As a re-
sult, the LWP, IWP, and CF are considered as cloud
parameters in the following analysis. In addition, by
performing collinearity diagnostics, we assess the strength
and sources of collinearity among these variables at each
grid and find that the predictors used in our study are al-
most noncollinear over all the regions (see Fig. S1 in the
online supplemental material).

Because the stepwise regression method can effec-
tively filter the predictors with collinearity and remove
insignificant variables, we use this method to perform a
multilinear regression analysis in each grid to construct
a stable relationship between the planetary albedo
anomalies and predictors and for further assessing the
contributions of different variables to the planetary al-
bedo anomalies. Figure 1 provides the valid sample
number of the monthly parameters during 2003–15.
(Note that Fig. 1 is based on the same regional monthly
sampling as those of all Figs. 3–7, except Figs. 3c and 3d.)
It is clear that the number of months sampled exceeds
144 months at mid- to low latitudes and tends to de-
crease with the latitude. At high latitudes, approxi-
mately half of the data (72 months) are usable. To avoid
the bias of seasonally averaged values caused by the

FIG. 1. The valid sample number of the monthly parameters during 2003–15.
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missing month in a season, we use the monthly means
(i.e., 1-month increment) of different parameters to
perform the following analysis.

Prior to the regression analysis, all of the variables
are interpolated into a 18 3 18 grid to match the CERES
grid size. Next, we select the predictor variables for
each grid by calculating the temporal correlations be-
tween planetary albedo anomalies and different pa-
rameters’ anomalies. If the confidence level of the
temporal correlation between two variables is less than
90% (i.e., p . 0.1), the variable is excluded. Note that
the monthly anomalies of different predictors are al-
ready deseasonalized and that their long-term trends are
removed and normalized. For details regarding the data-
processing workflow, please see Fig. 2.

The multilinear regression model in Fig. 2 is built
based on the following formula (Qu et al. 2015; McCoy
et al. 2017):

Da 5
›a

›X1
DX1 1

›a
›X2

DX2 1 � � � 1
›a
›Xi

DXi 1 c , (6)

where c is a constant term; X1, X2, . . . , Xi are the pre-
dictor variables; i is the number of predictor variables;
and Da is the planetary albedo anomaly. We use the
stepwise method to remove the insignificant terms from
multilinear models based on their statistical significance
in the regression process (confidence level . 90%).

Furthermore, the relative contribution of each variable
to the regional planetary albedo anomaly can be derived
from the following formula (Huang and Yi 1991):

Rj 5
1
m �

m

i51

"

A2
ij

 

�
a

j51
A2

ij

!#

,

,

(7)

where m is the length of the data series, a is the number
of independent variables, Aij 5 bjxij, bj denotes the re-
gression coefficients of each term, xij represents the
predictor variables, and j is the number of predictor
variables. Finally, we also calculate the coefficient of
determination R2 and root-mean-square error (RMSE)
between the observed and predicted planetary albedo
anomalies in order to evaluate the performance of the
regression models.

3. Results

a. Global characteristics

Figures 3a and 3b show the global distributions of the
averaged planetary albedo and cloud albedo forcings,
respectively, during 2003 to 2015. Loeb et al. (2007)
found that the main source of tropical albedo variability
is attributable to cloudiness variations associated with
the El Niño–Southern Oscillation (ENSO) phenome-
non. However, the strongest El Niño since 1998 began in

FIG. 2. The data-processing flow.
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late 2015. It means that the variation of planetary albedo
during the time period between 2003 and 2015 may be
independent of the large climate forcing (e.g., El Niño).
Generally, the global distribution of PA is in agreement
with the findings of Donohoe and Battisti (2011). The
mean PA ranges from 0.1 to 0.75 and tends to increase
with the latitude. The geographical distribution of
the PA is associated with the land–sea, cloud, and snow-/
ice-cover distributions (Wielicki et al. 2005; Bender et al.
2006). For example, the PA is relatively large (.0.5) at
high latitudes (poleward of 608) in two hemispheres ow-
ing to the presence of wide ice sheets, which enhance the
surface albedo. In particular, the PA exceeds 0.65 over
Antarctica and Greenland, and the highest planetary al-
bedo (.0.7) is predominantly located over northwestern
Antarctica. The variation of PA in the Southern Hemi-
sphere (SH) is much less than that in the Northern
Hemisphere (NH) due to the differences in the land–sea
distribution. The PA at low latitudes (between 308N and
308S) ranges from approximately 0.1 to 0.4. Compared
with land, the values of the planetary albedo over the
ocean are smaller and range from approximately 0.1 to
0.25. Lower PA values (,0.2) are predominantly located
over subtropical oceans, where low-altitude cumulus
clouds are frequently observed. Based on Fig. 3b, we can
see that the cloud albedo forcing value over the ocean is
larger than those values over the high-PA regions (e.g.,

ice-covered or semiarid/arid zones) since there is greater
contrast between ocean and cloud reflectance than land
and cloud reflectance because oceans have the darkest
surface reflectance. Here, we also provide the global
distributions of the PA and cloud albedo forcing differ-
ences between Aqua and Terra (Figs. 3c,d), respectively.
Note that the Terra and Aqua cloud albedo forcing dif-
ferences are calculated based on the CERES SSF prod-
uct. Figure 3c shows that those obvious negative
differences in PA were mainly located in typical marine
stratocumulus regions (e.g., the Californian, Canarian,
Namibian) owing to the decrease in the amounts strato-
cumulus clouds observed from dawn to afternoon
(Garreaud and Muñoz 2004). Over the Tibetan Plateau,
South Africa, the northern part of South America, and
the western part of North America, the PA during the
afternoon is noticeably larger than those values measured
during the morning. This difference may be linked to the
land afternoon convection (Yang et al. 2004). Indeed,
Fig. S2 indicates that the CF and IWP during the after-
noon are higher than those results found during the
morning. By checking the cloud albedo forcing, we find
that the global pattern of cloud albedo forcing difference
is very similar to the result of the PA difference, except
over the higher Southern Ocean latitudes. This means
that the small differences of PA over the subtropical
oceans are mainly caused by the weak contrast of cloud

FIG. 3. Global distributions of the annual mean (a) planetary albedo and (b) cloud albedo forcing acquired from
Aqua during 2003–15. The global distributions of the (c) planetary albedo and (d) cloud albedo forcing differences
between Aqua and Terra are also shown.
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albedo forcing, which is because the differences of the
macrophysical cloud properties (e.g., CF, LWP, and
IWP) between Aqua and Terra are small between two
instantaneous observation times (see Fig. S2). Over the
Southern Ocean, the cloud albedo forcing during the af-
ternoon is obviously larger than those values observed
during morning, but PA exhibits a weak difference. The
obvious positive difference of cloud albedo forcings over
this region is mainly due to the lower planetary albedo
under clear-sky condition during the afternoon. In addi-
tion, the differences of PA are small in the mid–high
latitudes because the amount of convection is limited
owing to the small amount of solar incident radiation. In
the following study, it is noted that the Aqua and Terra
observation datasets show similar results with regard to
the regression analysis and contribution calculations;
thus, only the statistical results from Aqua are presented
in the current study.

The question then arises as to which one of the factors
dominates the long-term variations in the PA over dif-
ferent regions. To address this issue, we first analyze the
temporal correlations between the anomalies of PA and
the surface albedo (and cloud albedo forcing) anomalies
at a global scale (see Fig. 4). Note that the anomalies of
each grid are already deseasonalized and detrended.

Statistical results indicate that the temporal correla-
tions between the PA and surface albedo anomalies are
almost positive all over the world, except over the cen-
tral and western Pacific, which may be caused by the
small magnitude of the surface albedo oscillations (see
Fig. S10). The correlation coefficients increase with in-
creases in latitude. At high latitudes, especially over the
Arctic and Southern Ocean, these correlations are equal
to or greater than 0.6, indicating that long-term changes
in the PA are remarkably consistent with the changes in
surface albedo. For the cloud albedo forcing anomalies
(Fig. 4b), it is clear that the obvious positive temporal

correlations are mainly located at those regions between
608S and 608N, especially over the oceans, where these
correlations are almost above 0.9. Meanwhile, negative
temporal correlations between PA and cloud albedo
forcing anomalies can be found in regions where the
surface albedo anomalies are significantly positively
correlated with the planetary albedo anomalies (e.g., the
higher Southern Ocean latitudes). Over these regions,
cloud fraction anomalies are out of phase with snow and
ice albedo anomalies (see Fig. S11), indicating that
surface albedo feedback diminishes (Qu and Hall 2005).
By using the CERES SSF product, Kato et al. (2006)
found that the effect of decreased Arctic sea ice on al-
bedo might be compensated for by an increase in cloud
cover due to enhanced evaporation from the sea surface.
Thus, they concluded that any ice-albedo feedback
could be dampened due to an increased cloud cover.
Hence, whether climate simulations capture this feature
is critical for high-latitude regions.

b. Regression coefficients and contribution
calculation

Figures 5a–g show the global distributions of the re-
gression coefficient of each variable based on stepwise
multiple linear regression models acquired from Eq. (6).
Those regions without values indicate that the corre-
sponding variable is not considered a predictor variable
in the regression model (i.e., it fails to pass the t test). In
addition, if both of the surface parameters (i.e., the
NDVI and I/SPC) fail to pass the confidence test, the
surface albedo anomaly is considered as a predictor
variable when its confidence level exceeds 90%. From
Figs. 5a–g, we can see that the coefficients from the re-
gression model vary among the different variables and
regions. The cloud properties (e.g., CF, LWP, and IWP)
show positive coefficients, which means that larger
CF, LWP, and IWP will enhance PA. High coefficients

FIG. 4. Temporal correlations between planetary albedo anomalies and (a) surface albedo anomalies and (b) cloud
albedo forcing anomalies from the Aqua measurements. Grid boxes with correlation coefficients significant at
the 90% confidence level are dotted. The correlations are based on deseasonalized and detrended monthly planetary
albedo anomalies and corresponding surface albedo anomalies and cloud albedo forcing anomalies.
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(e.g., .0.6) for CF are mainly located at tropical and
subtropical regions, while the maximum values of the
regression coefficients for LWP and IWP are concen-
trated in the Southern Ocean and Pacific warm pool,
respectively. For SA, NDVI, and I/SPC, the coefficients
only focus on some special regions. For example, a
negative coefficient for NDVI can be found for a land-
mass at high latitude in the NH, where the increased
vegetation trends reduce the surface albedo (Bonan
2008; Li et al. 2018). The positive correlation between
I/SPC anomalies and PA anomalies is extremely ap-
parent over the higher Southern Ocean latitudes and the
Arctic. This means that wide I/SPC covers enhance the
PA. However, for Antarctica the variation of I/SPC over
this region is small enough that the correlation between
the I/SPC and PA anomalies is insignificant. However,
Fig. 5g indicates that the surface albedo anomalies have
positive correlations with the anomalies of PA over
Antarctica. Recent studies have indicated that Antarc-
tica experienced a positive phase of the Antarctic Os-
cillation index (AAO) trend during the period of 1983 to
2009, which means that the whole of the South Pole

exhibits a cooling trend and an increasing snowfall and
ice mass when there is a strong polar vortex (Seo et al.
2016). Because of the fact that the albedo of snow varies
with the snow condition during and after snowfall (Dang
et al. 2016), we therefore speculate that the surface al-
bedo anomalies over Antarctica are possibly caused by
the changes in snow density.

Figure 5f shows that reduced T2 is associated with
increased PA over the land of NH. It may be linked with
the effect of aerosol on the radiation. Higher aerosol
loading may decrease the transparency of the atmo-
sphere to solar radiation and enhance the reflected solar
radiation under clear-sky conditions. Finally, it shows a
weak negative regression coefficient over the land of the
NH. In addition, we also provide the confidence interval
range (a 5 0.1) for each of the regression coefficients
(see Figs. S3–S9). Furthermore, the R2 and the RMSE
values between the observed and regressed PA anom-
alies are given in Figs. 5h and 5i. Again, note that our
analysis is based on deseasonalized and normalized
anomalies by removing the long-term trends in every
grid. Statistical results indicate that the regression model

FIG. 5. (a)–(g) The global distributions of the regression coefficients of each predictor variable based on the stepwise multiple linear
regression model. Those regions without values mean that the variable in that region is not considered as predictor variable in the regression
model. (h),(i) The global distributions of R2 and RMSE, respectively, between the observed and regressed planetary albedo anomalies.
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can capture changes in the observed long-term PA
anomalies in most regions. Almost all of the R2 values
are greater than 0.4, particularly at the low latitudes,
where the R2 is greater than 0.7.

Finally, we quantify the contribution rates of different
variable to the PA anomalies based on Eq. (7). Figure 6
shows the global distributions of the contributions
for each predictor variable. Furthermore, the global

FIG. 6. The global distributions of the relative contributions of (a) CF, (b) LWP, (c) IWP, (d) NDVI, (e) I/SPC,
(f) T2, and (g) SA to PA from the stepwise multiple linear regression models. Those regions without values indicate
that the variable is not considered as a predictor variable in the regression model.
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distributions of the dominant factor and its contribu-
tion rate are shown in Fig. 7. Figures 6a and 7a clearly
show that the CF anomalies dominate the PA anoma-
lies, especially over the oceans at middle and low lati-
tudes, where its contributions even exceed 70%. This
means that climate models need to reasonably simulate
the total cloud fraction for improving the prediction of
PA in a warmer climate. However, many studies have
shown that the reliable simulation of the total cloud
fraction in the climate models is strongly dependent on
the representation of cloud overlap properties, which is
obviously dependent on the observation techniques
used (Huang et al. 2005; Li et al. 2011, 2015). At high
latitudes, however, it is clear that both the anomalies in
CF and I/SPC (or SA) are important to the change of
PA. Compared with the CF, the contributions from
LWP and IWP anomalies are both secondary (see
Figs. 6b,c and Figs. 7a,b). For most of the regions at
middle and low latitudes, the contributions of the LWP
and IWP anomalies are less than 30%, except for those
in the stratus/stratocumulus, lower Southern Ocean
latitudes, and the western Pacific warm pool, where the
contributions from the LWP and IWP may reach 40%.
Previous studies have verified that the obvious differ-
ences in the albedo feedbacks over the Southern Ocean
found using different models are mainly caused by the
inconsistent poleward redistribution of the cloud liquid
water content (Tsushima et al. 2006; Hu et al. 2010)

and, therefore, result in climate model errors in the
predicted TOA fluxes over the Southern Ocean are
the largest (Trenberth and Fasullo 2010). Based on
CloudSat and CALIPSO cloud observations, Mason
et al. (2014) indicated that mid-topped clouds are re-
sponsible for biasing the absorbed shortwave radiation
in climate models. Indeed, our results indicate that the
effect of LWP anomalies on the PA anomalies is non-
negligible over the lower Southern Ocean latitudes.
This means that models need to discriminate the cloud
phase over this region more reliably, especially with
regard to supercooled water clouds (Hu et al. 2010).

The contributions from T2 anomalies are more obvi-
ous over land than over ocean. As stated in the above
analysis, the contributions of T2 may be related to water
vapor and aerosol loading. For the NDVI anomalies
(Fig. 6d), we find that their contributions to the PA
anomalies over most of the land regions are below 20%.
Park et al. (2015) suggested that vegetation greening is
observed in response to regional warming in the NH,
indicating that vegetation feedback processes (e.g.,
surface albedo) would be strengthened. A recent finding
by Li et al. (2018) verifies that the greening trend at high
latitudes made a greater contribution to the decline in
surface albedo in the NH (i.e., Siberia), which has
experienced a pronounced decrease in surface albedo
due to the increase in the extent of evergreen conifer
forest cover resulting from the warming over the past

FIG. 7. The global distributions of (a) dominant and (b) secondary factors that explain the long-term variability of
planetary albedo and their corresponding relative contributions acquired from Aqua.
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several decades (Kharuk et al. 2005, 2007; He et al.
2017). However, our results indicate that the contribu-
tion (,10%) from the changes in vegetation cover
plays a limited role in the long-term variations of the PA
over landmass. Even so, the response of the PA to the
vegetation changes over the arid and semiarid regions
(e.g., the western United States) is still noteworthy. On
the one hand, Forzieri et al. (2017) showed that an in-
creasing vegetation trend contributed to a reduction in
surface albedo and to evaporation-driven cooling in arid
regions. An enhanced evaporation could additionally
decrease the soil moisture and, therefore, lead to de-
sertification (Huang et al. 2017). On the other hand,
Huang et al. (2017) noted that dry soils and smaller leaf
areas contributed to an increase in the surface albedo
and a reduction in transpiration, thereby further in-
tensifying drought.

The relative contributions of I/SPC and SA are shown
in Figs. 6e and 6g, respectively. Statistical results clearly
show that the contributions from I/SPC and SA anom-
alies are dominant over the higher Southern Ocean
latitudes, Arctic, and Antarctic, respectively. Over the
higher Southern Ocean latitudes, the contribution from
I/SPC exceeds 40%, whereas the contributions are
smaller than 30% over other land in the mid–high lati-
tudes. Pistone et al. (2014) concluded that cloud albedo
feedback is playing an insignificant role in the observed
Arctic warming. However, our statistical results show
that the both CF and I/SPC anomalies are very impor-
tant to the long-term change of PA over the Arctic. This
result is consistent with that of the study of Qu and Hall
(2005), who found that the interannual variability in the
PA over the cryosphere is dominated by surface albedo
changes, but the atmospheric damping effect due to
cloud fluctuations can significantly attenuate these sur-
face changes by as much as 90%.

4. Conclusions and discussion

The planetary albedo, which is controlled in a com-
plex way by various atmospheric and surface properties,
plays a key role in regulating the global and regional
energy budgets. However, our incomplete understand-
ing of the related physical processes (e.g., cloud process)
means that the reliable simulation and reproduction of
PA in the climate models remain challenging (Bender
et al. 2006). To improve the simulation of PA and pre-
dict how the planetary albedo will respond to climate
change, one of the remaining issues is determining which
factor dominates the temporal variability of the plane-
tary albedo based on observations, especially at a re-
gional scale. As a result, this study utilizes 13 years
(2003–15) of data from multiple satellite datasets to

evaluate the contributions of atmospheric and surface
parameters to the long-term variations of the gridded
planetary albedo.

By performing a temporal correlation analysis be-
tween the planetary albedo anomalies and surface al-
bedo (and cloud albedo forcing) anomalies, we find that
the variations in planetary albedo show an obvious pos-
itive correlation with the cloud albedo forcing anomalies
over the regions between 608S and 608N, whereas the
negative correlations are mainly located over the Arctic
and high-latitude Southern Ocean. Meanwhile, surface
albedo anomalies also exhibit an apparent positive cor-
relation with planetary albedo anomalies at high lati-
tudes. Based on a stepwise multiple linear regression
analysis, our statistical results indicate that the varia-
tions in planetary albedo are closely related to the var-
iations in cloud properties (e.g., cloud fraction, ice water
path, and liquid water path), ice/snow percent coverage,
and NDVI; however, their temporal relationships vary
among the different regions. Generally, the regression
model is able to capture the observed planetary albedo
anomalies for most regions. The contribution calculation
shows that the variations of cloud properties, especially in
CF, dominate the long-term variations in the PA over the
most of global areas. This conclusion is consistent with
the results of previous studies (e.g., Seinfeld et al. 2016).
Aside from those of CF, the contributions of I/SPC and
SA anomalies are dominant over the high latitudes of the
Southern Ocean and part of the Antarctic regions, re-
spectively. In addition, the effects of LWP and IWP are
nonnegligible, and their contributions are the second-
most important factor globally, except for in the Arctic
and Antarctic regions.

At present, the model simulation of PA still suffers
from some uncertainties. For example, by using the
multimodel dataset from phase 3 of the Coupled Model
Intercomparison Project (CMIP3) and two satellite
datasets [the Earth Radiation Budget Experiment
(ERBE) and CERES], Bender et al. (2006) found that
seasonal variations in the PA are captured to some ex-
tent by models that span the storm tracks, whereas the
albedo is not well reproduced by models spanning the
entire oceans. They speculated that this bias may be due
to the poor simulation of the solar angle by the models.
Meanwhile, they also noted that the poor simulation of
cloud in models is responsible for the failure to re-
produce the seasonal PA variations over the subtropical
arid regions. In addition, Stephens et al. (2015) showed
that the reflected energy simulated by the CMIP5
models failed to reproduce the observed hemispheric
symmetry, and the modeled global albedo values were
systematically higher (by almost 10%) than those from
CERES observed during the boreal summer months.

1 NOVEMBER 2018 J I A N E T A L . 8715



This bias has persisted from CMIP3 (Bender et al. 2006).
These studies clearly showed that the uncertainties in
the simulation of PA are closely related to the cloud and
surface parameters, especially CF. In future work, the
inclusion of the cloud overlap assumption, which con-
siders the effects of dynamic factors, in the models
should improve the simulation of the total cloud fraction
and reduce the bias of PA caused by CF (Di Giuseppe
and Tompkins 2015). However, over the semiarid (or
high pollution) regions, vegetation cover and aerosol
loading need to be further considered for improving
the parameterization of the planetary albedo and de-
termining climate feedbacks over these regions (Huang
et al. 2014).
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