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AHSTRACT In this paper, we introduce the cyclostauionaryprocessesinto climate analysis
and undertakea 3ystematicstudyof the cyclic spectraof surface temperaturefluctuations.
Thetechniqueis adaptedfrom cyclostationaritytheoryin signal processing.To demonstrate
the usefulness ofthis technique,a very simplecyclostationarystochasticclimate mode!is
constructed.Our resuitsshow that the seasonal cycle strongly modulates theamplitudesof
the covariance and thespectrum.The techniquewas alsoapplied to the surface temperature
fluctuationsin a fifteen-year seasonalrun of the NationalCenterfor AtmosphericResearch
(NCAR) CommunityClimateModel (CCM2, RiS) using azonally symmetric all-landsur-
faceas the lower boundary. The results indicatethat intraseasonaloscillations localized
according to time of year arestîll present evenafter the surface temperaturefields have
been normalized usingthe commonly used procedure.Both examplessuggestthat the “an-
nual cycle” cannotbe “removed” by simplyusing a normalizationprocedure.The climate
is not as completely represented whenmodelledas stationary processes.

RESUME Onintroduit leprocessuscyclostationnairedans l’analyse climatique etentreprend
une étudesystématiquedu spectrecyclique desfluctuationsde la température desurface.
Cette techniqueest une adaptation dela théorie de la cyclostationnaritédans le traite-
mentdessignaux.On en démontrel’utilité en construisantun modèle climatiquecyclosta-
tionnaire stochastiquetrès simple. Lesrésultats montrentque le cycle saisonniermodule
fortementlesamplitudesde la covariance etdu spectre. On a aussi appliquéla technique
aux fluctuations dela température de surfacedans un passagesaisonnier de15 ans du
modèleCCM2,RIS(CommunityClimateMode!)du NCARen utilisant unesurfacemoyenne
symétriquementzonée comme couche limitebasse.Les résultats indiquentque lesoscilla-
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tions intrasaisonnièreslocalisées selon le temps de l’annéesont encoreprésentesaprèsla
normalisationdeschampsde température de surface a l’aide deprocéduresordinaires. Les
deux exemples indiquentquele «cycleannuel» ne peutetre «retranché»par unesimple
procéduredenormalisation.Le climat n ‘estpas représenté aussicomplètementlorsqu‘il est
modélisépar desprocessusstationnaires.

i Introduction
In recent years interestbas grown in the USe of nonstationaryrandom processes
for modelling physica! phenornena.‘[bis is due to the fact that many physical
phenomena displaynonstationary bchaviour.Generallythesephenomenahavebeen
modelled as stationaryproccsses becausethe supportingtheory is well developed.
However,stationarity is a mathematical idealizationwhich in some casesmay flot
be a valid approximation.If these phenomenaare to be better understood,they
must be modcllcd as nonstationaryprocesses.

ln thispaper wewill deal withcyclostationary processes— a classof nonstationary
processeswhosc joint varianceand higher momentsare periodical in time. Such
proccssescommonly occur in a climatesystemdue to periodic orquasi-periodic
deterministieforcing(e.g., diurnal cycle,seasonalcycle, Milankovitch cycles,etc.).
Rccently,considerableattention basbeengiven to applying cyclostationarytech-
niquesto the study of climatological time series(Bloomficld et aI., 1994; Huang
and North, 1996).Severalprediction techniquesfor cyclostationaryclimate sys-
tems havealso beendevclopedand applied tothe problemof predicting ElNiflo—
Southern Oscillation (ENSO)events (Hasselmannand Barnett, 1981; Zwiers and
Von Storch, 1990).

Cyclostationary processeshavealsobeen called periodically correlatcdprocesses
(Hurd, 1974),periodicallynonstationaryprocesses(Markelov, 1966;Ogura,1971),
and processeswith periodic structure(Jones, 1964; Jonesand Brelsford, 1967).
Bennett (1958) was the first to introducethe term “cyclostationary processes”to
denotethe classof processesin bis treatmentof pulsesequencesusedin digital data
transmission.Thefirst mathematicaltreatmentof theseprocesseswasby Gladyshev
(1961) although Bennett (1958) discovercd their characterizing propertyin the
contextof theoretiecommunicationtheory.

In order to give cyclostationaryprocessesa precisemeaningone must first es-
tablish some methods of charactcrizingthe structures of these processes,such as
spectralestimation,empiricalorthogonalrepresentation,etc. Gardner(1986, 1988,
1994)developeda numberof techniquesfor estimatingcycliccovarianceandcyclic
spectral densitiesfor cyclostationary processes.Thesetechniqueshave beenapplied
in many studies(Gardner1994), such as periodic-system identification,detection
and extractionof modutatedsignaIs from corrupteddata, etc. The presentpaper
attemptsto employ cyclic spectral analysisto a stochastic climatemodel, and b
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the study of the seasonalvariation of atmospherictemperaturefluctuations at the
earth’s surfacein a GCM simulation.

This study is partly motivatedby the fact that climate fluctuationsover a broad
frequencyrange strongly dependon the time of year. For example,Lau and Lau
(1986) noted that although the equatorialintraseasonaloscillations are presefit
throughouttheyear,there existsa strongmodulationof thesemodesby the seasonal
cycle. Madden(1986)and Gutzlerand Madden(1993)found theseoscillationstobe
strongestduring winter and weakestduring summer.Recentstudieshaveproposed
that the irregularities of the interannualfluctuations, ENSO,can be viewed as a
low-order chaoticprocessdriven by the seasonalcycle (un et aI., 1994;‘[ziperman
et aI., 1994).

Section2 gives the backgroundand basic concepts ofthe techniquesof cyclic
spectral analysisuscd in this study. The readerswho havealreadyhad such back-
ground may skip this section and go directly to Section 3, in which the cyclosta-
tionary stochastic climatemodel and their cyclie spectraare describcd.Section 4
appliesthe cyctic spectral analysisto the seasonalvariationof surfacetemperature
fluctuationsin a speciflc0CM simulation.In Section5, we presentthe conclusions
and discussions.

2 Cyclic Spectral Analysis
In this section we first briefly review some definitions and basic properties of
cyclostationary processesand introducethe cyclic spectrumwhich will be used in
our analysis.A comprehensivetreatmentof cyclostationarityin time seriescanbe
found in Gardner(1994) and referencestherein.

a Definitionsfor a Cyclostationary Process
The processT(t) is stationary,if andonly if the moments,such as the ensemble
meanM(t) and the covarianceC(t, t +t), are independentof time. If the meanMQ)
and covarianceC(t,t+t) exhibit periodicityd in time t, the processT(t) is deflned
as a secondorder (wide sense)cyclostationaryprocesswith period d (Bennett,
1958;Gardnerand Franks,1975),i.e. for ail t,

M(t + d) = M(t)

C(t+d, t+d+t)=C(t, t+T)

If the meanM(t) and covarianceC(t, t + T) exhibit the poly-periods{d} = d
1, d2,

.., theprocessT(t) is deflnedto be a poly-cyclostationaryprocesswith periods
{d}. A processT(t) is definedto be a higher-ordercyclostationaryprocess ifits
momentsup to orderk (k > 2) are pcriodic functionsof time as in equation(1).

b CyclicCovariance
The covariance givenin (1) is periodic in t with periodd for eachvalueof t. It is
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assumedthat the Fourierseriesrepresentationfor this periodicfunction converges,
so that C(t, t + t) canbe expresscdas

C(t, t + t) = >3 C«(t)eî2~~»(L+T/2>, a = O, ±1/d,±2/d,...±oo (2)
a

whcre {CcI(t)} are theFouriercoefficients,

~

1d/2
Cu(r) = — I C(t, t +

d j d/2 (3)

a=O, +1/d, ±2/d,...+oo

and a rangesover aIl integer multiples of the fundamental frequency1/d. The
wave cxp[i2~ta(t + t/2)] in the Fourierseriesintroducedherecontainsa time shift
t/2 so that the function C(t + t/2, t — t/2) can beexpandedin a Fourier series
with the unshifted wave exp(i2~rat)(Gardner,1986, 1988,1994). C~(r) is called

parameter.It follows directly from (2) thatthe periodicityin thecovarianceC(t, t+t)

15 completelycharacterizedby the set of cyclic covariances{CU(r)} indexed by a.
‘[ho cyclic covariancecan becharacterizedin a way that reveals the role that

periodicity in covarianceplays in the frequencydomain. Wc can rccxpressthe
cyclic covariance(3) as

I Jd/2

C<’(t) = <[T(t)e<~~w][T(t +t)ei3ta(I+t)]*>dt (4)
d/2

where the angularbracket <.> denotes the ensembleaverage.That is, C«(r) is
actuallya time-averagecross-covarianccfor the two frequency-shiftedprocesses

<Cuv>(t) = ~ J <U(t)V*(t+t»dt C~(t) (5)

where

U(t) = T(t)e’~’ (6)

and

V(t) = T(t)e+ilrW (7)

are the frequency-shiftedversions of T(t). This reveals that a processexhibits
cyclostationarityin the widc senseonly if there existsa correlationbetweensome
frequency-shiftedversionsof theprocess.
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c CyclieSpectrum
It is weIl known that, for a stationaryprocess,the powerspectraldensityis defined
as the Fourier transformof the covariance

5(f) = jC(tIl&é2itfld.r.

Similarly, it can be shown (cf. Gardner, 1988) that the cyclic spectraldensity is
also equal to the Fouriertransform ofthe cyclic covariance,

It follows from (9) and (5) that the cyclic spectraldensityis the Fourier transform
of the time-averagedcross-covariance<Cuv>(r) and is therefore identicalto the
timc-averagedcross-spectraldensity for U(t) and V(t) given in (6) and (7):

S«(f) = (Suv>(f)

This is to beexpectedsince the timc-averagcdcross-spectraldcnsity <Suv>(f) is
known to lie the cyclic spectraldensity for spectralcomponentsin U(t) and V(t)
at frequencyf. Identity (10) suggestsan appropriatestandardizationfor S«(f):

<Su>(f) (Si>(f + a/2)

<Sv(f)) = <ST>(f — cx/2).

After standardization,the covariancebecomes acorrelationcoefficient:

<Suv>(f) Sa(f

)

[(Su>(f)<Sv>(f)]’~2 [<ST)(f + ct/2)<ST>(f — c~/2)1’/2 pQ(f)

Since 1p0(f)I is confined to the interval [O,1], it is a convenientmeasureof the
degree oflocal spectral redundancythat resultsfrom the spectralcorrelation.‘[lie
function pa(f) is calledthe autocoherencefunction for T(t). It is then clear that a
processexhibitscyclostationarityin the wide senseonly if there existsa correlation
between distinct frequencycomponentsof the process.Moreover,the separation
betweenany two such frequencies,(f + a/2)— (f — a/2) = a, must be a cycle
frequency ofthe process,(i.e., a — l/d).

Analogoustothe duality oftime- and frequency-domainsfor stationary processes
one candefinethe time varying (instantaneous) spectraldensityas

S(t,f) C(t, t +z)eÎ2ltftdt. (14)
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S(t,f) is the time varying spectraldensitywhicli is similar to the ordinaryspectral
densityfunction (Gardner,1994). It follows from (2) and (9)that the time varying
spectraldensity for a cyclostationaryproccssis completely characterizedby the
cyclic spectraldensity

SQ,f) = >3s«(f)e~~<” (15)
a

Wc canconcludefrom the foregoingdiscussionsthat the differencebetween
stationary and cyclostationaryor poly-cyclostationaryprocesses isthat the latter
exhibitspectralcorrelation.Furthermore,this spectralcorrelationis complctelyand
convenientlycharacterizedby the cyclic spectra{S~} or equivalentlyby the cyclic
covariance{C’~}. It is clearthat essentiallyail the fundamentalresuitsof the theory
0f cyclic spectral analysisaregeneralizationsof resultsfrom theconventionaltheory
for stationaryprocesses,and the latter is includedas the special case of theformer
for which the cycle frequencya is zero (Gardner,1986).

As an example,considerthe amplitude-modulatedsignal

I 1

for whicli w(t) is a zero-meanstationary process.Sincethe exponentialfactorsshift
the frequencyof eachspectralcomponentof w(t) by +fo, then there is obviously
spectralcorrelation for aIl pairs of frequencycomponentsseparatedby a = 2fo. In
fact the cyclic spectraldensitycan beshownas

(I I
I S~(f+fo)+—S~(f—fo), a=O,

= S~(f), ct=±2f0, (17)i. A~ 4 otlierwise,

whereit lias beenassumedthat S~(f) = O for fi > 0.5 toavoid an aliasingeffect
in the principal domaîn.

It follows from (13) that the spectralcorrelationcoefficient is givenby

a &(f

)

“ ~ {[S~,,(f+2fo)+S~(f)][S~(f)+S~,(f — 2f~>)]}’/
2 fora ±2fo(18)

Thus,the correlation betweenthespectralcomponentof T(t) at frequenciesf +a/2
andf — a/2 is unity:

Ip<’(f)I = I for fi <fo and a = ±2f
0, (19)

providedthat w(t) is bandlimitedto fi ~fo,

S~(f)=O forIfI~fo (20)



Cyclic Spectral Analysis Applied to Temperature Fluctuations /633

‘[his is not surprising since the two spectral componentsin T(t) at frequencies
f ±a/2 = f ±fo are obtained from the single spectralcomponentin T(t) at
frequencyf simply by shifting andscaling.

d Estimationof the 6?yclicSpectrum
The theory and implementationof cyclic spectrumestimationalgorithmslias been
covered in a numberof publications. ‘[lie basic time and frequencysmoothing
methodof the cyclic spectrumis proposedby Gardner(1986). By itself, the time
smoothed cyclieperiodogramis not computationallyefficient for computingesti-
matesof thecyclic spectrumover largeregionsof the bifrequencyplane.However,
modification of the timeand frequency smoothed cyclieperiodogramleadsto sev-
eralcomputationallyefficient algorithms.In general,a fast Fouriertransform(FFT)
basedon time smoothing algorithmsis consideredmost attractivefor computing
estimatesof thecyclic spectrumover the entirebifrequencyplane.The frequency
smootliingmetliod of the cyclic spectrumis best for computingestimatesof the
cyclic spectrumalong the lines ofconstantcycle frequency ofmoderatevalues.A
detailedreview of estimation ofthe cyclic spectrum canbe found in Robertset ai.
(1994),and referencestlierein.

3 Cyclostationary StochasticClimate Model
As an example, we will consider acyclostationary stocliastie climate model.
Stochastieclimate modelshave beenused in a variety of applicationsin recent
years(Hasselmann,1976; Nortli and Cahalan,1982; North et aI., 1992 and many
others).In thesestudiesit is assumedthat theevolution of aclimatological function
sucli as global averagesurface temperatureT(t) is governed by a Langevin-type
equation

dT(t) +aT(t) = F(t)

dt

wheret is time, a is a constant,and F(t) is a broadband noisefunction. However,
the feedbackcoefficienta, in many cases,will be seasonallyvariable.Hence,we
introducehere a cyclostationarystochasticmodelby including periodicmodulation
of the feedbackcoefficient. In this case, (21) can berewritten as

dT(t) + (a + b cos(oat+ 4»T(t) = F(t) (22)
dt

wherea and b are constants,w0 = 2irfo, andfo= 1/d is the fundamentalfrequency
sucli asthe annual cycle.This is, of course,a very simplified model whichis only
intendedas a mathematicalexample.We assumethat F(t) is white noisewhich
satisfies

<F(t)) = O
(23)

= o~.ô(t— t’)
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wherethe angularbracketsmeanthe ensembleaverageand ô is the Dirac deltafune-
tion. The solution T(t) of the inliomogeneouslinear stocliastie differentialequation
(22) canbe written formally as

T(t) — e(tII+bsn<~)o<+~~)) F(t9e(a/+bSfl(<~~+~))dl~ (24)

where
b

(25)
w0

We note that in terms ofthe modified Bessel function I«(x)

+00

fl —00

Thereforethe covariancefunction can be representedby the series

(?(t. t + ii =

[
o~.e«t >3 Bmnnk(b*) (2a — ikwo) tO

,n,n,k=—00 ~ (27)

o~e’~ >3 B,n,,k(b*) (2a — ikwo) t~OI ,n,n.k=—00

where

Bmnk(b*) = (j)m+n+kIm(b*)I,,(b)Ik(2b). (28)

lnserting the expression (27)into (3) we have the cyclie covariance

Ca(E)

+00

4e’~ >3 B,n,,k(b*)ew~ei7~nei«m+~Ik)iS((m+ n — k)fo — a) t~O
mn ,k=—00 (2a — ikwo)

+00 (29)
~ + n — k)f() — a

)

2....~ B,fl,,À(b~) (2a — ikwa)

S«(f) (a — iwon +~ : n—k)k — a

)

Using (9) it follows that

— i~ta — i2tf) (30)
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Fig. I Seasonal varialion ofspecira of ihe cyclos~ationarystochastic climatemode].

As a numericalexample forillustration, we have chosen:a = 0.2 montht,
b = 0.18 montli’, fo = 1/d, d = 12 month, correspondingto the annual cycle,

= 72.5e and o~• = 1.0. Figure 1 shows the seasonalvariation of the spectra
S(t,f)of this model witli this set of values. The spectradecreasewitli increasing
frequency in aIl months, whicli can be modelled to a good approximationas a
first-orderMarkov processor “red noise”. ‘[lie spectraalso exhibit a strong annual
cycle with the maximum occuring inFebruaryand the minimum in August.Figure
2 shows the cyclic spectraldensityfor a = O; a = 1/d anda = 2/d wherea is
the cycle frequency.‘[lie real partof cyclic spectral densitiesat a = O (Fig. 2a) is
a typical red spectrum.It is actually the averagespectrumover the 12 montlis and
is much strongerthanthe othercomponents.But the annualcomponentis also very
clearwhile tlie semi-annual componentbecomesvery small. According to Eq. (15),
cyclie spectraldensitiesare theFouriercoefficientsof time varying spectra.‘[lie
real and imaginary parts of tlie cyclic spectrumgive tlie information aboutthe
amplitudeand phase of eaclicomponent.‘[lie seasonal variationsof tlie spectraare
cliaracterizedby the cyclic spectra {S<’}. In this case,the first two components
are tlie dominantones.‘[lis result implies that the “annual cycle” cannotbe “re-
moved”by simply usingtlie usualnormalization procedure.‘[o confirm this, we will
apply tlie cyclic spectraanalysisto the seasonal variationof surface temperature
fluctuation in a GCM simulationin the next section.

4 Surface Fluctuation in a GCM Simulation
Observationalstudies indicatethat the intraseasonaloscillations are particularly
strong in and aroundthe winter season(Knutsonand Weickmann,1987;Ghil and

J F M A M J J A S O N O J
Month
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Fig. 2 Cyclie specîra of the cyclosîaîionary stochastie climate model: (a) reat part of cyclic spectral
dcnsity; (b) imaginary part of cyclic spectral density. Solid une for a = O, short dashed tine
for a = 1/d and long dashed bine for a = 2/d, d = 12 month.

Mo, 1991;Dickey et ai., 1991;Kimoto et aI., 1991).Madden(1986)foundthat both
the intensity and phase speed ofintraseasonaloscillationsexhibit seasonalvaria-
tion with the strongestoscillationsoccuringduring winterand the weakestduring
summer.Gutzler and Madden(1993) showcdthat the intraseasonalvariability in
tlie global momentumis largestin late winterand smallestin the faîl season.How-
ever,theseanalyses are basedon the assumptionof stationarity.In this sectionwe
will usecyclic spectral analysisto show that intraseasonaloscillationsare present
in the simulatedsurfacefields.

We haveconducteda 15-yearrun of a seasonalclimate model and will use the

0.05 0.10 0.15

— (b)
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Fig. 3 Hemisphcrically-avcragcd daily surface temperature for the 15 years of simulation.

outpub as a further example of ourprocedures.We used the CommunityClimate
Model version2 (CCM2) developcdat NCAR; the modelusestlie spectralmcthod
truncatedat RIS with 18 vertical levels and is describedin detail by Hack et ai.
(1993). ‘[o complebelyremovetlie asymmetrieand external forcings,we idcalized
the boundaryconditions. ‘[he idealized planet has no ocean,no topography,no
snow coverand global uniform surfaceparameters(such as albedo, sou wetness
factor). ‘[he simulationsof this model planet atperpetual equinoxwith CCMO
and CCM2 have beendiscussedin some detail in North et aI. (1992), Nortli et
aI. (1993)and Yi et ai. (1994). In tliis seasonalexperiment,the declinationangle
will vary from — ~[350 to Il ~75O over oneyear, 50 tliat tlie solar lieating passes
througli annual cycles.‘[lie weakerseasonalforcing is used to preventan exces-
sively strong annualcycle on the all-land planet.No interannual variabilitywill be
introducedto the extemalforcing. We havealso conducteda l5-year simulation
witliout seasonalsolar forcing. ‘[lis simulationis referred to as theperpetualmn.

Figure 3 presentsthe I5-yeardaily NorthernHemisphereaveragedsurfacetem-
perature. ‘[lie time seriesshows 15 annual cycleswitli the minima in Dec—ian—
Feb (DJF) and maximain June—July—Aug(JJA). ‘[lie seasonalvariability is much
strongerthan the interannualvariability. Figure 4(a)shows the climatie and zonai
mean of surfacetemperature.‘[lie climatic mean is the averageof tlie dataover 15
years for each day of blie year. Comparingthe variation in onehemispherewith
that in the otlier liemisphereafter shifting its phaseby a half-year,we find that it
is symmetricalwibh respectto tlie equator. In the equatorialregion, the seasonal
variations are very small becausethe solar irradiation does not changesubstan-
tially throughoutthe year. In middle and higli latitudes,a variation wibh a period
of oneyear is dominant.To understandthecontributionof a 30—SOday frequency
component tothe varianceof surfacetemperature,we calculatetlie zonally aver-
aged standarddeviationof the unfilteredand 30—SO day band-passfiltered surface
temperature.‘[ime-filtering is accomplishedby the useof a recursivedigital filter
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Fig. 4 The seasonat variation of simulation climate: (a) zonai mean surface temperature; (b) zonatly-
avcraged standard deviation of thc untiltercd surface temperature; (c) The ratio of the 30—50 day
band-pass tiltcrcd standard dcviation to the unhittered standard deviation of surface temperature.
Dark shade: ~ 50%; midd!c shade: ~ 40%; Iight shade: ~ 3t)%.

Jan Mardi May JuIy Sep Nov
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(Murakami, 1979).‘[lie frequency response ofa 30—50 day bandpassfilter is de-
signed in such a way that the amplitudesat 30- and 50-day periods are halved,
while it is almost unchangedat a period of 40 days. Figure 4(b) showsthe sea-
sonal variationof the zonally-averagedstandarddeviationof the unfilteredsurface
temperature.As expected,the variability exhibits a strongseasonalcycle and is
larger in the winter liemisphereespecially over middleand high latitudes. Figure
4(c) sliows the ratio of the 30—50 day band-passfiltered standarddeviation to the
unfiltered standard deviation.About 40-50% of the unfiltered standarddeviation
can be explained by 30—50 day low-frequency variability in the tropies and ex-
tratropics. ‘[lie maxima arc locatedat the equatorduring Mardi and April, and in
November.‘[lie 30—50 day low-frequencyfluctuationsaccountfor a sizablefraction
of the total variability, and it appears tobe a global-scalephenomenon.

In tic following we will representthe surface temperaturefields as spherical
harmoniecoefficientswiti rliomboidal truncationJ 15

+J I’nI+J

T(r, t) = >3 >3 T~(t)Y,r(r) (31)
IflJ n=imI

wiere Y,7(r) is thespiericaliarmonicfunctionwith degreen and zonaIwavenumber
m. ‘[lie statistieswere carried outon tie spectralcoefficientsT’7(t). We found that
blie modeswiti wavenumberm = i and (n — m) = O — 2 havethe liighest variance.

‘[o examine the effect of the seasonalforcing on the intraseasonaloscillation,
tic usualpractice is to removethe annualcycle from the data prior tothe spectral
analysisby usingthe normalization

T”’ = T,’o—T,T (32)
‘o

Here T~4’o is the I5-year climatic meanof daily data ando(T~’) is the standard
deviationwhich is calculatedas

wliere k is an index indicating the numberof the year, K is the total numberof
yearsof data(K = 15). Ibis oftenassumedthat the oscillationsare superimposed
on tic annualcycle and the annualcycle can be “removed” by simply using the
normalizationprocedure.In other words,the normalizeddata is consideredto be
stationary.If this were the case,tie spectraof oscillationscould notbe localized
accordingto time of year.

We will apply the cyclic spectral analysistechniquesto identify any remaining
seasonal variationof oscillationin T~”. ‘[he algoritimusedfor computingestimates
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of cyclic spectrais the FFT basedon a time smootiing algorithm. For details of
tie algoritim, the readeris referredto Robertset aI. (1994).

Figure5 showstheseasonalvariationof spectrafor the threemodeswith iighest
variance. ‘[here are obviousoscillationsat 40-50 day periods withsignificant sea-
sonal variability.Figure5 indicatestiat for boti modesm = 1, n I and m = 1,
n = 3 the variance in the 50-day band has a relative maximum from October
through May, while that for mode m = 1, n = 2 has two relativemaxima in late
winter—early springand in late summer.Figure 6 siowsanothertirce modeswith:
(a) m = 2, n = 4; (b) m = 3, n = 5; (c) m = 4, n = 6. Figure 7 shows tic
seasonalvariation of spectra formode m = 1, n = I for: (a) surfacesensible
heat flux; (b) surfacelatent heat flux; (c) net upward longwaveflux at the top of
tic atmosphere.AIl threefields show the ubiquitousfeatureof intraseasonalvan-
ability. Intraseasonalvariancein cithersensibleheatflux or surfacelatent heatflux
is strong in winter and weak in summer.‘[liese results indicate tiat the presence
of intraseasonaloscillationsin surfacefields is also localized accordingto time of
year.‘[hese season-frequencylocalizationsare impossibleto obtainby conventional
spectralanalysis.

As a comparisonwith conventionalspectral analysis,Fig. 8 showstie normal-
ized space-timepowerspectraldensityof surfacetemperaturefor wavenumberone
at four latitudes.‘[he solid line representsthe spectraldensityof the perpetualrun,
while tie dashedline representsthe seasonalrun. A conspicuousspectralpeakwith
a period around40-50 daysoccursin boti spectral densities.‘[hese spectralpeaks
representwaveswiich propagate eastwardand take about40-50 days to encircle
the globe. However, tie peak of the seasonalrun is siifted from 40 days to 50
days. Anotier interestingfeature tonote is tiat the peak ofthe seasonalrun is
strongerthan tie perpetualrun, especially inmiddle andhigi latitudes.One may
tiereforeinfer that the seasonal forcing not onîymodulatesbut also enhancesthe
intraseasonaloscillation. However,as we mentionedabove, tus feature isseason-
dependent.‘[lie Fourier transformof conventionalspectral analysiscan identify
the intraseasonal oscillations,but it gives no information regardingtheir seasonal
dependencesincetie spectraare averagedover tie entire datarecord. In addition,
the “annual cycle” cannot be“removed” completelyby simply usingtic normal-
ization. ‘[lie climate is not ascompletelyrepresentedwien modelledas stationary
processes.

5 Conclusions and Discussions
In this paper weprovide tie basic frameworkand some examples oftic appli-
cation of cyclic spectral analysisto climate studies.A processis said to exhibit
cyclostationarityin tie wide ~.enseifits covarianceC(t, t + t) is periodic in t. ‘[lie
FouriercoefficientC«@)of the covariancefunction is calledtic cyclic covariance
witli cycle frequencya. Tic Fourier transformS<’(f) of the cyclic covarianceis
calledtie cycliespectrum.Tic differencebetween stationaryand cyclostationary
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processes is that the latter exhibit spectral correlation between spectral components
at frequencies separated by 2ct.

To demonstrate the usefulness of this technique, a very simple cyclostationary
stochastic climate model is constructed. This simple model describes the global
average surface temperature. Our results show that the seasonal cycle strongly
modulates the amplitude of the covariance and spectrum. The surface temperature
fluctuations on a zonally symmetric all-land planet with seasonal solar forcing have
also been studicd. The results indicate that the presence of intraseasonal oscillations
in surface fields is dependent on the season, although the surface fields have been
normalized before we compute the cyclic spectra. The strength of the intraseasonal
oscillations is strongest during winter and weakest during summer. Both examples
suggcst that thc “annual cycle” cannot be “removed” by simply using the usual
normalization procedure. The climate is not as completely represented when mod-
elled as a stationary process. It should become clear from the foregoing examples
that our characterization of the variations using cyclic spectral analysis contains
more information than the conventional spectral analysis.

The cyclic spectral analysis has many applications. Another example is to detect
and classify multiple fluctuations buried in noise. This would be impossible to
accomplish using only conventional spectral analysis (cyclic spectra at a = O).
This application will be the subject of a subsequent publication.
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