Clouds are the key regulator of the planet’s climate by absorbing and reflecting solar radiation, and absorbing and emitting thermal radiation. Nowadays with the advent of satellite platforms that are regarded as the most efficient and reliable means of fulfilling cloud observational requirements, scientists have utilized optical theories to detect and retrieve cloud parameters[1−9]. For example, Liou et al. developed a methodology to retrieve three-dimensional ice water content and mean effective ice crystal size of cirrus clouds based on the retrieval of cloud optical depth (OD)[14]. Hu et al. studied CALIPSO lidar multiple scattering and depolarization for clouds[2,3]. Zhang et al., Yang et al., and Yuan et al. found improved algorithms for cloud detection[15−17]. A knowledge of cloud properties is crucial to the understanding of cloud’s impact on the climate and environment change[7−9]. In China, Yi et al.[10], Chen et al.[11], Liu et al.[12], and Ding et al.[13] analyzed the spatial distribution and temporal variation of cloud amount over northwestern China, the whole China or global, using the data of International Satellite Cloud Climatology Project (ISCCP). Their results are helpful to a better understanding of clouds, however, cloud OD has been rarely addressed.

OD is a general measure of the capacity of a cloud to prevent the passage of light. Greater OD means greater blockage of the light and a larger cooling of the Earth-atmosphere system. According to the previous research[15−17], the spectral OD for a given particle size distribution over some distance is

\[\tau_{\lambda} = \pi Q_e \int_{Z_1}^{Z_2} N r_e^2 dZ, \]

where \(Q_e \) is the extinction efficiency, and the effective radius is

\[r_e = \frac{\int_{r_1}^{r_2} r \tau r^2 n(r) dr}{\int_{r_1}^{r_2} \tau r^2 n(r) dr}, \]

\[n(r) \] is the number density of droplets with radius \(r \), and \(N \) is the total particle number density. To distinguish between water and ice clouds, \(r_e \) will be used for water clouds and the equivalent diameter

\[D_e = \frac{\int_{L_1}^{L_2} D(L) \tau A_e(L) n(L) dL}{\int_{L_1}^{L_2} \tau A_e(L) n(L) dL} \]

will be used for ice clouds. The variable \(D(L) \) is the volume equivalent diameter of the hexagonal ice crystal of length \(L \) and width \(d \). It is assumed that there is a monotonic relationship between \(L \) and \(d \) for the hexagonal ice columns defined by Takano and Liou[14], and this yields a unique relationship between the cross-sectional area \(A_e \) of these randomly oriented columns and \(L \)[15]. \(\tau_e, r_e \) or \(D_e \), and other cloud parameters affect the radiation absorbed, reflected, transmitted, and emitted by a given cloud. The dependence of the radiation field on these variables can be simulated using radiative transfer calculations. Cloud effective particle size, OD, phase, and cloud temperature can be determined from satellite-measured multispectral radiances by matching the radiance to the computed radiative transfer results[15−17].

In the visible portion of the spectrum, the cloud OD is almost entirely due to scattering by droplets or crystals, and ranges through orders of magnitude from low values less than 0.1 for thin cirrus to over 1000 for a large cumulonimbus and so should be primarily measured. Tsveloulos et al.[18] and other scientists[10−13] studied OD estimates from ISCCP and found the cloud distribution takes on remarkable regional features. But the resolution of ISCCP dataset is not sufficient to probe detailed differences of clouds among relatively smaller sub-regions so that recently scientists use new generation of sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) to study cloud optical properties, for example, Minnis et al.[7], Meyer et al.[8], Fu
et al.\cite{9} and other scientists\cite{15–17,19,20} have addressed the topics. In this letter, we utilize the Single Scanner Footprint (SSF) MODIS Edition 1B data onboard Aqua satellite from July 2002 to June 2004, lately released from Clouds and the Earth’s Radiant Energy System (CERES)\cite{15}. The dataset is performed using 1-km MODIS pixels sampled to a 4-km resolution instead of taking one 4–10 km pixel in each 30 km by 30-km box as in ISCCP. Regional cloud type frequencies derived for $1^\circ \times 1^\circ$ latitude-longitude-equal-area regions are used to determine cloud type frequencies of occurrence over the entire 60S—60N domain\cite{20}. Thus it can meet the requirement of characterizing the cloud properties over sub-regions in northwestern China that has various topographies such as deserts, mountains, and oases in a large territory of about 4,290,000 km2.

The CERES cloud detection algorithm is more advanced than the global cloud datasets (e.g. ISCCP) in that it uses four instead of two wavelengths to decide whether a given pixel is clear or cloudy\cite{20}. Radiance measurements at these four wavelengths are used to estimate cloud OD\cite{15–17}. One of the major optical advances of the CERES is the ability to use high spectral and spatial resolution cloud imager data to determine cloud and surface properties within the relatively large CERES field of view (20-km diameter for Aqua)\cite{16}. Another advantage is that the SSF incorporates new CERES angular distribution models (ADMs) based on improved scene identification to obtain more accurate fluxes at top of atmosphere from satellite-measured radiances. Those optical advances allow the CERES cloud data with unprecedented accuracy\cite{15–17}.

In this letter, the seasonal means are calculated for three-month seasons (e.g. winter is defined as December, January, and February). We will also demonstrate the annual cycle by calculation of individual monthly means. The yearly mean is computed as the average of four seasons. The statistics are based on a 1° latitude by 1° longitude grid in which pixel data are binned and averaged.

The SSF products include the cloud OD for up to two cloud layers defined as lower and upper layer. We derived the spatial distribution of cloud OD by averaging the available data for each day from July 2002 to June 2004. Figure 1 shows that the measurements of OD for lower layer clouds range from 4 to 23 and for upper layer clouds range from 3 to 18; the lowest measurements are over Gurbatunggut, Taklimakan, Badainjaran, and Tengger deserts. For both lower and upper layer clouds, the mountain regions have relatively high measurements of OD but not the highest; the highest measurements are over the Asia monsoon influence region, which are significantly higher than the other regions, ranging from 11 to 23 for lower layer clouds and from 11 to 19 for upper layer clouds. The distributions have patterns similar to the one for total clouds averaged for July, 1983 to December, 1998 derived from ISCCP D2 dataset, which was obtained by averaging eight daily observations; but the measurements are much higher than the previous result that the OD over northwestern China is 1–5\cite{20}. Such distribution characteristics of cloud OD are rather consistent with the distribution of cloud coverage and precipitation over northwestern China\cite{11}. Also, the high-level

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>8.5</td>
<td>3.8</td>
<td>2.3</td>
<td>5.0</td>
</tr>
<tr>
<td>Spring</td>
<td>11.6</td>
<td>6.8</td>
<td>6.0</td>
<td>5.1</td>
</tr>
<tr>
<td>Summer</td>
<td>15.3</td>
<td>11.5</td>
<td>12.3</td>
<td>6.1</td>
</tr>
<tr>
<td>Autumn</td>
<td>20.2</td>
<td>6.2</td>
<td>7.6</td>
<td>4.6</td>
</tr>
<tr>
<td>Yearly</td>
<td>13.9</td>
<td>7.1</td>
<td>7.1</td>
<td>5.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>8.4</td>
<td>5.5</td>
<td>5.2</td>
<td>5.3</td>
</tr>
<tr>
<td>Spring</td>
<td>11.4</td>
<td>7.2</td>
<td>7.6</td>
<td>5.0</td>
</tr>
<tr>
<td>Summer</td>
<td>15.4</td>
<td>9.4</td>
<td>9.9</td>
<td>5.8</td>
</tr>
<tr>
<td>Autumn</td>
<td>15.0</td>
<td>7.0</td>
<td>6.7</td>
<td>4.3</td>
</tr>
<tr>
<td>Yearly</td>
<td>12.6</td>
<td>7.3</td>
<td>7.4</td>
<td>5.1</td>
</tr>
</tbody>
</table>
autumn. The seasonal variation feature of OD is similar to that of cloud coverage, and the high measurement period is consistent with the main precipitation period in this region\cite{13}. In winter the measurements of both lower and upper layer clouds are the lowest of the four seasons. Figures 2(a) and (b) show that OD for the two layer clouds have their apparent peaks during August and September respectively and their lowest dips in January. The two mountain regions have very similar measurements of OD for all seasons. Winter shows the only notable difference when Tianshan region has less OD in both lower and upper layers of clouds. In fact, the yearly averaged measurements of lower layer cloud are the same and of upper layer are very close. Winter is the season of very low OD for the mountain regions while summer is the season of high OD in the two regions.

As we would suspect, of the four regions, the desert region has the lowest yearly means for OD mainly because of lack of moisture. However, we note that the measurements for lower layer clouds in the desert region are very close to those in the mountain regions in three winter months, and for upper layer clouds are actually higher than in either of the mountain regions in December and January. The two layer clouds in desert region have the highest measurements of OD in summer and the lowest in autumn of all four seasons. The monthly variation curves for both lower and upper layer clouds are of low amplitude, and the peak measurements are in July with close measurements in May and June. Two non-sequential periods of low measurement of OD are found also. One significant low period is in October and the other in February with January being nearly equal (Fig. 2).

From Table 1 we can calculate that the largest differences of yearly means of cloud OD for lower and upper layer clouds, which are 8.7 and 7.5 respectively, occur between the Asia monsoon influence region and the Taklimakan Desert where the largest differences of seasonal means are 15.6 and 10.7 respectively, occurring in autumn.

In summary, the instantaneous measurements of cloud OD presented here are much higher than the previous results derived from ISCCP D2 monthly mean data. The regional variation in cloud OD is quite significant over northwestern China. For an enhanced understanding of seasonal variability of cloud optical property, we should take the sub-regional features into account even for the same climate region.

This work was supported in part by the National Natural Science Foundation of China (No. 40633017 and 40575036) and the National “973” Program of China (No. 2006CB403700). The data were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center. We appreciate Dr. Yuhong Yi for helping us with data and Mr. Jim Miller for smoothing the English. Funding for the processing of the northwestern China data was provided by the Special Professional Outlay for Scientific Research for Commonweal (No. GYHY(QX)2007) and the Shanghai Leading Academic Discipline Project (No. B064). Y. Chen’s e-mail address is yonghangchen@yahoo.com.cn.

References

