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ABSTRACT In this paper, we introduce the cyclostationary processes into climate analysis
and undertake a systematic study of the cyclic spectra of surface temperature fluctuations.
The technique is adapted from cyclostationarity theory in signal processing. To demonstrate
the usefulness of this technique, a very simple cyclostationary stochastic climate model is
constructed. Our results show that the seasonal cycle strongly modulates the amplitudes of
the covariance and the spectrum. The technique was also applied to the surface temperature
fluctuations in a fifteen-year seasonal run of the National Center for Atmospheric Research
(NCAR) Community Climate Model (CCM2, R15) using a zonally symmetric all-land sur-
face as the lower boundary. The results indicate that intraseasonal oscillations localized
according to time of year are still present even after the surface temperature fields have
been normalized using the commonly used procedure. Both examples suggest that the “an-
nual cycle” cannot be “removed” by simply using a normalization procedure. The climate
is not as completely represented when modelled as stationary processes.

RESUME On introduit le processus cyclostationnaire dans ’analyse climatique et entreprend
une étude systématique du spectre cyclique des fluctuations de la température de surface.
Cette technique est une adaptation de la théorie de la cyclostationnarité dans le traite-
ment des signaux. On en démontre 1'utilité en construisant un modéle climatique cyclosta-
tionnaire stochastique trés simple. Les résultats montrent que le cycle saisonnier module
Sfortement les amplitudes de la covariance et du spectre. On a aussi appliqué la technique
aux fluctuations de la température de surfuce dans un passage saisonnier de 15 ans du
modele CCM2, R15 (Community Climate Model) du NCAR en utilisant une surface moyenne
symétriquement zonée comme couche limite basse. Les résultats indiquent que les oscilla-
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tions intrasaisonniéres localisées selon le temps de I’'année sont encore présentes apres la
normalisation des champs de température de surface a I’aide de procédures ordinaires. Les
deux exemples indiquent que le «cycle annuel» ne peut etre «retranché» par une simple
procédure de normalisation. Le climat n’est pas représenté aussi complétement lorsqu’il est
modélisé par des processus stationnaires.

1 Introduction

In recent years interest has grown in the use of nonstationary random processes
for medelling physical phenomena. This is due to the fact that many physical
phenomena display nonstationary behaviour. Generally these phenomena have been
modelled as stationary processes because the supporting theory is well developed.
However, stationarity is a mathematical idealization which in some cases may not
be a valid approximation. If these phenomena are to be better understood, they
must be modclled as nonstationary processes.

In this paper we will deal with cyclostationary processes — a class of nonstationary
processes whose joint variance and higher moments are periodical in time. Such
processes commonly occur in a climate system due to periodic or quasi-periodic
deterministic forcing (e.g., diurnal cycle, seasonal cycle, Milankovitch cycles, etc.).
Recently, considerable attention has been given to applying cyclostationary tech-
niques to the study of climatological time series (Bloomfield et al., 1994; Huang
and North, 1996). Several prediction techniques for cyclostationary climate sys-
tems have also been developed and applied to the problem of predicting El Nino-
Southern Oscillation (ENSO) events (Hasselmann and Barnett, 1981; Zwiers and
von Storch, 1990).

Cyclostationary processes have also been called periodically correlated processes
(Hurd, 1974), periodically nonstationary processes (Markelov, 1966; Ogura, 1971),

_and processes with periodic structure (Jones, 1964; Jones and Brelsford, 1967).
Bennett (1958) was the first to introduce the term “‘cyclostationary processes” to
denote the ciass of processes in his treatment of pulse sequences used in digital data
transmission. The first mathematical treatment of these processes was by Gladyshev
(1961) although Bennett (1958) discovered their characterizing property in the
context of theoretic communication theory.

In order to give cyclostationary processes a precise meaning one must first es-
tablish some methods of characterizing the structures of these processes, such as
spectral estimation, empirical orthogonal representation, etc. Gardner (1986, 1988,
1994) developed a number of techniques for estimating cyclic covariance and cyclic
spectral densities for cyclostationary processes. These techniques have been applied
in many studies (Gardner 1994), such as periodic-system identification, detection
and extraction of modulated signals from corrupted data, etc. The present paper
attempts to employ cyclic spectral analysis to a stochastic climate model, and to
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the study of the seasonal variation of atmospheric temperature fluctuations at the
earth’s surface in a GCM simulation.

This study is partly motivated by the fact that climate fluctuations over a broad
frequency range strongly depend on the time of year. For example, Lau and lau
(1986) noted that although the equatorial intraseasonal oscillations are present
throughout the year, there exists a strong modulation of these modes by the seasonal
cycle. Madden (1986) and Gutzler and Madden (1993) found these oscillations to be
strongest during winter and weakest during summer. Recent studies have proposed
that the irregularities of the interannual fluctuations, ENSO, can be viewed as a
low-order chaotic process driven by the seasonal cycle (Jin et al., 1994; Tziperman
ct al., 1994),

Section 2 gives the background and basic concepts of the techniques of cyclic
spectral analysis uscd in this study. The readers who have already had such back-
ground may skip this section and go directly to Section 3, in which the cyclosta-
tionary stochastic climate model and their cyclic spectra are described. Section 4
applies the cyclic spectral analysis to the seasonal variation of surface temperature
fluctuations in a specific GCM simulation. In Section 5, we present the conclusions
and discussions.

2 Cyclic Spectral Analysis

In this section we first briefly review some definitions and basic propertics of
cyclostationary processes and introduce the cyclic spectrum which will be used in
our analysis. A comprehensive treatment of cyclostationarity in time series can be
found in Gardner (1994) and references thercin.

a Definitions for a Cyclostationary Process

The process T(f) is stationary, if and only if the moments, such as the ensemble
mean M (f) and the covariance C(t,¢+1), are indcpendent of time. If the mean M (r)
and covariance C(¢, + 1) exhibit periodicity 4 in time ¢, the process T(¢) is defined
as a second order (wide sense) cyclostationary process with period d (Bennett,
1958; Gardner and Franks, 1975), i.e. for all ¢,

M(t +d) = M(1)

(1
Ci+d,t+d+1)=C(, t+7) )
If the mean M(¢) and covariance C(t, +T) exhibit the poly-periods {d} = d,,d,,
d, - - -, the process T(t) is defined to be a poly-cyclostationary process with periods
{d}. A process T(t) is defined to be a higher-order cyclostationary process if its
moments up to order k (k > 2) are periodic functions of time as in equation (1).

b Cyclic Covariance
The covariance given in (1) is periodic in ¢ with period d for each value of t. It is
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assumed that the Fourier series representation for this periodic function converges,
so that C(¢,1 + T) can be cxpressed as

Clty t+7) =Y CO@e™ /D =0, £1/d, £2/d,... 200 (2)
«
where {C%(t)} are the Fourier coefficients,

1 i .
@ = 5 / " C(t, t + ) B2y

3)
o =0, £1/d, +2/d,... + 00

and a ranges over all integer multiples of the fundamental frequency 1/d. The
wave cxp[i2na(t +t/2)] in the Fourier series introduced herc contains a time shift
T/2 so that the function C(f +T/2,1 — t/2) can be expanded in a Fourier series
with the unshifted wave exp(i2nar) (Gardner, 1986, 1988, 1994). C%(1) is called

a cyclic-covariance at frequency o the index o is referred as the cycle frequency
parameter. It follows directly from (2) that the periodicity in the covariance C(t, t+1)
is completely characterized by the set of cyclic covariances {C*(t)} indexed by a.

The cyclic covariance can be characterized in a way that reveals the role that
periodicity in covariance plays in the frequency domain. We can rcexpress the

cyclic covariance (3) as
1 [dr . .
c'@=g [ (T0e e v @
—d/2

where the angular bracket (-) denotes the ensemble average. That is, C%(t) is
actually a time-average cross-covariance for the two frequency-shifted processes

1 42
Com =3 [ woveraa=co )
—d/2
where
U(t) = T(t)e™ ™ (6)
and
V() = T(H)e*™ 7

are the frequency-shifted versions of T(f). This reveals that a process exhibits
cyclostationarity in the wide sense only if there exists a correlation between some
frequency-shifted versions of the process.
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¢ Cyclic Spectrum
It is well known that, for a stationary process, the power spectral density is defined
as the Fourier transform of the covariance

S(f) = /_ +ooC(r)e—"z"f‘dr. (8)

o0

Similarly, it can be shown (cf. Gardner, 1988) that the cyclic spectral density is
also equal to the Fourier transform of the cyclic covariance,

S(f) = /_ ~ C*)e~ V¢, 9)

o

It follows from (9) and (5) that the cyclic spectral density is the Fourier transform
of the time-averaged cross-covariance (Cyy )(t) and is therefore identical to the
time-averaged cross-spectral density for U(t) and V(¢) given in (6) and (7):

SUS) = (Suv)(f) (10)

This is to be expected since the time-averaged cross-spectral density (Syv )(f) is
known to be the cyclic spectral density for spectral components in U(r) and V(1)
at frequency f. Identity (10) suggests an appropriate standardization for $°( f):

(SuXf) = (Sr)(f +a/2) (11)

(Sv(f)) = (ST)f — a/2). (12)
After standardization, the covariance becomes a correlation coefficient:

(Suv )(f) _ S*H
USu)YSYION'2  [(SeXS + af2)(Sr)(f — o /2)]'/2

=p*fH) U3

Since |p*(f)| is confined to the interval [0, 1], it is a convenient measure of the
degree of local spectral redundancy that results from the spectral correlation. The
function p®(f) is called the autocoherence function for T(¢). It is then clear that a
process exhibits cyclostationarity in the wide sense only if there exists a correlation
between distinct frequency components of the process. Moreover, the separation
between any two such frequencies, (f + 0/2) — (f — ®¢/2) = a, must be a cycle
frequency of the process, (i.e., o0 = l/d).

Analogous to the duality of time- and frequency-domains for stationary processes
one can define the time varying (instantaneous) spectral density as

S(t,f)=/ C(t, 1 + e V4. (14)

00
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S(t,f) is the time varying spectral density which is similar to the ordinary spectral
density function (Gardner, 1994). It follows from (2) and (9) that the time varying
spectral density for a cyclostationary proccss is completely characterized by the
cyclic spectral density

St f) =) S*(fe™™ (15)

We can conclude from the foregoing discussions that the difference bectween
stationary and cyclostationary or poly-cyclostationary processes is that the latter
exhibit spectral correlation. Furthermore, this spectral corrclation is completely and
conveniently characterized by the cyclic spectra {S®} or equivalently by the cyclic
covariance {C“}. It is clear that esscntially all the fundamental results of the theory
of cyclic spectral analysis are generalizations of results from the conventional theory
for stationary processes, and the latter is included as the special casc of the former
for which the cycle frequency a is zero (Gardner, 1986).

As an example, consider thc amplitude-modulated signal

1 ; 1 :
TN — wl oncldmht) — — ud Nt 2Y0! o — vl N~ 12o! (1A}
T(H) = wi(fcos2mfn) wie L = wire (16}

for which w(¢) is a zcro-mean stationary process. Since the exponential factors shift
the frequency of each spectral component of w(f) by + f;, then there is obviously
spectral correlation for all pairs of frequency components separated by a = 2f;. In
fact the cyclic spectral density can bc shown as

1 1
= Sw(f +f0) + Z Sw(f —f())s o =0,

4
%(f)y= 17
YO s, o = £2f, an
0, otherwise,

where it has been assumed that S,,(f) = 0 for | f| > 0.5 to avoid an aliasing effect
in the principal domain.
It follows from (13) that the spcctral correlation coefficient is given by

Sw(f)
{[Sw(f +2/0) + Sw(DNSWAS) + Sulf — 2f)1}'/?

Thus, the correlation between the spectral component of T(¢) at frequencies f +a/2
and f — /2 is unity:

PHf) =

fora = £2f, (18)

[p*(f)| = 1 for |f| < fo and a = £2f,, (19)

provided that w(f) is bandlimited to {f| < f,,

S.(f)=0 for|f|=fo (20)
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This is not surprising since the two spectral components in 7(f) at frequencies
fta/2 = f+f, are obtained from the single spectral component in T(z) at
frequency f simply by shifting and scaling.

d Estimation of the Cyclic Spectrum

The theory and implementation of cyclic spectrum estimation algorithms has been
covered in a number of publications. The basic time and frequency smoothing
mcethod of the cyclic spectrum is proposed by Gardner (1986). By itsclf, the time
smoothed cyclic periodogram is not computationally efficient for computing esti-
mates of the cyclic spectrum over large regions of the bifrequency plane. However,
modification of the time and frequency smoothed cyclic periodogram leads to sev-
eral computationally efficient algorithms. In general, a fast Fourier transform (FFT)
based on time smoothing algorithms is considered most attractive for computing
estimates of the cyclic spectrum over the entire bifrequency plane. The frequency
smoothing method of the cyclic spectrum is best for computing estimates of the
cyclic spectrum along the lines of constant cycle frequency of moderate values. A
detailed review of estimation of the cyclic spectrum can be found in Roberts et al.
(1994), and references therein.

3 Cyclostationary Stochastic Climate Model

As an example, we will consider a cyclostationary stochastic climate model.
Stochastic climate models have been used in a variety of applications in recent
years (Hasselmann, 1976; North and Cahalan, 1982; North et al., 1992 and many
others). In thesc studies it is assumed that the evolution of a climatological function
such as global average surface temperature 7(r) is governed by a Langevin-type
cquation

d?% +aT (1) = F() @1

where ¢ is time, a is a constant, and F(¢) is a broad band noise function. However,
the feedback coefficient a, in many cases, will be seasonally variable. Hence, we
introduce here a cyclostationary stochastic model by including periodic modulation
of the feedback coefficient. In this case, (21) can be rewritten as

dT (1)

= +(a + b cos(wgt + §)T(¢) = F(¥) (22)
where a and b are constants, wy = 2nfy, and fy = l/d is the fundamental frequency
such as the annual cycle. This is, of course, a very simplified model which is only
intended as a mathematical example. We assume that F(¢) is white noise which
satisfies

(F(n)=0

(23)
(F(OF (1)) = ofd(c = 1)
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where the angular brackets mean the ensemble average and 9 is the Dirac delta func-
tion. The solution T(?) of the inhomogeneous linear stochastic differential equation
(22) can be written formally as

1
T(t) - e—(a/+b‘sin(mot+¢))/ F(tl)e(m'm‘sin(mor’+¢))dtl (24)
—00
wherc
b
b= —. (25)
(O]

We note that in terms of the modificd Bessel function I,(x)

+00
o7 sin(wyr+)) Z i"l,'(b‘)e{_i,'((‘)()1+¢)} (26)

n=—0Q

Therefore the covariance function can be represented by the serics

Clt t+471)=
+00 imo(mm—k)leiwoln:eio(mm—k)
02.' - BI"II b‘ ¢ 2 0
re kX_:_oo «(5%) (24 — ikwo) T
s . i @)
+00 uuo(/n+n—k)1elu)o(n—k)telcb(mwx-—k)
0.2‘_601. ank(b‘)e . y TS 0
! m "./(Z=—(X7 (2a - lka)
where
B (b*) = (i)’"*"*"l,,,(b')l,,(b‘)lk(2b‘). (28)
Inserting the expression (27) into (3) we have the cyclic covariance
C%t)=
+00 Wt , —inat , ig{m+n—k) _ _
o%e"" Z ank(b,)e e e O((m+n—k)fy (x)’ =0
= (2a—"kop)
m,n.k=--00 29)
- +00 . eiw(,(n—k)re—inmew(mm—k)a((m +1n— Ko —a) (
0%(’ Z anl((b ) . L] = 0.
mynk=—00 (20 - lk(l)())
Using (9) it follows that
SUfH) =
+00 i¢(m+n—k)6 _ _
. e m+n—k a
2 Y Bl (C Yo — o) (30)

(@ — iwpn + ina + i2nf Ya + iwg(n — k) — ina — i2nf)’

m,nk=—00
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Fig. 1 Seasonal variation of spectra of the cyclostationary stochastic climate model.

As a numerical example for illustration, we have chosen: a = 0.2 month™’,
b = 0.18 month™', fo = 1/d, d = 12 month, corresponding to the annual cycle,
¢ = 72.5° and o} = 1.0. Figure 1 shows the seasonal variation of the spectra
S(,f) of this model with this set of values. The spectra decrease with increasing
frequency in all months, which can be modclled to a good approximation as a
first-order Markov process or “red noise”. The spectra also exhibit a strong annual
cycle with the maximum occuring in February and the minimum in August. Figure
2 shows the cyclic spectral density for o = 0; a = 1/d and a = 2/d where a is
the cycle frequency. The real part of cyclic spectral densities at o = 0 (Fig. 2a) is
a typical red spectrum. It is actually the average spectrum over the 12 months and
is much stronger than the other components. But the annual component is also very
clear while the semi-annual component becomes very small. According to Eq. (15),
cyclic spectral densities are the Fourier coefficients of time varying spectra. The
real and imaginary parts of the cyclic spectrum give the information about the
amplitude and phase of each component. The seasonal variations of the spectra are
characterized by the cyclic spectra {S®}. In this case, the first two components
are the dominant ones. This result implies that the “annual cycle” cannot be “re-
moved” by simply using the usual normalization procedure. To confirm this, we will
apply the cyclic spectra analysis to the seasonal variation of surface temperature
fluctuation in a GCM simulation in the next section.

4 Surface Fluctuation in a GCM Simulation

Observational studies indicate that the intrascasonal oscillations are particularly
strong in and around the winter secason (Knutson and Weickmann, 1987; Ghil and
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Fig. 2 Cyclic spectra of the cyclostationary stochastic climate model: (a) real part of cyclic spectral
density; (b) imaginary part of cyclic spectral density. Solid line for a = 0, short dashed linc
for @ = 1/d and long dashed line for @ = 2/d, d = 12 month.

Mo, 1991; Dickey et al., 1991; Kimoto et al., 1991). Madden (1986) found that both
the intensity and phase speed of intrascasonal oscillations exhibit seasonal varia-
tion with the strongest oscillations occuring during winter and the weakest during
summer. Gutzler and Madden (1993) showed that the intraseasonal variability in
the global momentum is largest in late winter and smallest in the fall season. How-
ever, these analyses are based on the assumption of stationarity. In this section we
will use cyclic spectral analysis to show that intraseasonal oscillations are present
in the simulated surface fields.

We have conducted a 15-year run of a seasonal climate model and will use the
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Fig. 3 Hemispherically-averaged daily surface temperature for the 15 years of simulation.

output as a further example of our procedures. We used the Community Climate
Model version 2 (CCM2) developed at NCAR; the model uses the spectral method
truncated at R15 with 18 vertical levels and is described in detail by Hack et al.
(1993). To completely remove the asymmetric and external forcings, we idealized
the boundary conditions. The idealized planet has no ocean, no topography, no
snow cover and global uniform surface parameters (such as albedo, soil wetness
factor). The simulations of this model planct at perpetual equinox with CCMO0
and CCM2 have been discussed in some detail in North et al. (1992), North et
al. (1993) and Yi et al. (1994). In this seasonal experiment, the declination angle
will vary from —11.75° to 11.75° over one year, so that the solar heating passes
through annual cycles. The weaker seasonal forcing is used to prevent an exces-
sively strong annual cycle on the all-land planet. No interannual variability will be
introduced to the external forcing. We have also conducted a 15-year simulation
without seasonal solar forcing. This simulation is referred to as the perpetual run.

Figure 3 presents the 15-year daily Northern Hemisphere averaged surface tem-
perature. The time series shows 15 annual cycles with the minima in Dec-Jan—
Feb (DJF) and maxima in June-July—Aug (JJA). The seasonal variability is much
stronger than the interannual variability. Figure 4(a) shows the climatic and zonal
mean of surface temperature. The climatic mean is the average of the data over 15
years for each day of the year. Comparing the variation in one hemisphere with
that in the other hemisphere after shifting its phase by a half-year, we find that it
is symmetrical with respect to the equator. In the equatorial region, the seasonal
variations are very small because the solar irradiation does not change substan-
tially throughout the year. In middle and high latitudes, a variation with a period
of one year is dominant. To understand the contribution of a 30-50 day frequency
component to the variance of surface temperature, we calculate the zonally aver-
aged standard deviation of the unfiltered and 30-50 day band-pass filtered surface
temperature. Time-filtering is accomplished by the use of a recursive digital filter
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(Murakami, 1979). The frequency response of a 30-50 day bandpass filter is de-
signed in such a way that the amplitudes at 30- and 50-day periods are halved,
while it is almost unchanged at a period of 40 days. Figure 4(b) shows the sea-
sonal variation of the zonally-averaged standard deviation of the unfiltered surface
temperature. As expected, the variability exhibits a strong seasonal cycle and is
larger in the winter hemisphere especially over middle and high latitudes. Figure
4(c) shows the ratio of the 30-50 day band-pass filtered standard deviation to the
unfiltered standard deviation. About 40-50% of the unfiltered standard deviation
can be cxplained by 30-50 day low-frequency variability in the tropics and ex-
tratropics. The maxima arc located at the equator during March and April, and in
November. The 30-50 day low-frequency fluctuations account for a sizable fraction
of the total variability, and it appears to be a global-scale phenomenon.

In the following we will represent the surface temperaturc fields as spherical
harmonic coefficients with rhomboidal truncation J = 15

+J |mi+s

T(e,0)= > > THOY"(r) (1)

m=—J n=[m|

where Y,7(r) is the spherical harmonic function with degree n and zonal wavenumber
m. The statistics were carried out on the spectral coefficients T™(t). We found that
the modes with wavenumber m = 1 and (n —m) = 0 — 2 have the highest variance.

To examine the effect of the seasonal forcing on the intraseasonal oscillation,
the usual practice is to remove the annual cycle from the data prior to the spectral
analysis by using the normalization

, TroTE
TI" — n n 32
=t (32)

n

Here T is the 15-year climatic mean of daily data and o(T)") is the standard
deviation which is calculated as

K
oIy = 4| D (T — TIXTr — Ty (K — 1) (33)
k=1

where k is an index indicating the number of the year, K is the total number of
years of data (K = 15). It is often assumed that the oscillations are superimposed
on the annual cycle and the annual cycle can be “removed” by simply using the
normalization procedure. In other words, the normalized data is considered to be
stationary. If this were the case, the spectra of oscillations could not be localized
according to time of year.

We will apply the cyclic spectral analysxs techniques to identify any remaining
scasonal variation of oscillation in 7. The algorithm used for computing estimates
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of cyclic spectra is the FFT based on a time smoothing algorithm. For details of
the algorithm, the reader is referred to Roberts et al. (1994).

Figure 5 shows the seasonal variation of spectra for the three modes with highest
variance. There are obvious oscillations at 40-50 day periods with significant sea-
sonal variability. Figure 5 indicates that for both modes m =1, n=1and m=1,
n = 3 the variance in the 50-day band has a relative maximum from October
through May, while that for mode m = 1, n = 2 has two relative maxima in late
winter—early spring and in late summer. Figure 6 shows another three modes with:
(@m=2,n=4,0b)m=3,n=25;(c)m =4, n = 6. Figure 7 shows the
seasonal variation of spectra for mode m = 1, n = 1 for: (a) surface sensible
heat flux; (b) surface latent heat flux; (c) net upward longwave flux at the top of
the atmosphere. All three fields show the ubiquitous feature of intraseasonal vari-
ability. Intraseasonal variance in either sensible heat flux or surface latent heat flux
is strong in winter and weak in summer. These results indicate that the presence
of intraseasonal oscillations in surface fields is also localized according to time of
year. These season-frequency localizations are impossible to obtain by conventional
spectral analysis.

As a comparison with conventional spectral analysis, Fig. 8 shows the normal-
ized space-time power spectral density of surface temperature for wavenumber one
at four latitudes. The solid line represents the spectral density of the perpctual run,
while the dashed line represents the seasonal run. A conspicuous spectral peak with
a period around 40-50 days occurs in both spcctral densities. These spectral peaks
represent waves which propagate eastward and take about 40-50 days to encircle
the globe. However, the peak of the seasonal run is shifted from 40 days to 50
days. Another interesting feature to note is that the peak of the seasonal run is
stronger than the perpetual run, especially in middle and high latitudes. One may
therefore infer that the seasonal forcing not only modulates but also enhances the
intraseasonal oscillation. However, as we mentioned above, this feature is season-
dependent. The Fourier transform of conventional spectral analysis can identify
the intraseasonal oscillations, but it gives no information regarding their seasonal
dependence since the spectra are averaged over the entire data record. In addition,
the “annual cycle” cannot be “removed” completely by simply using the normal-
ization. The climate is not as completely represented when modelled as stationary
processes.

5 Conclusions and Discussions

In this paper we provide the basic framework and some examples of the appli-
cation of cyclic spectral analysis to climate studies. A process is said to exhibit
cyclostationarity in the wide cense if its covariance C (¢, + ) is periodic in ¢. The
Fourier coefficient C%(t) of the covariance function is called the cyclic covariance
with cycle frequency a. The Fourier transform S®(f) of the cyclic covariance is
called the cyclic spectrum. The difference between stationary and cyclostationary
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processes is that the latter exhibit spectral correlation between spectral components
at frequencies separated by 2a.

To demonstrate the usefulness of this technique, a very simple cyclostationary
stochastic climate model is constructed. This simple model describes the global
average surface temperature. Our results show that the seasonal cycle strongly
modulates the amplitude of the covariance and spectrum. The surface temperature
fluctuations on a zonally symmetric all-land planct with seasonal solar forcing have
also been studied. The results indicate that the presence of intraseasonal oscillations
in surface fields is dependent on the season, although the surface fields have been
normalized before we compute the cyclic spectra. The strength of the intraseasonal
oscillations is strongest during winter and weakest during summecr. Both examples
suggest that the “annual cycle” cannot be “removed” by simply using the usual
normalization procedure. The climate is not as completely represented when mod-
elled as a stationary process. It should become clear from the forcgoing examples
that our characterization of the variations using cyclic spectral analysis contains
more information than the conventional spectral analysis.

The cyclic spectral analysis has many applications. Another example is to detect
and classify multiple fluctuations buried in noise. This would be impossible to
accomplish using only conventional spectral analysis (cyclic spectra at a = 0).
This application will be the subject of a subsequent publication.
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