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A B S T R A C T

This study presents a new 10 year of liquid water cloud droplet number concentration (Nd) climatology, and
analyzes its long-term variation on both regional and global scales based on accurate depolarization ratio
measurement from CALIPSO and 3.7 μm cloud effective radius retrieval from MODIS. Compared with the widely
used passive retrieval method (e.g., MODIS retrieval), which considers Nd as function of cloud optical depth,
geometry thickness and effective radius, retrieval method of the new Nd dataset has a weak dependence upon the
cloud adiabatic assumption and eliminates the possible bias caused by multilayer clouds. Statistical results show
that the annual cycle and long-term variability of Nd retrieved by CALIPSO agree reasonably well with those
obtained from MODIS retrieval method, especially over the stratocumulus regions (correlation coefficient>
0.9). Multiple regression models and contribution calculation verify that the variability of sulfate mass con-
centration dominates the long-term variation of Nd over most regions, even though the contribution factors and
rates vary with different regions, temperatures and methods. In addition, our study also indicates that the impact
of BC and OC on Nd should not be ignored, especially for supercooled water clouds over those important biomass
burning regions. These results demonstrate the temperature-dependent Nd climatology derived from CALIOP has
potential to be beneficial to climate research and reduce the uncertainties in estimates of the aerosol indirect
effect in the model simulations.

1. Introduction

Liquid water clouds (e.g., stratiform boundary layer) play a key role
in modulating the earth's climate by changing their radiative (e.g.,
shortwave reflection and infrared emission) (Brenguier et al., 2000;
Garrett and Zhao, 2006; Klein and Hartmann, 1993) and precipitation
properties (Lohmann and Feichter, 2005). Their formations and varia-
tions are closely controlled by the relevant dynamical (Klein and
Hartmann, 1993; Myers and Norris, 2016; Seethala et al., 2015; Wood,
2012) and microphysical processes (McCoy et al., 2015, 2017a; Quaas
et al., 2009). Higher atmospheric aerosol loading from anthropogenic
activities (e.g., rapid industrialization) and natural processes (e.g.,
volcanic eruptions) may influence cloud properties in various ways.
Among many others, the most direct effect of aerosols on clouds is that
aerosols serve as cloud condensation nuclei (CCN), increasing the cloud

droplet number concentration (Nd) and decreasing the effective radius,
thereby enhancing the reflectivity of solar radiation by clouds for a
given cloud liquid water content (i.e., “the first aerosol indirect effect”
or “Twomey effect”) (Twomey, 1977). While any disturbance of Nd

caused by increased aerosol concentrations may significantly influence
cloud albedo and possibly regionally counteract greenhouse warming,
the strength of the first indirect aerosol effect is still a highly uncertain
component of the overall global radiative forcing estimation made
using global climate models (Ramaswamy et al., 2001). One of the
prominent problems is that models fail to capture all the key controls of
Nd; thus, they usually employ distinctly different values of Nd and its
lower bounds, such that they exhibit a wide range of uncertainty in the
simulated magnitudes of the first indirect effect (Lohmann et al., 2007;
Quaas et al., 2008). A previous study has shown that the simulated
indirect aerosol effect can be reduced by up to 80% when models
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constrain the lower bounds of Nd without regard for the simulated
concentrations of activated aerosols (Hoose et al., 2009).

In recent decades, many efforts have been made to decrease the
uncertainties of the first indirect effects of the model simulations based
on satellite observations, in situ measurements and field campaigns
(e.g., Chubb et al., 2016; Huang et al., 2014; Garrett et al., 2004;
Lohmann et al., 2000, 2007; Schmidt et al., 2013, 2014; Wang et al.,
2010). Ground-based lidar observations and airborne measurements
may provide more accurate Nd values, but only limited temporal and
spatial coverages are possible (Allen et al., 2011; Donovan et al., 2015;
Lu et al., 2007; Schmidt et al., 2015). Thus, the results from in situ
observational measurements are commonly used to validate and eval-
uate satellite-derived Nd (e.g., Ahmad et al., 2013; Painemal and
Zuidema, 2011). Until now, the satellite retrieval of Nd has been chal-
lenging, and different methods have been presented to derive the cli-
matology of Nd or its precursor (that is, cloud condensation nuclei)
(e.g., Bennartz, 2007; Bennartz and Rausch, 2017; Brenguier et al.,
2000; Han et al., 1998; Hu et al., 2007a; Rosenfeld et al., 2012, 2016;
Schuller et al., 2005). The one method that has been widely used is
based on the assumption of an “adiabatic cloud model” and considers
the cloud droplet number concentration as a function of cloud optical
depth (τ), cloud geometry thickness (H) and effective radius (re) at the
cloud top (Bennartz, 2007; Brenguier et al., 2000; Schuller et al., 2005).
However, most of the clouds in the atmosphere are not strictly adia-
batic. Precipitation processes or other factors (e.g., cloud top entrain-
ment) may lead to the clouds being under the sub-adiabatic condition
(Wood, 2012; Wood et al., 2012). In contrast to the passive method, Hu
et al. (2007a) developed a novel approach to evaluate Nd by combining
the lidar depolarization ratio measurements from CALIPSO and the
cloud effective radius from MODIS. This method has a weak depen-
dence on the adiabatic assumption and is independent of cloud type. By
using one year of data from CALIPSO and MODIS, Zeng et al. (2014)
found similar geographical distributions and seasonal variations of Nd

between the above two methods. As a result, the advantage of CALIPSO
is that it allows us to build a new Nd climatology and further analyze the
consistency of the long-term variations between the two Nd datasets.

Such a long-term Nd dataset will be beneficial to determine the
factors that contribute to this temporal variability of Nd at the global
and regional scales. Many observations and model simulations have
verified that increased aerosol concentrations may result in increased
Nd (e.g., Bennartz, 2007; Bennartz et al., 2011; Snider et al., 2003). In
addition to aerosol concentrations, Nd is also associated with the
aerosol size distribution, chemical composition and meteorological
conditions (e.g., updraft velocity at cloud base) (Chubb et al., 2016;
Reutter et al., 2009; Wood et al., 2012). Reutter et al. (2009) used a
cloud parcel model to investigate the dependence of Nd on the aerosol
number concentrations and updraft velocities, and found that the sen-
sitivity of Nd to aerosols and velocity varies with region. Karydis et al.
(2012) tested the adjoint sensitivity of global Nd values to aerosol and
dynamic parameters. Their simulation showed that Nd is more sensitive
to updraft velocities and water uptake coefficients (aerosol number
concentration and hygroscopicity) over polluted (pristine) areas. Over
the southern oceans, McCoy et al. (2015) analyzed the correlations
between Nd and aerosols, and noted that natural aerosols affect the
spatiotemporal variability of Nd and may explain the seasonal and
spatial patterns of the Southern Ocean cloud albedo, which is consistent
with the results of the study by Karydis et al. (2012). However, a recent
model simulation demonstrated that the updraft velocity is the primary
driver of Nd variability for 45.5% of the grid, and the sensitivity of the
temporal variability of Nd to the velocity cannot be neglected over the
southern oceans (Sullivan et al., 2016). Thus, to reconcile such an in-
consistency between model simulations, we perform an adjoint sensi-
tivity analysis of Nd to aerosol type and vertical velocity by using two
satellite-observed Nd datasets derived from CALIPSO and MODIS, the
aerosol properties from the Modern-Era Retrospective Analysis for Re-
search and Applications Version 2 (MERRA2) and the updraft velocities

from the ERA-interim and MERRA2 datasets. Based on this investiga-
tion, we attempt to focus on two key points: (1) What factors drive the
temporal variability of Nd at regional and global scales? (2) Which one
is the dominant factor? Although some statistical results agree reason-
ably well with previous studies, new insights are also presented.

This paper is organized as follows. A brief introduction to all the
datasets and retrieval methods used in this study is given in Section 2.
Section 3.1 prescribes the comparisons of the geographical, annual and
long-term variations of the Nd between the two retrieval methods.
Further analyses of the contributions of the aerosols and vertical velo-
cities to the long-term variabilities of regional Nd are provided in
Section 3.2. Finally, the conclusions are presented in Section 4.

2. Datasets and methodology

In this study, 10 years (2007–2016) of data from the Aqua-MODIS
collection 6 level-2 cloud product (MYD06), the CALIPSO Lidar level-2
cloud layer products, and the daily 3-hour aerosol product from the
MERRA2 reanalysis were collected. Then, these datasets are used to
retrieve the liquid water cloud droplet number concentrations during
the daytime and to discuss the contributions from different factors on
its temporal variability.

2.1. Satellite products and reanalysis dataset

The effective cloud radius of 3.7 μm (re), cloud optical thickness (τ),
cloud multi-layer flag (CMLF) with a spatial resolution at the nadir of
1×1 km, and cloud fraction (CF) with a spatial resolution at 5×5 km
from the Aqua-MODIS level-2 collection 6 cloud products (MYD06)
(Platnick et al., 2015, 2017) during the daytime were used in our study.
Compared with the MODIS collection of 5 cloud products, several im-
provements have been made (Rausch et al., 2017), such as significant
improvements in the forward radiative transfer models.

The collocated CALIPSO level-2 1 km (v4.10) cloud layer product
provides essential cloud thermodynamic phases (e.g., water, randomly
oriented ice, horizontally oriented ice or unknown phase) at the cloud
top, the cloud top and base height (temperature and pressure) in-
formation, the layer-integrated volume depolarization ratio and the
number of cloud layers in a given Lidar profile (Hu et al., 2009).
Compared with the earlier CALIOP version 3 products, there have been
several substantial improvements made to increase the retrieval ac-
curacies of the parameters needed to determine the Nd from Lidar (e.g.,
improved cloud subtypes and ice-water phase determination).

In addition, the Modern-Era Retrospective Analysis for Research and
Applications Version 2 (MERRA2) combines measurements of the at-
mospheric states and remotely sensed aerosol optical depths to provide
the aerosol reanalysis (Buchard et al., 2015; Molod et al., 2015), which
has been evaluated by CALIOP measurement in recent studies (Buchard
et al., 2017; Nowottnick et al., 2015; Li et al., 2016). Here, the daily 3-
hour aerosol and meteorological products from the MERRA2 reanalysis,
which have gridded resolutions of 0.5°× 0.625°, are also used to pro-
vide the related information of the updraft velocity (w) and mass con-
centration of different aerosol species at several pressure levels. The
MERRA2 product can supply the mass mixing ratios of eight aerosol
types, including black carbon (BC), dimethyl sulfide (DMS), dust (DU),
methane sulfonic acid (MSA), organic carbon (OC), sulfate aerosol
(SO4), sulfur dioxide (SO2) and sea salt (SS). Some studies have ad-
dressed the effects of MSA, OC, BC, sulfate and SS aerosols as cloud
condensation nuclei (CCN) (Ayers and Gras, 1991; Lammel and
Novakov, 1995; O'Dowd et al., 1997; Ruehl et al., 2016; Sun and Ariya,
2006). Following the studies of Sullivan et al. (2016) and McCoy et al.
(2017b), this investigation uses only the mass mixing ratios of hydro-
philic OC, BC, SO4, SO2 and the smallest particles of SS (that is,
0.03–0.1 μm size bin) and dust (that is, 0.1–1 μm size bin) to calculate
their mass concentrations at different pressure levels. In addition, the
daily 6-hour vertical velocities from the ERA-interim reanalysis
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(resolution of 0.5°× 0.5°) are also used in our analysis and are collo-
cated to MERRA2 to obtain the best representations of vertical velo-
cities w. The positive vertical velocity in this study implies an updraft.

2.2. Retrieval of Nd based on CALIOP and MODIS measurements

Based on a Monte Carlo simulation, Hu et al. (2007a) provided a
robust empirical relationship between the extinction coefficient β, the
effective radius re and the layer-integrated depolarization ratio δ, that
is,
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For almost all of current remote sensing algorithms, the droplet size
distribution of water clouds are assumed as log-normal or gamma size
distributions (Zhao et al., 2012). By assuming that the water clouds
have a generalized gamma size distribution (Hu and Stamnes, 1993),
then the true droplet number concentration Nd can be approximated as:
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where Ne (unit: cm−3) is the effective number concentration of a water
cloud with a mono-disperse droplet size distribution and may be ex-
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where γ is the width of the generalized gamma size distribution and
(γ+2)2/(γ+1)γ is the ratio of the effective radius to the volume ra-
dius of a liquid droplet. By comparing all available aircraft observations
of water clouds, Miles et al. (2000) discussed the appropriateness of the
assumptions used in the remote sensing of cloud droplet size distribu-
tion parameters. Their work found that the value of γ has a relatively
wide range in different observations. For example, the γ has small value
(around 3) for the stratocumulus observation in the North sea from
Martin et al. (1994), to 15 for stratus observation in the west of Santa
Cruz from Ryan et al. (1972), to even more larger values (> 20) for
thick nocturnal stratocumulus observation by Slingo et al. (1982). Such
wide range of γ in different observations would be linked to the
availability of CCN, their size distribution and chemical composition, as
well as the meteorological condition. Generally speaking, the mean
values of γ are 8.6 for marine clouds and 8.7 for the continental clouds
based on the statistical results from Miles et al. (2000). It means that the
retrieved droplet number concentration Nd will be 2.1Ne, 1.36Ne, 1.2Ne,
and 1.15Ne for γ values of 3, 8.6, 15 and 20, respectively. These results
indicate that the application of one fixed γ value in all regions should
result in some uncertainties in the Nd retrieval. Until now, however, it
has remained difficult to derive accurate climatological values of γ for
different regions due to very limited observations. For comparing with
the MODIS retrieval, we apply a constant value (12.3) of γ for marine
and continental clouds, and the corresponding effective variance of the
gamma distribution 1/(γ+2) is 0.07. This value approaches the value
used in MODIS retrieval (Bennartz and Rausch, 2017). In addition to
the width of the size distribution, some potential error sources may also
affect the retrieval accuracy of Nd, although this method is independent
of the adiabatic assumption. For example, Zeng et al. (2014) analyzed
the advantages and weaknesses of different retrieval methods of Nd and
discussed the impacts of cloud entrainment, drizzling, horizontal het-
erogeneities and effective radii on the retrieval of Nd. After assuming
the value of γ, the true droplet number concentration Nd of a single-
layered cloud can be retrieved based on Eqs. (2) and (3) by combining
the depolarization ratio measurements from CALIPSO and the effective
radii from the MODIS 3.7 μm channel. Here, it is worth noting that the
Nd from this method is a numerical concentration at the cloud top layer
because of the limited penetration depth of the 3.7 μm solar radiation

and Lidar signal into clouds (Hu et al., 2007a).

2.3. Retrieval of Nd from Aqua-MODIS measurements

The Nd retrieval method based on the MODIS measurements origi-
nates from an “adiabatic cloud model” assumption (Bennartz, 2007;
Brenguier et al., 2000; Schuller et al., 2005), which assumes that cloud
liquid water content increases linearly from the cloud base to the top,
and the value of Nd within the cloud remains constant with height.
Under this assumption, the Nd is approximately given as:
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where τ is the cloud optical depth, Q≈ 2 is the scattering efficiency of
cloud droplets, ρ is the water density, cw is the condensation rate, W is
cloud liquid water path, and k=0.8 is the ratio between the volume
mean radius and the effective radius. The cloud liquid water path may
be expressed as: = =W c Hρτr

w
5
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2e , where re is the effective radius of
the cloud top at 3.7 μm, and H is the cloud thickness. Following the
definition from Grabowski (2007), the condensation rate cw is a func-
tion of temperature (here, we use the cloud top temperature from
MODIS), pressure (from the CALIOP cloud product) and water vapor
saturation pressure (a function of the temperature defined by Lindblom
and Nordell (2006)). To date, this method has been widely used for
climate model validation and evaluation (Hoose et al., 2008; Wang
et al., 2015; Zhang et al., 2012) and for the estimation of the first
aerosol indirect effect (McCoy et al., 2015, 2017b). Nevertheless, some
weaknesses and error sources related to Nd retrievals were also noted in
many studies (e.g., Grosvenor and Wood, 2014; Rosenfeld et al., 2012;
Wood et al., 2012; Zhang et al., 2016). Recently, Bennartz and Rausch
(2017) improved the accuracies of retrieved Nd values by applying
some additional screening criteria and published the latest Nd dataset
(1°× 1° resolution) based on 13 years of Aqua-MODIS measurements.
In their study, the uncertainties caused by several potential error
sources (e.g., broken clouds and observation geometry) were also as-
sessed and quantified. Generally, accurate retrievals of Nd from sa-
tellites are rather complex and suffer from many uncertainties. Cloud
entrainment, drizzling, horizontal heterogeneity and observation geo-
metry may all result in some biases in the Lidar-derived and MODIS-
derived Nd (Bennartz and Rausch, 2017; Grosvenor and Wood, 2014;
Wood et al., 2012). However, additional uncertainty can also be caused
by vertical cloud overlaps in the MODIS retrieval method (McCoy et al.,
2017b; Sourdeval et al., 2015, 2016). For example, based on the com-
parison between the MODIS-derived Nd and the long-term measure-
ments of Nd, Ahmad et al. (2013) showed that the number of cloud
layers is very important when matching the ground-based measure-
ments to the MODIS retrieval, and the correlation between the retrieved
and observed Nd values will be greatly improved when only single-layer
clouds exist. In addition, k value, which is determined by the skewness
and dispersion of the droplet size distribution, is setted as 0.8 and re-
presents similar width of the generalized gamma size distribution (e.g.,
γ value) used in CALIPSO method. Bennartz and Rausch (2017) showed
that a realistic uncertainty estimate for k between different studies is
around 20%.

2.4. Building the gridded climatologies of Nd based on different methods

For the data processing, each Lidar profile of the CALIPSO level-2
1 km cloud layer product is first matched with a MODIS pixel-level
observation in both space (e.g., distance< 1 km) and time (e.g., time
difference< 90 s) in order to ensure they point to the same clouds. In
this study, we focus only on the retrieval of the Nd of a single-layered
(that is, “number of cloud layers” set to be 1) liquid cloud due to the
passive sensors is difficult to accurately retrieve multilayer cloud
properties (e.g., cloud phase, particle size or cloud top temperature)
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(Huang, 2006; Huang et al., 2005, 2006; Minnis et al., 2007; Wang
et al., 2016). Passive satellite cloud property retrievals are typically
based on the single-layer cloud assumption, and any error from the
MODIS retrieval of cloud properties will be propagated to the calcula-
tion of Nd. Based on this consideration, this study only considers the
single-layer liquid phase clouds with a high confidence by using the
cloud phase information of the “feature classification flags” from CA-
LIPSO, and limiting the “cloud layer number” from CALIPSO and “cloud
multilayer flag” from MODIS to 1. In the MODIS product, the multilayer
cloud detection algorithm uses a series of spectral bands in addition to
individual retrievals of physical quantities, such as the difference be-
tween retrieved above-cloud precipitable water amounts from the
0.94 μm band and from the CO2 slicing cloud top height, and cloud
optical thickness difference between the standard retrieval at 2.1 μm
channel and the alternative 1.6–2.1 μm channel pair, to decide the
existence of multilayer clouds. However, CALIOP discriminate the
layers as multilayer clouds if individual layers are always separated by
regions of “clear air”, and layer boundaries never overlap each other in
the vertical dimension. By comparing the combined cloud layer dataset
from CloudSat/CALIPSO with MODIS cloud multilayer flag, some stu-
dies have indicated that MODIS usual underestimates the multilayer
clouds (Li et al., 2011b; Wang et al., 2016). Recent, Sun-Mack et al.
(2017) utilized an artificial neural network algorithm to train the
brightness temperatures at several MODIS infrared channels and the
retrieved total cloud visible optical depth, in order to detect multilayer
ice-over-water cloud systems as identified by collocated CloudSat/CA-
LIPSO cloud product. Their results exhibit higher accuracy than cur-
rently available methods. As a result, we use the combined information
from the “cloud layer number” of CALIPSO and “cloud multilayer flag”
of MODIS to double-check the multilayer clouds in order to minimize
their effects. It will not affect our statistical results except reduce the
sample numbers.

Here, two points still require further interpretation. First, because
lidar signal of CALIOP can be completely attenuated when cloud optical
depth (τ) exceeds CALIOP's detection limit of effective optical depth
(ητ < 3, η is multiple scattering factor) (Hu et al., 2007b), CALIOP can't
penetrate the optically thick cloud layers to detect the lower cloud
layers. In the circumstances, CALIOP still reports the “cloud layer
number” as 1 so that some multilayered cloud systems are mistaken for
single-layer clouds. Although the limitation of the “cloud layer number”
will not bias the retrieval Nd to thin water clouds, the misclassification
of “cloud layer number” may still cause some uncertainties in our re-
sults. Second, CALIOP only can penetrate limited depth of cloud layer,

thus the consideration of “liquid phase cloud” only focuses on the cloud
phase of very top part of clouds. It means that some liquid-layer topped
mixed-phased clouds are also included in our statistical samples,
especially for supercooled water clouds. But, it will not affect our re-
sults because the retrieval Nd based two methods are both in the top
part of clouds. Meantime, it is worth noting that the cloud top tem-
peratures of clouds in our study range from −30 °C to 30 °C.

In addition, current satellite observations still have difficulty to
derive the information of aerosol and vertical velocity at the cloud base,
thus we also extract the vertical profiles of the averaged vertical velo-
city w from MERRA2 and ERA-interim reanalysis and aerosol mass
mixing ratios from MERRA2 closest to the CALIPSO observations in
both space and time. It means that the vertical velocity used in this
investigation refers to the large-scale vertical motion and differs from
the values of the updraft velocities at the cloud base or in the clouds
mentioned in previous studies (Reutter et al., 2009; Rosenfeld et al.,
2016). For each cloud sample, only velocity and aerosol concentration
near cloud base in their profiles are used in following analysis since the
aerosols that serve as cloud condensation nuclei generally get into
clouds from cloud bases (Zhao et al., 2018). Note that we limit our
analysis to± 60° latitudes, a low solar zenith angle (< 65°) and a high
MODIS cloud fraction (> 80%) within a spatial resolution at 5×5 km
to reduce the statistical uncertainty caused by the retrieval biases of the
cloud properties (e.g., the effective radius at 3.7 μm will be strongly
biased at high solar zenith angle) (Bennartz and Rausch, 2017;
Grosvenor and Wood, 2014).

Given these screening criteria, the two retrieval algorithms both
perform at a pixel-level and the number of available samples is at least
one hundred million, thus ensuring the statistical significance. Here, it
is worth noting that the global distributions and seasonal cycles of Nd in
Fig. 2 are the 10-year averaged values; thus, the grid size of Nd is set as
2° latitude by 2° longitude. In view of the current study mainly focuses
on the roles of aerosol types and larger-scale updrafts in the temporal
variability of the regional and global Nd, all pixel-level variables are
further collected to establish the long-term gridded datasets of sea-
sonally averaged variables. To do this, we enlarge the grid size as 2°
latitude by 3° longitude to avoid the issue of a sparse dataset caused by
the narrow orbit of CALIOP, and to provide enough long time series of
different parameters in each grid to build a robust multiple linear re-
gression model.

Using the samples (see the Fig. 1), we have showed the impact of
multilayer clouds on the retrievals of Nd. To facilitate comparisons, the
latest Nd dataset from the Aqua-MODIS measurements spanning the

Fig. 1. The comparison of time series of Δlog10 (Nd) over different regions based on three datasets. Here, CALIPSO and MODIS-single datasets are from our study, and
MODIS-all dataset is from the study of Bennartz and Rausch (2017).
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years from 2007 to 2015 is also used in our investigation (Bennartz and
Rausch, 2017; data link: https://doi.org/10.15695/vudata.ees.1). The
improved dataset still includes multilayer clouds, thus, is a good re-
ference to assess the effects of multilayer clouds. Comparisons are
performed for two different regions: the western coast of North America
(114–128°W; 17–32°S) and the eastern coast of North America
(70–60°E; 35–45°S). In Fig. 1, the MODIS-single and MODIS-all datasets
represent the single-layered and all liquid warm water clouds, respec-
tively. The western coast of North America is a typical subtropical
stratocumulus region where multilayered clouds are very scarce due to
subsidence (Li et al., 2015). For the Nd anomalies (that is, Δlog10 (Nd)),
Fig. 1a clearly shows that the three Nd datasets exhibit high con-
sistencies and their correlations all exceed 0.8. Note that the anomalies
of all variables in this study are already deseasonalized. Over the
eastern coast of North America (multilayered clouds account for 30% to
40% of the total cloud fraction) (Li et al., 2015), however, the con-
sistency is reduced. Comparing Fig. 1b with Fig. 1a, we can see that the
correlation coefficient between MODIS-all and MODIS-single drops
from 0.81 to 0.66, and the correlation coefficient between CALIPSO and
MODIS-all drops from 0.84 to 0.6. However, CALIPSO and MODIS-
single still show a good agreement. Although the above result cannot be
entirely ruled out as being due to the effects of other factors (e.g.,
different screening criteria used in two MODIS datasets), the bias from
multilayered clouds is still non-negligible (Ahmad et al., 2013). As a
result, the following analysis is based only on the CALIPSO and MODIS-
single Nd datasets. Recent, some studies have verified the validity of the
MODIS retrieval method by using aircraft measurements (Bennartz and
Rausch, 2017; McCoy et al., 2017c). However, it is difficult to directly
evaluate the CALIPSO retrieval in the present study due to its narrow
orbit and the scarcity of aircraft observations. Here, we also find that
the variations of Δlog10 (Nd) from CALIPSO almost are synchronous
with the variations of depolarization ratio anomalies (Δδ), whereas
effective radius anomalies ΔRe have relative lower but negative corre-
lation with Δlog10 (Nd) from CALIPSO retrieval (see the Fig. S1 in the
Supplementary material).

3. Results and discussion

3.1. Global and regional comparisons of two Nd climatological datasets

Fig. 2 shows the global distributions of the ten-year average re-
trieved Nd values for different boreal seasons with a 2°× 2° grid. The
left panel depicts the results from CALIPSO, and the right panel shows
those from MODIS. We find that the global distributions of Nd are very
similar for the two methods. The cloud droplet number concentration is
generally large over landmasses (e.g., northern and eastern China,
eastern America, South Africa, and Europe) and significantly lower over
remote oceans, especially over the tropical cumulus regions, where the
Nd is almost lower than 40 cm−3. The maximum values of Nd can reach
200 and 300 cm−3 for CALIPSO and MODIS, respectively. Overall, the
global mean Nd derived from the CALIPSO retrieval are approximately
52, 51, 53, 56 and 53 cm−3 for the spring, summer, autumn, winter and
annual means, respectively. The corresponding values derived from the
MODIS retrieval are 110, 108, 114,129 and 114 cm−3. Based on these
statistical results, it is clear that the global mean Nd from the MODIS
retrieval is approximately 2 times greater than that of the CALIPSO
retrieval. At the regional scale, the difference in the Nd values of the two
methods is much greater than that of the global means, especially over
the cumulus region for the whole year or over the Southern Ocean
during the boreal summer season. For the typical subtropical strato-
cumulus regions (such as, the Californian, Canarian, Namibian regions),
the differences are relatively small, especially during the summer (see
the Fig. S2 of the Supplementary information). Here, it is worth noting
that the ratio between Nd from MODIS and CALIPSO methods in the Fig.
S2 is independent on the cloud droplet size distribution parameters due
to same γ values are used. Thus, the obvious regional distribution rate
of the Nd of MODIS and CALIPSO may be partly linked to the feasibility
of adiabatic assumptions for different cloud regimes. Some previous
studies have shown that stratocumulus clouds tend to be adiabatic
(Albrecht et al., 1990; Zuidema et al., 2005); thus, the MODIS method
may exhibit a relatively reliable retrieval of Nd over these

Fig. 2. The global distributions of ten years average retrieved Nd for different boreal seasons in a 2×2° grid box. The left panel depicts the results from CALIPSO and
the right panel is for the MODIS.
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stratocumulus regions (Bennartz and Rausch, 2017). The comparison of
cloud liquid water path based on the Advanced Microwave Scanning
Radiometer-EOS (AMSR-E) retrieval and MODIS calculations, which
rely on a typical adiabatic model, also reveals that the best agreement
occurred in the extensive marine stratocumulus regions off the west
coasts of land masses, which showed correlations of 0.95 and RMS
differences of 15 gm−2 (Seethala and Horváth, 2010). Indeed, by per-
forming a temporal correlations analysis, we also find that the MODIS
and CALIPSO retrievals are most consistent in the stratocumulus re-
gions, for both Nd and its anomaly (see Fig. 3), although some differ-
ences still exist due to the entrainment process at the cloud top, which
shows unsaturated environmental air entrained in the clouds diluting
and evaporating the droplets and may result in a decrease in re and Nd

at the cloud top (Wood, 2012). Overall, it is still hard to determine
which method provides the most accurate Nd retrievals based only on
current study; however, similar global and seasonal distributions give
us confidence to further discuss the consistency of long-term variations
between two Nd climatologies.

Note that the statistical results in Fig. 2 are from all liquid water
cloud samples. Existing studies of Nd based on MODIS retrievals mainly
focus on warm water clouds, which have typical cloud top temperatures
between 268 and 300 K (Bennartz and Rausch, 2017). An accurate
determination of supercooled water clouds remains problematic for the
MODIS collection-6 IR phase algorithm (Baum et al., 2012), although
the clouds of such phase have been found to be poorly simulated in the
global climate models, especially over the Southern Ocean (Morrison
et al., 2011; Trenberth and Fasullo, 2010). In fact, the possible differ-
ences between warm and supercooled clouds discrimination from CA-
LIPSO and MODIS cloud phase algorithms mainly reflect the un-
certainty on the discrimination between liquid and mixed-phase clouds
in the case of super-cooled water clouds based on passive sensors (Cho
et al., 2009; Baum et al., 2012). In view of the sensitivity of CALIPSO to
the cloud top phase, this study utilizes the cloud phase and top tem-
perature information from CALIPSO to divide the cloud samples into
warm and supercooled water clouds. Specifically, we consider the water
clouds as warm (or supercooled) water clouds if their cloud top tem-
peratures are higher than 0 °C (or −30 °C) and lower than 30 °C (or
0 °C).

Fig. 3 shows the global distributions of the temporal correlations of
Nd (and its anomaly) between the MODIS and CALIPSO methods for
warm and supercooled liquid water clouds. Those regions without data
indicate that the data of the Nd time series in this grid are smaller than

20 and, thus, are replaced with a default value. Obviously, the global
distributions of the temporal correlations of Nd and its anomaly are very
similar. Compared with supercooled water clouds, the Nd values of
warm water clouds have much higher temporal correlations (even
reach 0.9), especially over the stratocumulus regions. Generally, large
temporal correlations for supercooled water clouds are located over
landmasses, whereas obvious correlations of warm water clouds mainly
exist over the ocean.

Here, we also present regional comparisons of the mean Nd annual
cycle and the seasonal Nd anomalies from the two methods (Figs. 4, 5
and 6) for different regions. The statistical results in each region are
also provided in Table 1. For clarity, we take region 1 panel as an ex-
ample to explain what each plot is, especially the means of each legend,
color, symbol and label. The bars in the figure (a) of region 1 represent
the annual cycle of Nd of warm water clouds from CALIPSO (black
color) and MODIS (white color) methods. The normalized annual cycle
value is represented as the ratio of the monthly means to their maxima.
In the figure (a), we also provide the correlation coefficients (and
confidence level p) of annual cycle of Nd between two methods for
warm (red color) and supercooled water clouds (black color), respec-
tively. Figure (b) in the region 1 shows the location of selected region.
Further, figure (c) gives the long-term variations of Nd anomaly from
CALIPSO (red line) and MODIS (black line) retrievals for warm water
clouds (0 °C < cloud top temperature < 30 °C). The correlation coef-
ficient of time series of Nd anomaly between two methods is given in the
figure (c). In addition, the annual averaged values of Nd from CALIPSO
(MODIS) methods are also provided. Same as the figure (c), the figure
(d) in the region 1 gives the long-term variations of Nd anomaly from
CALIPSO (cyan line) and MODIS (black line) retrievals for supercooled
water clouds (−30 °C < cloud top temperature < 0 °C).

For the annual cycle of warm water clouds (that is, bar plots), the
two Nd datasets in most of regions show similar monthly variations
(correlation coefficient R may exceed 0.7) at high confidence levels
(> 95%) except over the eastern coast of America (region 2,
R=−0.06) and western coast of South Africa (region 11, R=0.51).
The monthly variations of Nd obviously differ from region to region. Nd

is highest during the boreal summer and lowest in the winter for South
Africa (region 3), whereas the lowest Nd occurs in the boreal summer
over the eastern part of Australia (region 4). Furthermore, the monthly
variations in some region are also opposite those of the adjacent regions
(e.g., region 6 vs region 11). This pattern may be linked to the seasonal
variations of different aerosol types and their concentrations. For

Fig. 3. The global distributions (2×3° grid box) of temporal correlation coefficients of Nd (and its anomaly) between MODIS and CALIPSO methods. Specifically, left
column corresponds to correlation coefficient of original Nd time series for supercooled water clouds (SWC, upper panel) and warm water clouds (WC, lower panel).
The right column corresponds to the correlation coefficient of anomaly Nd time series for supercooled water clouds (SWC, upper panel) and warm water clouds (WC,
lower panel).
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example, Bennartz and Rausch (2017) indicated that the biomass
burning during September in southeastern Africa and Madagascar is
consistent with the peak value of Nd in the eastern part of South Africa,
whereas McCoy et al. (2015) found that the annual cycle of Nd is driven
mainly by high concentrations of sulfate aerosols at the lower Southern
Ocean latitudes (35–45°S) and by organic matter in sea spray aerosols
at the higher latitudes (45–55°S). For the Southern Ocean (regions 16
and 17), we find that the Nd from the MODIS method has two peaks
during May/June and December/January, which are consistent with
the results from Bennartz and Rausch (2017). However, in situ mea-
surements of CCN in the Southern Ocean show only one peak, with a
boreal winter maximum and boreal summer minimum (Gras, 1990;
Gras and Keywood, 2017). Compared with MODIS, our results from the
CALIPSO method agree well with the annual cycle of the CCN

measurements in the Southern Ocean for both warm water clouds and
supercooled water clouds. The annual cycles of supercooled water
clouds are similar to those of warm water clouds in most regions, except
for regions 11, 12 and 15 (figure not shown).

The time series of the seasonal Nd anomalies also show better con-
sistencies between two methods. In Figs. 4, 5 and 6, it is clear that the
Nd of the supercooled water clouds is obviously lower than that of warm
water clouds, especially over the stratocumulus regions. The decrease of
Nd with decreasing of cloud top temperature agrees with the vertical
variation of the depolarization ratio with water cloud top temperature,
which might be caused by the fact that the cloud mean liquid water
content or liquid water paths for clouds with the same thicknesses de-
crease when cloud temperature decreases (Li et al., 2011a). Over these
remote oceans (e.g., regions 10, 16 and 17), which are less affected by

Fig. 4. Regional comparisons about averaged Nd annual cycle and long-term variation of seasonal Nd anomalies between two methods for region 1–region 6. The bar
plot (left-up plot) represents the annual cycle of Nd of warm water clouds; We also provide the correlation coefficients of annual cycle of Nd between two methods for
warm water clouds (red color) and supercooled water clouds (black color) and their confidence level (p value). The Map (right-up plot) shows the studied region
(green box). In the left-down subplot, the black and red lines represent the time series of Nd of warm water clouds from MODIS and CALIPSO, respectively. Similar, in
the right-down subplot, the black and cyan lines represent the time series of Nd of supercooled water clouds from MODIS and CALIPSO, respectively. Besides the
correlation coefficients between time series of Nd, In the two subplots, regional averaged Nd from CALIPSO (MODIS) for warm (red color) and supercooled water
clouds (black color) are also provided. Table 1 provides the detailed information. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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anthropogenic aerosols, statistical results show relatively stable and
small anomalies for CALIPSO retrievals (anomalies smaller than±10
cm−3). However, the seasonal Nd anomalies from the MODIS retrieval
show slight decreasing trends, especially for region 17. From Table 1,
we can see that the trend reaches −15 cm−3/10 yrs for supercooled
water clouds in region 16, and −14.8 and −13.8 cm−3/10 yrs for the
warm and supercooled water clouds, respectively, in region 17. These
results are inconsistent with the recent study from Bennartz and Rausch
(2017), which used the individually MODIS retrievals to analyze the
monthly Nd anomalies in similar regions and did not find any serious
trends. By comparing the results from MODIS over other regions (e.g.,
region 2: eastern part of America), this study also finds a very obvious
decreasing trend (−67 cm−3/10 yrs) consistent with that of study from
Bennartz and Rausch (2017) (−50 cm−3/10 yrs). This result means
that the inconsistencies over the Southern Ocean could not be retrieval
errors in our study because these two studies use similar MODIS data
and retrieval methods. One of the possible reasons is that the different
screening criteria are used in our study, but this will be further ex-
amined in a later study. For those polluted regions (e.g., region 1:
eastern part of China), the mean Nd for the warm and supercooled water

clouds from MODIS (or CALIPSO) reaches 383 (or 157) cm−3 and 295
(or 109) cm−3, respectively. However, the long-term variations of the
seasonal Nd anomalies do not exhibit statistically significantly trends,
excepting the supercooled water clouds from the MODIS retrieval.
However, it is interesting to see that Nd in the area adjacent to region 1
(that is, region 15: East China Sea) exhibits an obvious negative trend
for the MODIS and CALIPSO methods (−47.6 vs −14.3 cm−3/10 yrs).
This conclusion is opposite to the results of the previous study from
Bennartz et al. (2011), which used the satellite retrieval and model
simulation to show an increasing trend of Nd from<200 cm−3 in the
1980s to> 300 cm−3 in 2005. In view of the difference of observation
periods, Bennartz and Rausch (2017) attributed the inconsistent trend
to the introduction of flue gas desulfurization technology in Chinese
factories, which resulted in a significant decline of the SO2 emissions in
recent years compared to those of the peak emission year (e.g., ap-
proximately 2006) (Klimont et al., 2013; Krotkov et al., 2016; He et al.,
2017). Similarly, a significantly negative trend of Nd was observed over
the eastern part of America (region 7) and is also captured by the
MODIS and CALIPSO retrievals for both warm or supercooled water
clouds; the MODIS (CALIPSO) values are −73.8 (−26.1) cm−3/10 yrs

Fig. 5. Same as Fig. 4, except for regions 7–12.
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and− 61.4 (−27.1) cm−3/10 yrs for the warm and supercooled water
clouds, respectively. Finally, the two Nd datasets both exhibited weak
but still significant negative trends for the globally averaged Nd, and the
Nd of the supercooled water cloud drops more quickly than those of the
warm water clouds (see region 19 in the Table 1). Such changes of Nd

have been proven to have important impacts on the reflected shortwave
radiation and precipitation frequencies of clouds on regional and global
scales (Bennartz et al., 2011; Hoose et al., 2009; McCoy et al., 2015,
2017b).

3.2. Regression modeling and contribution calculation

How can we better understand the factors that drive the long-term
variations of Nd in different regions? What factor is the dominant? This
study builds a regression relationship between the Nd, the mass con-
centrations of different aerosol species and the atmospheric vertical
velocity in order to eventually quantify the relative contributions of
different factors to the observed variability of Nd. Similar to the study
from McCoy et al. (2017b), the basic multiple linear regression model is
given as:

= × + × + ×

+ ×
+ × + × + × +

Δ N a Δ SO a Δ SO a Δ OC

a Δ BC
a Δ DU a Δ SS a Δw b

log ( ) log ( ) log ( ) log ( )

log ( )
log ( ) log ( )

d10 1 10 4 2 10 2 3 10

4 10

5 10 6 10 6

(5)

where all variables are deseasonalized anomalies; and the units of Nd,
aerosol mass concentrations and vertical velocity are cm−3, μg/m3 and
hPa/h, respectively. an is the regression coefficient for the different
predictors and b is the constant term. The regression models based on
the MODIS and CALIPSO Nd datasets are trained separately in every
selected region by using an aggregated grid (2× 3°) of the seasonal
anomalies in these regions. Here, it is noted that the collinearities of
different predictor variables need to be tested before building regional
regression models. For those regions without collinearities, the vari-
ables are considered as predictors when the time series of their seasonal
anomalies show significant correlation (confidence level> 95%) with
the seasonal anomalies of Nd. For those regions with collinearity, the
stepwise regression method is used to filter the predictors and build
regression models.

Fig. 7 plots all regression coefficients in the models for different

Fig. 6. Same as Fig. 4, except for regions 13–18.
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regions (see the detailed information in the Tables 2 and 3). In these
regression models, the constant term b is almost equal to zero; thus, its
information is not provided in Fig. 7 or Tables 2 and 3. In Fig. 7, we can
see that the coefficients almost remain positive for SO2 and SO4 for both
supercooled and warm water clouds. On average, the coefficients of SO4

are higher than those of other variables. The results are consistent with
those of the study from McCoy et al. (2017b), which also noted that the
SO4 explained a large fraction of the variability of Nd. The coefficients
of SO2 in the models reveal similar sensitivities of different Nd retrieval
datasets to SO2, although differences are still obvious in some regions.
Compared with the results of SO4 and SO2, it is interesting to note that
the coefficients of the other aerosol types exhibit unexpected negative
values in some of the study regions, especially for BC and OC. McCoy
et al. (2017c) also found negative dependence of Nd on BC and OC in
some select regions and attributed these to the uncertainty of the
MERRA2 reanalysis and semi-direct aerosol effect. Indeed, Bennartz
and Rausch (2017) evaluated the impacts of biomass burning aerosols
over clouds on the retrievals of Nd. They found that the retrieved ef-
fective radii (or cloud optical depth) from passive sensors will increase
(or decrease) when increasing the optical depths of the absorbing
aerosols. This eventually results in a decrease in the retrieved Nd and

provides a possible interpretation of the negative dependence of Nd on
BC. The effectiveness of OC as CCN has been verified in previous studies
(e.g., Novakov and Penner, 1993). However, by compiling the CCN
activity of water-soluble organic carbon (WSOC) from existing studies,
Ervens et al. (2005) found the predicted relative changes in Nd caused
by WSOC produce ambiguous results regarding the magnitude and even
the sign of the change (e.g., have a wide range from −86% to 110%).
This work showed that the inconsistent changes of Nd stemmed from
physicochemical properties of WSOC, such as the solubility, surface
tension and molecular weight. This finding may partially explain the
negative sensitivities of Nd to OC over some regions. For submicron sea
salt and dust aerosols, our results also exhibit negative but relatively
weaker dependences over several regions. Compared with the coeffi-
cients from the CALIPSO method, the sensitivities of Nd from MODIS to
SS show more negative values, especially for the warm water clouds
over regions 13–18. Some studies have attributed these results to the
impacts of meteorological factors on Nd because the sea salt in MERRA2
is generated from the wind speed and sea surface temperature based on
a simple parameterization (Grythe et al., 2014; McCoy et al., 2017b).

In the present study, we also test the sensitivity of Nd to vertical
velocity. Model simulations have shown positive correlations between

Table 1
Detailed information about the boundaries of regions, regional means, correlation coefficient and trends of Nd for warm water clouds (WC) and supercooled water
clouds (SWC).

Reg. Lat.
°N
(upper/lower)

Lon.
°E
(left/right)

Meana

(WC)
cm−3

Mean (SWC)
cm−3

Corr.b

(time series)
Corr.c

(annual cycle)
Sloped

MODIS
cm−3/10 yr

Slope
CALIPSO
cm−3/10 yr

R1 34/24 110/122 157
(383)

109
(295)

0.37
(0.67)

0.89
(0.98)

–
(−39.3)

–
(–)

R2 45/35 −70/−60 83
(189)

80
(158)

0.8
(0.81)

–
(0.94)

−66.7
(−65.3)

−20.4
(−23.2)

R3 −10/−30 14/33 149
(288)

112
(213)

0.56
(0.89)

0.63
(0.97)

–
(–)

–
(–)

R4 −21/−36 140/153 99
(215)

75
(150)

0.82
(0.85)

0.95
(0.93)

–
(–)

–
(–)

R5 −20/−38 −69/−52 146
(316)

88
(215)

0.74
(0.79)

0.95
(0.93)

−48.8
(−83.4)

–
(−27.5)

R6 −2/−17 −47/−28 63
(142)

49
(110)

0.93
(0.95)

0.99
(0.98)

–
(–)

–
(–)

R7 46/29 −96/−79 152
(319)

117
(219)

0.49
(0.78)

0.72
(0.96)

−73.8
(−61.4)

−26.1
(−27.1)

R8 32/17 −128/−144 88
(163)

26
(58)

0.95
(0.88)

0.89
(0.86)

–
(–)

−21
(–)

R9 −18/−40 −85/−73 74
(128)

22
(51)

0.87
(0.84)

0.92
(0.85)

–
(−16)

9.7
(−5.5)

R10 5/−17 −166/−132 22
(69)

14
(43)

0.85
(0.62)

0.98
(0.74)

−9.5
(–)

–
(–)

R11 −6/−29 −11/10 68
(130)

30
(75)

0.85
(0.84)

–
(0.97)

–
(–)

–
(–)

R12 46/17 −38/−18 49
(104)

29
(67)

0.81
(0.82)

0.89
(0.77)

−16.6
(−12.3)

−6.5
(–)

R13 58/36 28/63 178
(319)

126
(241)

0.62
(0.54)

0.75
(0.71)

−49.2
(−36.6)

–
(–)

R14 27/11 70/85 113
(239)

58
(137)

0.78
(0.75)

0.93
(0.85)

–
(–)

–
(–)

R15 34/19 125/144 81
(205)

78
(180)

0.76
(0.81)

0.86
(0.99)

−47.6
(−39)

−14.3
(–)

R16 −42/−60 −173/−80 38
(83)

31
(69)

0.58
(0.48)

0.88
(−-)

–
(−15)

–
(–)

R17 −41/−58 24/129 43
(97)

37
(74)

0.72
(0.41)

0.64
(–)

−14.8
(−13.8)

–
(–)

R18 7/−10 146/168 31
(80)

15
(41)

0.84
(0.86)

0.98
(0.92)

–
(−9.3)

–
(−3.3)

R19 60/−60 −180/180 56
(121)

47
(101)

0.39
(0.63)

0.64
(0.91)

−10.4
(−18.2)

−1.6
(−3.1)

a Represent the regional averaged Nd of WC for CALIPSO (MODIS) methods.
b Correlation coefficient between CALIPSO and MODIS methods for the time series of seasonal Nd anomalies of WC (SWC); “–” represent the confidence

level < 95%.
c Correlation coefficient between CALIPSO and MODIS methods for the annual cycle of Nd of WC (SWC); “–” represent the confidence level < 95%.
d Trend of Nd based on MODIS and CALIPSO retrievals for WC (SWC); “–” represent the confidence level < 95%.
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in-cloud updrafts and Nd because high in-cloud updrafts may lead to
maximum supersaturations large enough to activate most of the aerosol
particles, except those of very small particles (Reutter et al., 2009).
Some studies also verified in-cloud updraft enhancement can lead to an
increase of the liquid water path (West et al., 2014) and the growth of
liquid water in the Arctic mixed-phase clouds (Shupe et al., 2008). Our
results show a negative but weak sensitivity of Nd to ω (Fig. 7). How-
ever, we should note that the vertical velocity used in our investigation
refers to the average large-scale vertical motion from the two reanalysis
datasets and is different from the updraft velocity in clouds or at cloud
bases mentioned in previous simulation studies (Karydis et al., 2012;
Reutter et al., 2009; Sullivan et al., 2016). Although some observational
studies demonstrated that a strong large-scale ascent motion suppresses
the formation of supercooled water clouds (Cesana et al., 2015; Li et al.,
2017), few researches have addressed the impact of large-scale ascent
motions on cloud droplet number concentrations. We speculate that the
negative sensitivity of Nd to ωmight be because the large-scale ascent in
this study smooths out many of the cloud-scale vertical motions. An-
other possible reason is that the strong large-scale ascent may lift larger
cloud droplets and result in a relatively smaller Nd for a given the liquid
water path.

By using the regression model in each region, we also calculate the
anomalies of log10 (Nd) in each grid for these regions and further derive
the regressed regional averaged anomalies of log10 (Nd). Fig. 8 indicates
the correlation coefficients between the observed and regressed re-
gionally averaged Δlog10 (Nd) in different regions for supercooled and
warm water clouds, respectively. It is clear that the correlation coeffi-
cients based on the CALIPSO Nd dataset are systemically higher than
those of the MODIS retrieval for both supercooled and warm water
clouds except in a few regions (e.g., the Southern Ocean regions). This
result means that the CALIPSO Nd retrieval method along with the re-
gression model has the ability to reproduce long-term variations of the

regional averaged Nd.
Figs. 9 and 10 show the time series of the regional means of the

regressed and observed Δlog10 (Nd) in some selected regions. Based on
the regression coefficients, the combined time series of the two main
predictors are also provided in Figs. 9 and 10. For the warm water
clouds in region 2 (eastern coast of America), although the regressed
Δlog10 (Nd) is systemically smaller than the observed values, its long-
term variations agree well with the observed time series from CALIPSO
and MODIS. The correlation coefficients reach 0.73 and 0.69, respec-
tively. Based on the negative trend of Nd from Table 1, Fig. 9a and
Table 3, it is clear that decreased SO4 and SO2 emissions from the
United States are responsible for the decreases of the warm water cloud
droplet number concentrations from the CALIPSO retrieval, which is
consistent with the satellite observations of SO2 (Krotkov et al., 2016).
In addition to the decreased SO4, however, the regression model based
on the MODIS Nd dataset also attributes the long-term variations of Nd

to the variations of black carbon. Similar correlations also exist in the
eastern parts of America (region 7 in Fig. 10). The inconsistent con-
tributions of the MODIS and CALIPSO methods represent the different
retrieval methods of Nd. However, the two methods both capture the
effect of the main contribution predictor (SO4) to the long-term varia-
tions of Nd.

For the western coast of South Africa (region 11 in the Fig. 9c and
d), we find that the observed Δlog10 (Nd) from MODIS and CALIPSO
both show consistency with the variations of Δlog10 (SO4) and Δlog10
(BC). These results demonstrate the important roles of BC when de-
termining the long-term variations of Nd over the Atlantic region off of
southern African (see Fig. 11b). Indeed, previous studies have shown
that the aerosol emissions from the southern African biomass burning
may significantly increase the droplet number concentrations
(Bennartz, 2007; Wilcox et al., 2009).

To quantify the impacts of different predictors to the regional and

Fig. 7. The regression coefficients of different predictors in the regression models. The square and triangle symbols represent the results from MODIS and CALIPSO
datasets, respectively. Tables 2 and 3 provide the detailed information.
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global Nd anomalies, we further calculate the relative contributions of
each variable to the regional Δlog10 (Nd) based on the following
equation (Huang and Yi, 1991):
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where m is the length of the data series, a is the number of independent
variables, Tij= bjxij, bj denotes the regression coefficients of each term,
xij represents the predictor variables, and j is the number of predictor
variables. Fig. 11 gives the detailed contribution rates of the different
factors to the supercooled and warm water clouds Nd anomalies. In
most regions, those aerosol types with negative regression coefficients
make only small contributions to the variability of Nd and, thus, do not
cause the larger uncertainties in our statistical results. Over the stra-
tocumulus regions (region 8, 9, 11 and 12), the contribution factors are
consistent between the MODIS and CALIPSO retrievals. Thus, the SO4,
SO2 and dust over the western coast of southern American (region 9)
contribute 70–80% of the variability of the warm water clouds, whereas
most of the variability of the Nd over the western coast of northern
Africa (region 12) is caused by the SO4, dust and vertical velocity.
Generally, the long-term variations of Nd for warm water clouds in most
of regions are dominated by the variations of SO4 and SO2. This result
agrees with the recent studies from McCoy et al. (2017b, 2017c), which
demonstrate that the decadal trend in Nd is mainly driven by the sulfate
mass concentration. In our results, we find that the contributions of SO4

and SO2 to the global averaged warm water cloud droplet number
anomalies account for 60% and 55% of the CALIPSO and MODIS

retrievals, respectively. That is, the variations of SO4 and SO2 dominate
the decreasing trends of the globally averaged Nd of warm water clouds.
In addition to SO4 and SO2, however, the variations of OC also play an
important role in determining the decreasing trends of the globally
averaged Nd of supercooled water clouds. From Fig. 11, it is clear that
the contributions of SO4 and SO2 to the supercooled water cloud droplet
number anomalies are smaller than those of the warm water clouds.
Meanwhile, the contributions of BC and OC increase with height,
especially over the western coast of America (region 8) and southern
America (region 5 and 6). Differing from the results from North
America, the variations of the sulfate mass concentrations (that is, SO4

and SO2) over East China (region 1) caused by emission controls con-
tribute only approximately 35% of the variability of the Nd of warm
water clouds due to the sulfur dioxide over this region doesn't show
monotonic variation as the east coast of North America (McCoy et al.,
2017c). In summary, the contributing factors and their rates are ob-
viously different for supercooled and warm water clouds and vary
among different regions, temperatures and methods used. Of course,
the present study also suffers from some uncertainties in the Nd retrieval
method and the aerosol type reanalysis. In view of the main advantage
of the CALIPSO retrieval being its weak dependence upon the adiabatic
assumption, further studies might focus on the much wider assessment
of the MERRA2 aerosol profile using the ground- or satellite-based
observations (e.g., CALIPSO) (Buchard et al., 2015, 2017) in order to
reduce the uncertainties of the interactions between clouds and aero-
sols.

Table 2
The regression coefficients of different predictors in model for CALIPSO and MODIS (bold values) Nd datasets of supercooled water clouds. In addition, the correlation
coefficient (R) and RMSE of the regression model in each region are also listed.

Reg. ω SO4 SO2 BC OC DUST SS R RMSE

R1 0.005
–

0.18
0.14

0.04
−0.01

0.16
0.19

0.03
0.02

−0.03
–

−0.01
−0.09

0.46
0.30

0.23
0.25

R2 0.0001
–

0.20
0.17

0.16
0.11

0.19
0.10

−0.11
−0.08

0.06
0.09

0.07
0.001

0.62
0.44

0.21
0.22

R3 −0.02
−0.01

0.12
0.14

0.13
0.10

0.24
–

−0.16
–

0.12
0.13

–
–

0.40
0.37

0.24
0.22

R4 −0.01
−0.01

0.16
0.19

0.16
0.13

−0.13
−0.08

0.26
0.13

0.04
0.09

0.07
0.06

0.61
0.59

0.25
0.23

R5 –
0.003

–
0.08

0.04
0.03

−0.32
−0.43

0.49
0.56

0.06
0.11

0.09
–

0.42
0.41

0.27
0.28

R6 –
–

–
–

–
–

−0.33
−0.46

0.53
0.61

–
–

0.15
0.10

0.35
0.34

0.27
0.23

R7 −0.003
–

0.32
0.31

0.12
0.04

−0.06
−0.17

0.04
0.08

0.05
0.06

0.02
0.03

0.58
0.46

0.22
0.21

R8 −0.005
−0.002

0.27
0.28

0.005
0.001

−0.47
−0.45

0.42
0.33

−0.02
−0.01

−0.02
0.01

0.32
0.26

0.26
0.29

R9 −0.003
–

0.24
0.25

0.04
0.01

−0.03
−0.26

0.008
0.17

0.09
0.005

−0.04
−0.06

0.37
0.25

0.19
0.19

R10 –
0.01

–
–

–
0.05

0.06
–

–
–

−0.11
–

–
0.07

0.10
0.14

0.20
0.22

R11 0.01
–

–
0.07

–
–

0.41
0.08

−0.25
–

0.13
0.13

–
–

0.30
0.27

0.21
0.21

R12 −0.01
–

0.16
0.13

−0.02
−0.02

−0.01
−0.15

0.07
0.10

0.04
0.08

0.04
0.02

0.30
0.22

0.24
0.23

R13 −0.02
−0.01

0.20
0.15

0.05
0.03

0.05
0.12

0.01
−0.05

0.001
0.02

0.05
0.04

0.45
0.34

0.20
0.19

R14 –
–

–
–

0.08
0.05

–
0.18

0.22
–

0.08
0.10

–
–

0.41
0.37

0.29
0.27

R15 0.001
–

0.13
0.15

−0.02
−0.05

0.27
0.11

−0.14
0.01

−0.07
−0.10

0.21
0.16

0.49
0.34

0.23
0.26

R16 −0.02
0.02

0.07
0.06

0.04
0.05

−0.14
−0.06

0.06
0.03

0.12
0.05

0.06
0.02

0.35
0.17

0.16
0.17

R17 −0.02
0.01

0.09
0.10

0.06
0.06

−0.05
−0.03

0.04
0.05

0.02
−0.02

0.09
0.03

0.38
0.22

0.16
0.16

R18 –
–

0.07
–

0.04
0.07

–
–

–
–

–
–

–
–

0.16
0.15

0.19
0.21

R19 −0.004
0.01

0.15
0.12

0.04
0.04

−0.04
−0.03

0.08
0.06

−0.001
0.02

0.04
0.03

0.30
0.24

0.22
0.22
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Table 3
Same as Table 2, except for warm water clouds.

Reg. ω SO4 SO2 BC OC DUST SS R RMSE

R1 −0.005
0.01

0.06
–

0.08
0.02

−0.04
–

0.07
–

0.07
–

0.09
0.02

0.46
0.13

0.17
0.17

R2 −0.01
–

0.33
0.31

0.11
0.04

−0.08
−0.16

0.005
0.07

0.03
0.03

−0.05
–

0.52
0.38

0.22
0.22

R3 –
–

–
–

0.12
0.10

0.45
0.38

−0.26
−0.27

−0.04
–

–
–

0.37
0.27

0.21
0.21

R4 −0.02
−0.01

0.21
0.15

0.08
0.09

0.11
0.05

0.07
0.09

−0.02
−0.002

−0.02
−0.01

0.47
0.41

0.24
0.23

R5 −0.004
–

−0.02
−0.04

0.05
0.04

0.06
−0.05

0.14
0.23

0.02
0.06

0.04
−0.03

0.38
0.34

0.19
0.19

R6 −0.01
–

0.06
0.08

0.12
0.06

–
–

0.13
0.10

0.05
0.04

0.12
0.05

0.47
0.35

0.17
0.16

R7 −0.001
0.01

0.16
0.17

0.07
0.04

0.11
−0.001

−0.04
−0.02

0.02
−0.02

0.01
0.03

0.43
0.31

0.19
0.19

R8 −0.01
–

0.32
0.19

0.05
0.07

0.02
0.09

0.07
0.06

0.13
0.09

0.0004
−0.03

0.49
0.47

0.16
0.14

R9 −0.01
0.02

0.25
0.19

0.05
0.05

0.001
−0.03

0.05
0.05

0.13
0.09

0.02
−0.03

0.43
0.38

0.15
0.13

R10 −0.02
−0.005

0.10
0.17

0.03
–

–
−0.19

–
0.12

−0.04
–

0.15
0.05

0.39
0.24

0.15
0.14

R11 –
–

0.19
0.18

–
0.04

0.09
0.07

–
–

0.06
0.05

0.08
0.04

0.40
0.39

0.13
0.12

R12 −0.03
0.01

0.30
0.19

−0.02
0.02

0.09
0.05

−0.02
−0.002

0.05
0.04

0.06
0.03

0.44
0.34

0.18
0.16

R13 −0.01
0.004

0.04
0.06

0.08
0.05

0.06
0.05

0.05
0.04

−0.002
0.01

−0.01
−0.02

0.31
0.23

0.22
0.22

R14 –
–

0.13
–

0.08
–

–
0.12

–
–

–
–

–
−0.08

0.29
0.14

0.22
0.24

R15 −0.01
0.01

0.19
0.23

0.06
−0.01

0.06
0.03

−0.06
−0.06

0.11
0.05

0.02
−0.02

0.49
0.36

0.19
0.19

R16 −0.03
0.03

0.05
0.04

0.05
0.04

−0.09
−0.002

0.06
0.01

0.15
0.07

−0.02
−0.002

0.26
0.22

0.21
0.21

R17 −0.02
0.03

0.08
0.07

0.07
0.06

−0.03
−0.02

0.09
0.09

0.001
−0.03

−0.0001
−0.04

0.28
0.28

0.25
0.23

R18 −0.01
–

0.09
0.15

0.03
0.01

−0.02
0.05

0.07
0.02

0.004
0.05

0.11
−0.02

0.38
0.24

0.18
0.20

R19 −0.01
0.01

0.14
0.10

0.06
0.05

0.01
0.05

0.07
0.03

0.03
0.02

0.01
−0.03

0.35
0.28

0.20
0.19

Fig. 8. The correlation coefficients between observed and predicted regional averaged Δlog10 (Nd) in different regions for supercooled and warm water clouds,
respectively. We also provide the confidence level (p value) if confidence level< 95%.
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Fig. 9. The time series of regional means of regressed (black line) and observed Δlog10 (Nd) (red line) in some selected regions for CALIPSO and MODIS datasets.
Based on the regression coefficient, the combined time series of the two main predictors also are provided (cyan line). In addition, the correlation coefficients
between regressed and observed Δlog10 (Nd) (black color), and the correlation coefficients between observed Δlog10 (Nd) and predictors are also listed (cyan color).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Same as Fig. 9, except for regions 5 & 7 and supercooled water clouds.
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4. Conclusions

As one of important microphysical cloud properties, the cloud
droplet number concentration (Nd) plays a key role in affecting the
terrestrial radiative budget by modulating the shortwave cloud albedo
(Wood, 2012). In addition, a recent study has noted that the Nd can
significantly reduce the impact of the meteorological co-variations in
the correlations between the global mean aerosol optical depth and
cloud fraction by adding it into the above correlation (Gryspeerdt et al.,
2016). Thus, a refined retrieval method and the establishment of a long-
term Nd dataset necessarily narrow the uncertainties of the first indirect
effect of the model simulations. This study presents a new 10-year Nd

dataset based on accurate depolarization ratio measurements from
CALIPSO and the effective radius retrievals of clouds from MODIS (Hu
et al., 2007a). Differing from the widely used passive retrieval method
(e.g., MODIS retrieval), which is based on the adiabatic assumption, the
retrieval method of the new Nd dataset is independent of the adiabatic
assumption for the clouds and eliminates the possible bias caused by
multilayer clouds. We analyze the global distribution and long-term
variation of Nd by comparing the two retrieval methods. Although some
statistical results agree reasonably well with those of the previous
studies, new insights are also acquired.

After limiting the cloud layer number to 1, we find that the MODIS
and CALIPSO retrieval methods provide very consistent global dis-
tributions of Nd, but the Nd from CALIPSO is systemically lower than
that of MODIS due to the entrainment processes at the cloud tops. The
comparisons of the annual cycles of Nd and the time series of the sea-
sonal anomalies show that high consistencies between the two methods
tend to occur in the stratocumulus region, which is near to the adiabatic
assumption. Benefiting from the relatively accurate cloud phase dis-
crimination of CALIPSO, this study also discusses the long-term varia-
tions of the Nd of supercooled water clouds. Generally, the Nd of su-
percooled water clouds are obviously smaller than those resulting from
warm water clouds. In addition, the correlation between the two Nd

climatologies decreases with temperature.
Model simulations indicated that the aerosol index can accurately

predict the changes of Nd via a comparison with the aerosol optical

depth (Gryspeerdt et al., 2017). However, it is difficult to provide a
global vertical profile of the aerosol index based on only passive ob-
servations, thus limiting its utilization at different atmospheric levels.
Instead of the aerosol index, our study uses the aerosol mass con-
centration profile from the MERRA2 aerosol reanalysis dataset to
evaluate the impacts of different aerosol types on the long-term varia-
tions of Nd. Multiple regression models and contribution calculations
show that the variability of the sulfate mass concentration (that is, the
variability of SO4 and SO2) dominates the long-term variation of Nd

over most regions. These results agree well with the relationship de-
rived from recent studies (McCoy et al., 2017b, 2017c). In addition to
SO4 and SO2, the impacts of BC and OC on Nd also should not be ig-
nored, especially over the important biomass burning regions.

Recently, supercooled water clouds have received widespread at-
tention because of their significant radiative effect and poor simulations
in reanalysis and climate models (Hu et al., 2010; Li et al., 2017; Matus
and L'Ecuyer, 2017; Morrison et al., 2011). Our study first evaluates the
effects of aerosol types and vertical velocities on the long-term varia-
tions of Nd for supercooled water clouds. The statistical results show
that the contributing factors and rates for supercooled clouds are ob-
viously different from warm water clouds. Also such contributing fac-
tors and rates vary from regions to regions, temperatures and methods
used. Thus, these results emphasize the importance of the vertical
variations of aerosol properties (e.g., those of composition, concentra-
tion and mixed state). The climatology described in this work provides
a detailed comparison between the different methods and demonstrates
that the vertically resolved ability of CALIOP may provide a useful tool
for building a long-term temperature-dependent Nd dataset. However,
some potential uncertainties in the retrieval methods of Nd (e.g., driz-
zling and horizontal heterogeneity) and aerosol reanalysis should be
considered in future studies to further narrow the first indirect effects of
the model simulations.
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