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ABSTRACT

The theoretical basis and application of an analogue-dynamical model (ADM) in the Lorenz system is
studied. The ADM can effectively combine statistical and dynamical methods in which the small disturbance
of the current initial value superimposed on the historical analogue reference state can be regarded as a
prediction objective. Primary analyses show that under the condition of appending disturbances in model
parameters, the model errors of ADM are much smaller than those of the pure dynamical model (PDM).

The characteristics of predictability on the ADM in the Lorenz system are analyzed in phase space by
conducting case studies and global experiments. The results show that the ADM can quite effectively reduce
prediction errors and prolong the valid time of the prediction in most situations in contrast to the PDM,
but when model errors are considerably small, the latter will be superior to the former. To overcome such a
problem, the multi-reference-state updating can be applied to introduce the information of multi-analogue
and update analogue and can exhibit exciting performance in the ADM.
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1. Introduction

During recent decades, meteorologists have made
great achievements in dynamical prediction based on
numerical models (Kalnay, 2003; Mu et al., 2002). By
following continual improvements of data and models,
numerical weather forecasting and dynamical short-
term climate prediction play an increasingly important
role in routine operations. However, the applications
of numerical prediction products in practice are still
unsatisfactory under the current conditions, and the
empirical and statistical method still has considerable
prediction skill (van den Dool, 2007). Thus, in order
to promote prediction performance by using existing
data and models, prediction strategy and methodol-
ogy based on numerical models have been proposed
and have become an important approach for improv-
ing prediction (e. g., Hamill and Whitaker, 2006; see
also review of Ren and Chou, 2007a). Many related
researches were carried out, in which Chinese scholars

have made significant contributions.
Early in the 1950s, Gu (1958) pointed out the sig-

nificance and feasibility of introducing historical data
into numerical forecast. Thereafter, a series of inno-
vative prediction methods using historical data have
been put forward and widely applied to prediction ex-
periments, which exhibited considerable capability in
improving prediction (e.g., Chou, 1974; Cao, 1993; Qiu
and Chou, 1989; Huang and Wang, 1992; Huang et al.,
1993; Gu, 1998; Gong et al., 1999; Feng et al., 2001;
Bao et al., 2004; Ren and Chou, 2006a,b, 2007b; Gao et
al., 2006; Ren et al., 2006; Ren, 2008). In these works,
Chou (1979) suggested, for the first time, the essen-
tial idea of an analogue-dynamical approach (ADA)
in which the predicted dynamical field is regarded
as the small disturbance superimposed on the histor-
ical analogue field so that the synoptic experiences
can be introduced to the numerical forecast. Accord-
ing to such an idea, some analogue-dynamical mod-
els (ADMs) were established based on the analogue-
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deviation versions of simple quasi-geostrophic models
(Qiu and Chou, 1989; Huang and Wang, 1992; Huang
et al., 1993).

Preliminary analyses show that the ADM has
a greater accuracy than the pure dynamical model
(PDM) in virtue of the compensating effect from his-
torical analogue to model errors. Further, the ADA
was applied to the monthly dynamical extended-range
forecast (DERF) model and an equivalent ADM (Bao
et al., 2004) essentially based on a method of analogue
correction of errors (ACE) (Ren and Chou, 2006a; Gao
et al., 2006) was established. Besides this, to introduce
the information of multi-analogue and update selected
historical analogue in the process of integrating the
ADM, a method based on multi-reference-state updat-
ing (MRSU) has been recently put forward (Ren and
Chou, 2006b; Ren et al., 2006). Related experiments
for monthly DERF combining an equivalent ADM and
the MSRU displayed some encouraging preliminary re-
sults.

Up to now, many important issues were unsolved
in previous works and need to be further studied. On
one hand, for both quasi-geostrophic and operational
models, the predictability problems of corresponding
ADMs need be deeply examined and more prediction
experiments are very necessary for validating the ap-
plicability of the ADMs. On the other hand, many
impact factors associated with model errors, such as
error type, error magnitude, etc., have significant ef-
fects on the ADM prediction, which are worth being
studied in detail. Moreover, how to better introduce
historical analogue information into the ADM should
also be of concern. All of these issues should be seri-
ously studied from both theory analyses and numerical
simulation. However, it is quite difficult for these real
atmospheric ADMs to conduct comprehensive experi-
ments under the conditions of various predictabilities.
In this paper, the ADM in the Lorenz system will be
used to explore the above-mentioned problems. The
characteristics of predictability on the ADM and the
combination of it with the MRSU are further exam-
ined in phase space by conducting case studies and
global experiments.

2. Analogue-dynamical approach

In general, numerical prediction models can be ex-
pressed as

∂ψ

∂t
+ L(ψ) = 0 , (1)

ψ(r, t0) = G(r) , (2)

where ψ(r, t) is the model state vector to be predicted,
r is the vector in the spatial coordinates, t0 is ini-
tial time, L is the differential operator of ψ, which is

usually nonlinear and corresponding to real numerical
model. Similarly, the exact model satisfied by the real
atmosphere can be expressed as

∂ψ

∂t
+ L(ψ) = E(ψ) , (3)

where E is the error operator which stands for the
process that exists in reality but is not described ex-
actly in Eq. (1), and reflects the error term of real
numerical model. Historical data may then be natu-
rally regarded as a series of special solutions or their
functions of Eqs. (3) and (2).

According to basic idea of the analogue-dynamical
approach (Chou, 1979; Qiu and Chou, 1989; Huang
et al., 1993), ψ can be divided into the analogue ref-
erence state (or reference state for short, denoted as
RS) ψ̃ and the analogue disturbance state (or distur-
bance state for short, denoted DS) ψ′. Thus, we have
ψ = ψ̃ + ψ′, where ψ̃ is selected from historical ob-
servations in terms of the similarities between the RSs
and current initial value G(r). The reference state
satisfies the following equations:

∂ψ̃

∂t
+ L(ψ̃) = E(ψ̃) , (4)

ψ̃(r, th) = G̃(r) , (5)

where th is historical time. By subtracting Eqs. (4)
and (5) from Eqs. (3) and (2) respectively, the exact
equation satisfied by the DS is obtained as follows:

∂ψ′

∂t
+L(ψ̃+ψ′)−L(ψ̃)=E(ψ̃+ψ′)−E(ψ̃) , (6)

ψ′(r, t0) = G(r) − G̃(r) . (7)

Similarly, substituting ψ = ψ̃+ψ′ and ψ̃ into Eq.
(1) respectively, and subtracting the latter from the
former, we obtain the analogue-deviation equation:

∂ψ′

∂t
+ L(ψ̃ +ψ′) − L(ψ̃) = 0 . (8)

By first selecting historical analogue ψ̃ of the cur-
rent initial state as the RS, the DS ψ′ is calculated
in terms of Eqs. (8) and (7), and current prediction
ψ is obtained by ψ = ψ̃ + ψ′. Eqs. (8) and (6) are
corresponding to the inexact numerical model and the
exact model satisfied by the real atmosphere, respec-
tively. Also, Eq. (8) can be obtained by omitting
E(ψ̃ +ψ′)− E(ψ̃) on the right side of Eq. (6), which
is evidently more precise than the way that Eq. (1)
is obtained by omitting E(ψ) on the right side of Eq.
(3). So the ADM on the basis of Eq. (8) has much
fewer model errors than the ordinary model on the ba-
sis of Eq. (1). This suggests that such an ADM will
have greater accuracy than either the pure dynamical
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model (PDM) or the statistical analogue prediction
(Barnett and Preisendorfer, 1978; van den Dool, 1987;
Toth, 1989; Livezey et al., 1994), owing to the com-
pensation effect from historical analogues to model er-
rors, which has been documented by the monthly and
seasonal prediction experiments (Qiu and Chou, 1989;
Huang and Wang, 1992; Huang et al., 1993; Bao et al.,
2004).

3. PDM and ADM in the Lorenz system

The control equation group of the Lorenz system
(Lorenz, 1963), also called the Lorenz model, which
stands for a classical nonlinear chaotic system, is ex-
pressed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx

dt
= −σx + σy ,

dy

dt
= −xz + rx − y ,

dz

dt
= xy − bz ,

(9)

where, σ, r and b are model parameters. Take σ =
10, r = 28 and b = 8/3, respectively. The 4-order
Runge-Kuta integration algorithm is employed for
solving ordinary differential equation groups in this pa-
per and the integration time step is taken as ∆t = 0.01.

As well known, the Lorenz model has been widely
used in theoretical studies of nonlinear dynamics and
predictability (e.g., Chou, 1995; Mu et al., 2002). In
this paper, in order to generate historical data similar
to the real atmosphere, the exact Lorenz model in Eq.
(9) is integrated for 257500 time steps. After remov-
ing the initial 2000-step data during the adaptation
period, the simulated dataset, in chaotic situation, is
regarded as the observed dataset in the Lorenz sys-
tem, where observation errors are omitted. Further-
more, provided that 20 time steps correspond to 1 day
in practice, the above-described observed dataset will
cover 35 years ×365 days. We take initial 30-year data
as historical data for selecting analogue, and residual
5-year data as independent samples for verifying pre-
dictions.

As the approximation of the real atmosphere, nu-
merical models inevitably have more or less model er-
rors. If we regard the Lorenz system as the simplest at-
mosphere, similar to real numerical models, the Lorenz
model with model errors may be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= −σx + σy + ex ,

dy

dt
= −xz + rx − y + ey ,

dz

dt
= xy − bz + ez ,

(10)

where (ex, ey, ez)T is model error vector. In the follow-
ing sections, Eq. (10) is also called the pure dynamical
model (PDM) of the Lorenz system.

Let x = x̃ + x′, y = ỹ + y′ and z = z̃ + z′, in which
x̃, ỹ and z̃ are RSs, and x′, y′, and z′ are DSs. In terms
of the derivation process described in Eqs. (1)–(8), by
substituting x, y, z and x̃, ỹ, z̃ into Eq. (10) respec-
tively, and subtracting the latter from the former, the
ADM corresponding Eq. (10) with model errors may
be obtained as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx′

dt
= −σx′ + σy′ + e′x ,

dy′

dt
= −x̃z′ − z̃x′ − x′z′ + rx′ − y′ + e′y ,

dz′

dt
= x̃y′ + ỹx′ + x′y′ − bz′ + e′z .

(11)

Here, (e′x, e′y, e
′
z)

T stands for the model error vector of
the ADM.

4. Theoretical analysis

The basic idea of the ADA still needs to be docu-
mented by further theoretical analyses. More predic-
tion experiments are also very necessary for examining
the applicability of the ADMs in practice. However,
it is quite difficult for existing real atmospheric ADMs
to conduct comprehensive experiments under the con-
ditions of various predictabilities. As a common study
tool, the Lorenz system is more suitable for theoretical
analyses and comprehensive experiments, which has a
good use as a reference for complex numerical models.
Objectively speaking, the truth does not vary with the
number of degrees of freedom in a dynamical system.

As we know, forecast errors are evidently related
to errors in initial conditions and model errors, where
the former is well concerned in previous works, and
many ideas have been proposed for improving forecast
skill (e.g., Pu et al., 1997a,b; Mu and Wang, 2001;
Duan and Mu, 2005; Mu and Jiang, 2007; Mu et al.,
2007). Comparatively, studies associated with model
errors are still few (e.g., Orrell, 2003). Considering
that forecast errors generated from model errors have
a significant effect on dynamical prediction skill, it is
necessary to theoretically learn about the model error
vector represented by (ex, ey, ez)T. More concretely,
we may take different types of model errors and con-
duct theoretical analyses and numerical experiments
by employing the ADM to examine whether it can ef-
fectively reduce the given model errors. First of all,
we will identify the classification of model errors.
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4.1 Classification of model errors

In general, model errors Emodel may be divided into
the following three parts:

Emodel = Esys + Eflow + Estoch .

Esys is systematic error and also called as climatic
drift. Eflow may be named as time-dependent or flow-
dependent error and is the model error varying with
system state or flow regime. Estoch is stochastic error
and can not generally be overcome, and is not consid-
ered here. At present, based on theoretical and experi-
mental researches, the purpose of developing numerical
models is to simply reduce model errors by improving
dynamical frameworks, physical processes, and so on.
But regardless, there always objectively exist consider-
able errors in models. Consequently, according to the
idea of studying prediction strategy (Ren and Chou,
2007a), model errors can be estimated and reduced by
utilizing historical data information based on inverse
problems under the condition of existing models (Ren
and Chou, 2006a, 2007b; Gao et al., 2006).

4.2 Theoretical analyses of model errors

In the following, we will theoretically discuss the
performance of the ADM in reducing model errors
based on historical analogue.

4.2.1 Systematic error
For Esys, it can be overcome by developing a de-

viation model and can also be indirectly removed by
eliminating model climatology from prediction results.
Then what about the ADM? Here, we take the error
vector of the Lorenz prediction model (ex, ey, ez)T =
(s1, s2, s3)T as the systematic model error, where
s1, s2, s3 are constants. It is easily seen that only for
Esys, the model error vector in Eq. (11) (e′x, e′y, e′z)T =
(0, 0, 0)T, which shows that there is no Esys in the
ADM. In other words, the ADM can completely elim-
inate such Esys, which need not be documented by
experiments.

4.2.2 Time-dependent error
For Eflow, it varies with flow regime and is the func-

tion of model states or variables. Similar to model
error types in really complicated numerical models, in
the Lorenz prediction model Eflow can be suitably rep-
resented by appending small disturbances on the three
model parameters in Eq. (9). In the following, we will
respectively discuss Eflow according to different given
situations. First supposed that

‖ x′ ‖<‖ x ‖ , ‖ y′ ‖<‖ y ‖ , ‖ z′ ‖<‖ z ‖ ,

where, the norm ‖ · ‖ of metric is taken as the inner
product of two vectors.

(1) Append the disturbance δr on parameter r.
At this time, the model error vector in Eq. (10)
(ex, ey, ez)T = (0, δrx, 0)T, and then that of the ADM
in Eq. (11) is (0, δrx′, 0)T. Consequently, we can
easily obtain the relationship between the two model
error metrics as follows:

‖ δrx′ ‖<‖ δrx ‖ .

(2) Append the disturbance δb on parameter b.
The model error vectors in Eqs. (10) and (11) are
(0, 0,−δbz)T and (0, 0,−δbz′)T, respectively. We can
easily obtain

‖ −δbz′ ‖<‖ −δbz ‖ .

(3) Append the disturbance δσ on parameter σ.
The model error vectors in Eqs. (10) and (11) are
(−δσx + δσy, 0, 0)T and (−δσx′ + δσy′, 0, 0)T, respec-
tively. Here, by introducing w = y−x, have w = w̃+w′

and suppose ‖ w′ ‖<‖ w ‖, we can easily obtain

‖ δσw′ ‖<‖ δσw ‖ .

As above, it has been theoretically documented
that some representative Eflow induced by model pa-
rameter errors in the Lorenz model can be effectively
overcome in the ADM by utilizing historical analogue
information.

4.2.3 General situation
For more general situations, similar to the model

errors E(ψ) in Eq. (3), model errors of the Lorenz
model may be expressed as E(x, y, z), then those of
corresponding historical analogue are E(x̃, ỹ, z̃). Then,
Taylor-expand E(x, y, z) to first order around (x̃, ỹ, z̃)
as follows:

E(x, y, z) = E(x̃ + x′, ỹ + y′, z̃ + z′)

≡ E(x̃, ỹ, z̃) + x′ ∂E

∂x

∣
∣
∣
∣
x̃

+ y′ ∂E

∂y

∣
∣
∣
∣
ỹ

+ z′
∂E

∂z

∣
∣
∣
∣
z̃

.

As we can see, when the partial differential of E with
respect to every component is bounded respectively
and ‖ (x′, y′, z′) ‖ is small enough, it is not difficult to
obtain

‖ E(x, y, z) − E(x̃, ỹ, z̃) ‖�‖ E(x, y, z) ‖ .

This suggests that the ADM of the Lorenz sys-
tem on the basis of Eq. (11) has fewer model errors
and higher accuracy than the PDM on Eq. (10) un-
der given conditions, although the two kinds of models
are both inexact. Thus, by selecting the RS (x̃, ỹ, z̃) of
current initial value first, the DS (x′, y′, z′) can be cal-
culated in terms of Eq. (11) and the current forecast
(x, y, z) can be finally obtained by x = x̃+x′, y = ỹ+y′

and z = z̃ + z′.
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5. Case study

Firstly, we will exhibit a detailed prediction process
and results based on the ADM of the Lorenz system
by conducting a case study.

5.1 Analogue metric and verification statis-
tics

Analogue metric for analogue selection is defined
as a simple Euclid distance function:

d = [(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2]1/2 ,

where suffixes 1 and 2 denote any two state points re-
spectively. The smaller d between two states is, the

more similar they are.
It is easily understood that the verification prob-

lem of prediction results of realistic experiments based
the Lorenz model is clearly different from that of real
atmospheric model. The latter is focused on reducing
field prediction errors and improving pattern predic-
tion skill, whereas the former is more focused on pro-
longing valid time of prediction. Many experiments
have shown that prediction errors will suddenly in-
crease to no skill as long as the transition between
two equilibriums is predicted by mistake. To conduct
global predictability analyses, we utilize a relative pre-
diction error defined as follows:

l(τ) =
{

[xf(τ) − xo(τ)]2 + [yf(τ) − yo(τ)]2 + [zf(τ) − zo(τ)]2

[xo(τ)]2 + [yo(τ)]2 + [zo(τ)]2

}1/2

,

where τ is lead time of prediction, suffixes f and o
stand for forecast and observe respectively.

As we have known, there is little bias between pre-
diction and verification before some lead time. But
after this time, the forecast will deviate from the ob-
servation and l will increase quickly whether to inte-
grate the Lorenz model without model errors by using
a set of initial values with small errors or with model
errors by using accurate initial values. Based on many
experiments, we find once prediction becomes unac-
ceptable, the corresponding time is defined as the valid
time (denoted as VT) of prediction. Here, the VT may
give prediction limit and prediction will lose all of skill
after the VT. In the present paper, we take the VT as
an objective metric for dynamical predictive effect of
the Lorenz model.

5.2 Result analysis

Here, we take a representative case as visual anal-
ysis under the condition of δr = 0.1 with initial value
(−6.497, −0.5085, 31.59) reserved from 15 to 4 signif-
icant digits. The best analogue selected by distance
in phase space is regarded as the reference state of
the ADM and the interval of observed sample (IOS)
is taken as 5 time steps. Figure 1 gives predicted and
verified x curves under the condition of given model
parameter error based on the PDM and ADM respec-
tively.

We may easily obtain the VT in Figs. 1a and b
with 4.97 and 5.77 respectively, which shows that in
the situation of no observation errors, dynamical pre-
dictions are significantly affected by model parameter
error. It can be clearly seen from Fig. 1 that before
the VT, the predicted and verified x curves are very
close to each other whether based on the PDM or the
ADM, but after the VT, they quickly separate and
enter different equilibriums when predictions appear

unacceptable. Comparatively, according to this case,
the ADM with longer VT can exactly predict two more
transitions between two equilibriums and exhibit bet-
ter performance than the PDM, which will be further
documented in the following global analysis.

6. ADM global experiments

In order to comprehensively examine the perfor-
mance of the ADM under different conditions of pre-
dictability in phase space, we conduct global predic-
tion experiments based on the ADM according to the
disturbance schemes of model parameters in Table 1,
where the total of cases is 1675 and other experiment
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Fig. 1. Predicted and verified x curves under the con-
dition of δr=0.1 based on the (a) PDM and (b) ADM
respectively.
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Table 1. Comparison between global mean VT based on the PDM and ADM respectively in terms of different distur-
bance schemes of model parameters.

Model error vectors Disturbance Global mean Global mean Case number: Percentage:
schemes of PDM-VT ADM-VT ADM-VT> ADM-VT>

model parameters PDM-VT PDM-VT

(0, δrx, 0)T δr = 1.0 2.38 5.03 1625 97.0%
(0, δrx, 0)T δr = 0.1 4.92 6.42 1345 80.3%
(0, δrx, 0)T δr = 0.01 7.40 6.95 612 36.5%

(−δσx + δσy, 0, 0)T δσ = 1.0 4.46 4.64 970 57.9%

(−δσx + δσy, 0, 0)T δσ = 0.1 6.60 7.41 1065 63.6%
(−δσx + δσy, 0, 0)T δσ = 0.01 9.00 7.13 236 14.1%

(0, 0,−δbz)T δb = 1.0 1.38 5.05 1671 99.8%
(0, 0,−δbz)T δb = 0.1 3.35 6.13 1594 95.2%
(0, 0,−δbz)T δb = 0.01 5.92 6.89 1144 68.3%

(δσ(y − x), δrx,−δbz)T δr, δσ, δb = 0.1 3.50 6.08 1578 94.2%
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Fig. 2. Distributions of 1675 initial values in x-z phase
plane.

designs are the same as those above in case study.
Here, the initial values used in global experiments are
obtained by taking one in every 20 time steps from
the latest 5-year simulated observe data (refer to little
plus signs in Fig. 2). These initial values with global
sense distribute nearly homogenously in phase space.
But relatively speaking, there exist fewer cases near
two stable equilibriums and outer boundary of chaotic
attractor. Moreover, because the period of prediction
based on every initial value is generally 2000–3000 time
steps, there are 1675 groups of initial values in total
in the global experiments.

Firstly, Table 1 presents the comparison between
global mean VT based on the PDM and ADM re-
spectively in terms of different disturbance schemes
of model parameters.

It can be clearly seen from Table 1 that the ADM
has much higher performance than the PDM in most
cases. Especially, when all of three parameters are
equal to 0.1, the cases that global mean VT corre-

sponding to the ADM is longer than that to the PDM,
and have a percentage of 94.2% in all cases. These re-
sults clearly show that introducing the information of
historical analogue in the ADM helps to prolong the
valid time of dynamical prediction further which can
be more clearly and visually documented in Fig. 3.
By examining distributions of the VT corresponding
to 1675 initial values in x-z phase plane under the
condition of δr = 0.1 based on the PDM and ADM
respectively, we find out that the PDM with param-
eter error is good at prediction near two stable equi-
libriums and on the bottom of attractor, whereas the
ADM has more homogeneous distributions of the VT.
Over most areas in phase plane, the VT corresponding
to the ADM is larger than that to the PDM.

Also, we note that every parameter error has dif-
ferent impacts on prediction results, which is evidently
related to the proportion of given parameter distur-
bances in themselves. Generally speaking, the larger
the model error is, the less the predictive effect of the
dynamical model is. For example, according to Table
1, the global mean VT corresponding to different pa-
rameters based on the PDM gets larger with the less-
ening of parameter errors, which is also documented by
the results of most disturbance schemes in the ADM
except δσ = 0.01. Besides, when δr or δσ is equal to
0.01, the global mean VT corresponding to the ADM
is smaller than that to the PDM and the percentage of
the former in all cases is lower than 50%, which shows
that at this time the ADM is unsatisfactory.

The above analyses show that when model errors
represented by parameter disturbances are relatively
large, the ADM can quite effectively reduce predic-
tion errors and prolong the valid time of prediction.
Due to different predictability for different initial val-
ues in phase space (Chou, 1995), there still exist a few
cases in which the PDM has longer valid time than the
ADM. On the other hand, when such model errors are
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Fig. 3. Distributions of the VT corresponding to 1675 initial values in x-z phase plane under the condition of
δr = 0.1 based on the (a) PDM, (b) ADM and (c) ADM-PDM respectively.

considerably small, the predictive effect of the PDM is
significantly improved, whereas comparatively, that of
the ADM is slowly promoted and even not as good as
the former, which may be seen in the VT distributions
(figure omitted).

7. Global experiments with multi-reference-
state updating

As above, we can assume that if a real numerical
model is perfectly developed in the future, the ADM
will seem to have less and less advantage compared
with the PDM. However, the above results only are
based on the limited historical analogues with given
quantity and frequency, where there likely exists the
problem of lacking analogy information in the ADM.
Since model errors inevitably exist in real numerical
models, it will be reasonably believed that the ADM
can have better performance than the PDM by intro-
ducing more analogy information, even though model
errors are rather small, which will be further discussed
in the following work.

7.1 The method based on multi-reference-
state updating

As we know, there are usually many analogues sim-
ilar to the current initial value in history. The ensem-
ble of many historical analogues is often used in tradi-
tional statistical analogue prediction (SAP) (Barnett
and Preisendorfer, 1978; van den Dool, 1987; Toth,
1989; Livezey et al., 1994), which presents important
reference for the dynamical analogue prediction (DAP)
that is intended to effectively utilize historical anal-
ogy information in dynamical prediction and to realize
the adequate combination of dynamical and statistical
methods. A new method named multi-reference-state
updating (MRSU) has been developed to comprehen-
sively consider the multi-analogue information and
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Fig. 4. Schematic illustration of the MRSU.

updating of analogue because the similarity between
the current initial value and historical analogue can
only persist for a very limited time in the process of
prediction (Ren and Chou, 2006b; Ren et al., 2006).

It can be clearly seen from Fig. 4 that in the
MRSU, according to the idea of “updating”, multi-
reference states are newly selected on the period of
analogue updating (PAU) in integrating the ADM and
optimal forecast vectors (OFVs) are estimated from
multi-forecasts generated by the ADM based on cer-
tain methods. Such the “selection-estimation” cycle is
repeatedly operated until the whole forecast is com-
pleted. The methodology associated with estimating
the OFV is the same as that used for estimating new
prediction errors from historical analogical prediction
errors in the final ACE method, which has been in-
troduced in detail in the literature (Ren and Chou,
2007b). Here, it needs be noted that the Hyperplane
approximation method (HAM), as a theoretical me-
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Table 2. Comparison between global mean VT based on the PDM and MRSU respectively in terms of different distur-
bance schemes of model parameters.

Model error vectors Disturbance Global mean Global mean Case number: Percentage:
schemes of PDM-VT MRSU-VT MRSU-VT> MRSU-VT>

model parameters PDM-VT PDM-VT

(0, δrx, 0)T δr = 1.0 2.38 7.03 1675 100%
(0, δrx, 0)T δr = 0.1 4.92 9.17 1653 98.7%
(0, δrx, 0)T δr = 0.01 7.40 9.55 1526 91.1%

(−δσx + δσy, 0, 0)T δσ = 0.01 9.00 9.54 1026 61.3%

(δσ(y − x), δrx,−δbz)T δr, δσ, δb = 0.1 3.50 9.51 1675 100%

thod, sometimes appears unsuccessful in solving linear
algebraic equation groups due to uneven phase curve-
plane. At this time, the HAM will be replaced by a
simple linear estimation method (SLEM) (also refer
to Ren and Chou, 2007b), which will be proved to be
reasonable in the following experiments.

In previous work, although experiments for
monthly DERF by a simplified MSRU displayed some
exciting preliminary results, it will be very difficult for
real atmospheric ADMs to conduct comprehensive ex-
periments under the conditions of various predictabil-
ities. Thus, to examine the predictive effect of the
MRSU for the above difficulty that is induced by con-
siderably small model errors, as well as to discuss other
important issues, e.g., the impacts of model errors and
key parameters on prediction of the MRSU, the global
and sensitive experiments will be further conducted in
the following.

7.2 Global experiments based on the MRSU

Here, the experiments based on the PDM are still
regarded as the contrast of those based on the MRSU.
First, the performances of the MRSU are examined in
terms of different disturbance schemes of model pa-
rameters, which need to pre-assign some key parame-
ters. Here, without losing generality, take parameters
PAU=20 steps and IOS=5 steps. The SLEM based
on the first 4 best analogues is employed to estimate
the OFVs. Considering that the differences between
the verified results corresponding to individual distur-
bance schemes of three model parameters in Table 1
are quite small, Table 2 gives some representative re-
sults.

Compared with Table 1, it can be more clearly seen
from Table 2 that the MRSU on the first 4 best ana-
logues has far higher performance not only than the
PDM but also the ADM only based on the single best
analogue. This is true especially when either δr or all
of three parameters are equal to 0.1, the cases that
global mean VT corresponding to the MRSU is longer
than those to the PDM, almost reach a percentage of
100% in all cases. Moreover, the two unsatisfactory

situations corresponding to the ADM, when δr or δσ
is equal to 0.01, have also been successfully overcome.
All the results show that the MRSU superimposing on
the ADM has the capability for solving the difficulty
from small model parameter errors by introducing and
updating multi- historical analogues.

7.3 Sensitive experiments based on the MRSU

In the above experiments, the MRSU displays
its validity by using 4 analogues. Then, how will
the change of the number of selected analogues have
the impacts on predictive effectiveness based on the
MRSU? In contrast to the verified results of the PDM
and HAM, Fig. 5 presents the results of the MRSU
based on the HAM and SLEM with different number
of selected analogues. For the convenience of com-
parison, the global mean VT (=4.92) of the PDM is
regarded as a reference.

Evidently in Fig. 5, the VT of the SLEM and HAM
is far longer than that of the PDM because the infor-
mation of analogue is utilized in the formers, where
the HAM exhibits the best performance by accurately
solving the linear algebraic equation group satisfied
by the OFVs. The verified effects of the SLEM be-
come better with the increase of selected analogues and
gradually tend to that of the HAM. Indeed, the VT of
the SLEM cannot increase by degrees linearly and de-
creases after about 40 analogues. Once the total quan-
tity of historical observed samples is prescribed, the
quality of analogues introduced into the MRSU will
gradually decrease and the analogues with low simi-
larity may have a negative accumulative contribution
to the predictive effect. In other words, there likely
exists an optimal number of selected analogues in the
MRSU. Besides, the SLEM has slightly lower verified
scores than the HAM by introducing adequate multi-
analogues and can be regarded as the suitable simpli-
fied version of the HAM in practical applications.

Furthermore, the similarity between the two states
cannot persist for a very long time, so it is very neces-
sary to update the analogue repeatedly in the process
of integrating the ADM. The PAU should reflect the
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Fig. 5. Global mean VT as a function of the number of selected ana-
logues based on the MRSU in terms of the SLEM and HAM respec-
tively, where the disturbance schemes of δr = 0.1.

Table 3. Global mean VT based on the MRSU in terms of
different PAU and IOS (Unit: time step number) respec-
tively by the disturbance schemes of δr = 0.1.

PAU IOS

1 5 10 20 40

1 14.02 - - - -
5 13.94 9.70 - - -
10 14.20 9.84 7.31 - -
20 14.47 9.52 6.95 5.05 -
40 13.60 9.38 6.82 4.21 1.77

global mean persistence between any two states and
may be approximately determined by trial and error.
Moreover, as has been known, the quantity of available
historical samples that may be represented indirectly
as the IOS by selecting samples in terms of different
intervals from total observed dataset is vital for the
methodology based on analogy information. Thus, the
impacts of different PAU and IOS on the MRSU pre-
diction will be deep examined. Here, the HAM based
on 4 analogues is employed for estimating the OFVs to
acquire the theoretical upper limit of prediction skill
of the MRSU.

It can be easily seen from Table 3 that the global
mean VT significantly increase with the decrease of the
IOS. Comparatively, the PAU seems to have an opti-
mal extremum for certain IOS and the predictive effect
based on the MRSU will be influenced on the whole
when the PAU is bigger or smaller than the optimal
extrema. This could be corresponding to the global
mean persistence between any two states. Moreover,
the IOS that represents the density and quantity of his-
torical data plays a very important role in the MRSU,
and its impacts on the predictive effect even are more
significant than those of the PAU.

The above experiment results show that the im-
pacts of model errors in numerical models on predic-
tion may be overcome to some extent by introducing
the analogy information in a historical dataset. The
MRSU can effectively reduce prediction errors by up-
dating analogues and using multi-reference states as
well as estimating the OFVs. Furthermore, for certain
IOS, there exists the optimum of the PAU, and under
the condition of giving suitable PAU, the valid time of
prediction based on the MRSU can be evidently pro-
longed with the increase of observed samples. Also,
the number of selected analogues has significant im-
pacts on the MRSU prediction in terms of the SLEM
that may be regarded as the suitable replacement of
the HAM in practical application.

8. Summary

In previous studies, the essential idea of analogue-
dynamical model (ADM) has been proposed and
related numerical prediction experiments on quasi-
geostrophic models have been conducted. Exciting
initial results showed that the ADM can effectively
combine statistical and dynamical methods together,
which promote us to examine the predictability and
development problems associated with the ADM. Thus
in the current work, we employ the Lorenz system
and study the theoretical basis and application of the
ADM. We divide model errors into three parts such as
systematic error, time-dependent error and stochas-
tic error. Primary theoretical analyses show that the
ADM can significantly reduce systematic model errors
when a time-independent model error vector is intro-
duced into the Lorenz model. Further, by appending
small perturbations on original model parameters, we
theoretically examine the impacts of time-dependent
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model errors and results show that the ADM has less
model errors than the pure dynamical model and can
effectively utilize atmospheric analogy information in
traditional dynamical prediction.

Case studies and global experiments with a lot of
initial values scattering over phase space are conducted
in order to examine the characteristics of predictabil-
ity of the ADM in the Lorenz system. The results
show that the ADM can quite effectively reduce pre-
diction errors and prolong the valid time of prediction
in most situations and have better performance than
the PDM, but when model errors is considerably small,
the latter will be superior to the former. To overcome
such a problem by using more analogy information,
the method based on multi-reference-state updating
(MRSU) that can introduce the information of multi-
analogue and update analogue is further employed in
the process of integrating the ADM. Experiments ex-
hibit exciting results based on the MRSU, and some
key factors such as the PAU, the quantity of observed
samples and the number of selected analogues, have
different impacts on prediction of the MRSU. These
conclusions present valuable references for practical
prediction. Indeed, how to a priori determine the num-
ber of analogues used in the SLEM and the optimal
PAU for certain quantity of historical samples, needs
to be further studied in future works.
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