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Drylands face potential threat under 2 ◦C global
warming target
Jianping Huang1*, Haipeng Yu1, Aiguo Dai2,3, YunWei1 and Litai Kang1

The Paris Agreement aims to limit global mean surface warm-
ing to less than2 ◦Crelative topre-industrial levels1–3.However,
we show this target is acceptable only for humid lands,whereas
drylandswill beargreaterwarming risks.Over thepast century,
surface warming over global drylands (1.2–1.3 ◦C) has been
20–40% higher than that over humid lands (0.8–1.0 ◦C),
while anthropogenic CO2 emissions generated from drylands
(∼230 Gt) have been only ∼30% of those generated from
humid lands (∼750Gt). For the twenty-first century, warming
of 3.2–4.0 ◦C (2.4–2.6 ◦C) over drylands (humid lands) could
occur when global warming reaches 2.0 ◦C, indicating ∼44%
more warming over drylands than humid lands. Decreased
maize yields and runo�, increased long-lasting drought and
more favourable conditions for malaria transmission are
greatest over drylands if global warming were to rise from
1.5 ◦C to2.0 ◦C.Our analyses indicate that∼38%of theworld’s
population living in drylandswould su�er the e�ects of climate
change due to emissions primarily from humid lands. If the
1.5 ◦C warming limit were attained, the mean warming over
drylands could be within 3.0 ◦C; therefore it is necessary to
keep global warmingwithin 1.5 ◦C to prevent disastrous e�ects
over drylands.

After the Paris Climate Agreement was signed in April 2016 and
approved by USA and China on the G20 summit in September
2016, policymakers agreed upon a goal to limit global mean surface
warming (GMSW) to no more than 2 ◦C above pre-industrial
levels1. Furthermore, the pursuit of a warming limit as low as
1.5 ◦C was proposed and the Intergovernmental Panel on Climate
Change (IPCC) was invited to generate a special report by 2018
on the impacts of global warming of 1.5 ◦C and on related global
greenhouse gas emissions pathways. As part of an ambitious and
urgent plan, the necessity and benefits of half a degree less warming
must be evaluated soon before a new decision is made.

The GMSW level has already reached ∼0.9 ◦C above the pre-
industrial level4, leaving only ∼0.6 ◦C for further warming before
reaching a 1.5 ◦C target. Thus, it is suggested that a 1.5 ◦C target
is not likely to be achieved without an overshoot, given recent
CO2 emissions trends2. However, some studies found extreme
temperature changes associated with the 2 ◦C target could be
substantial and a 1.5 ◦C target may be desirable3.

These global warming targets are for global mean surface
temperatures averaged over both land and ocean surfaces.
Greenhouse gas (GHG)-induced warming is much lower over
oceans than over land, owing to evaporation over and vertical
mixing within oceans5. Thus, warming over land will significantly
exceed the GMSW target due to the lower warming over oceans,
which cover∼71% of Earth’s surface.

Warming over land is also not evenly distributed, and large
regional differences have raised concerns3,6–8. Observations have
shown enhanced warming over drylands9–11. The world’s drylands
occupy nearly half of Earth’s land surface and sustain ∼38% of
world’s population. Drylands are at a high risk of land degradation
and desertification, owing to their fragile ecosystems12. Thus, it is
important to examine changes across drylands under the 2 ◦C and
1.5 ◦C targets.

Historical warming trends as a function ofmean precipitation (P)
(Fig. 1a) are compared among three observational data sets: GISS,
CRUTEM4 and MLOST (Methods), together with Fifth Coupled
Model Intercomparison Project (CMIP5) all-forcing historical sim-
ulations13 (Supplementary Table 1; Methods). Here, we focus on the
1920–2015 period, because observations are sparse in many regions
before 192014. All three observational data sets show decreasing
warming with increasing mean precipitation, indicating that warm-
ing has been more severe in dry areas, which is robust with differ-
ent precipitation data sets (Methods) and periods (Supplementary
Fig. 1). The distribution of drylands (here defined as land areas with
mean annual precipitation (P) below 600mm and the ratio of mean
precipitation to potential evapotranspiration (P/PET)15 below 0.65,
see Methods) is consistent with areas with high warming trends
(Fig. 1b and Supplementary Fig. 2), and themean temperature trend
during 1920–2015 for drylands is 1.28 ± 0.18 ◦C/96 yr in MLOST
(1.30 ± 0.19 ◦C/96 yr and 1.25 ± 0.19 ◦C/96 yr in CRUTEM4 and
GISS, respectively). In contrast, the mean temperature trend for hu-
mid lands, defined as the areas with annual P> 600mm and P/PET
> 0.65, is 0.92± 0.13 ◦C/96 yr in MLOST (0.81± 0.14 ◦C/96 yr and
1.04± 0.14 ◦C/96 yr in CRUTEM4 and GISS, respectively), which is
about 60% to 80% of the trend for drylands.

Anthropogenic CO2 and other GHG emissions are considered
to be the main cause of the recent global warming; however, CO2
emissions from anthropogenic sources (Methods) over different
land areas show a geographical pattern opposite to the warming
patterns (Fig. 1). Drylands correspond to low total CO2 emissions
of ∼4.58 kgm−2 during 1920–2013, whereas humid lands generate
high total CO2 emissions∼15.43 kgm−2, or approximately 3.5 times
that of drylands—mainly from Europe, eastern North America and
eastern Asia (Fig. 1c). This pattern is also robust over different
periods (Supplementary Fig. 3). Atmospheric CO2, a highly mixed
GHG after emissions, is distributed uniformly across the globe,
and surface temperatures over drylands are more sensitive to
the CO2 levels than other areas. In this case, although most
of the global CO2 emissions were geographically emitted from
humid lands (∼750GtC from 1920–2013, 1Gt = 1015 g, compared
with the emissions of ∼230GtC from drylands), 20%–40% more
warming occurred over drylands. This large asymmetry between the
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Figure 1 | Temperature trends and historical CO2 emissions for drylands and humid lands. a, Variations in regionally averaged temperature trends from
1920–2015 (◦C per 96 yr) calculated from the MLOST (yellow line), CRUTEM4 (blue line) and GISS (black line), and the ensemble mean of the CMIP5
simulations (red line), together with regionally averaged total CO2 emissions flux during 1920–2013 (kg m−2) as a function of the climatological
(1948–2005) mean precipitation from GPCC V6 over land surfaces. Bars denote the di�erence between regionally averaged CRUTEM4 temperature trends
and the CMIP5 ensemble mean (CRUTEM4 minus CMIP5), and error bars and red shading denote the 95% confidence intervals for the 18 models. CMIP5
all-forcing historical simulations (for 1920–2005) and the RCP4.5 projections (for 2006–2015) were used. b, The global distribution of surface temperature
trends for 1920–2015 from the MLOST, with the grey shading denoting the identified drylands. c, The global distribution of total CO2 emissions flux during
1920–2013, with the grey shading denoting the identified humid lands.

geographic distributions of the CO2 emissions and warming rates
has not received much attention.

In addition to historical observations, the enhanced warming
over drylands is expected to continue in the future. Surface warming
over drylands is projected to reach∼6.5 ◦C (∼3.5 ◦C) under the high
RCP8.5 (low-moderate RCP4.5) emissions scenario by the end of
this century (Supplementary Fig. 4). Although there are consider-
able spreads among the CMIP5 models, almost all of them show
higher warming over drylands than humid lands (Supplementary
Fig. 5). When GMSW reaches 2 ◦C (1.5 ◦C), mean warming over
drylands should reach ∼2.7 ◦C (∼2.0 ◦C). However, Fig. 1a shows
that the CMIP5 ensemble-mean dryland warming is only about
1.05± 0.17 ◦C/96 yr for 1920–2015, which is considerably less than
that derived from the three observational data sets (the average is
1.28 ± 0.19 ◦C/96 yr). Thus, the CMIP5 models underestimate the
historical warming over drylands (Fig. 1a), and the future warming
over drylands could be more than that projected by CMIP5.

To further quantify the amplification of the warming over
drylands, we compare (Fig. 2) the mean dryland temperature
changes with the GMSW level for both observations and CMIP5
models. It is clear that the dryland warming rate is approximately
1.35 times that of the GMSW for both historical and future periods
in the CMIP5 ensemble mean (Fig. 2a). However, the amplification
in three observational data sets cannot be directly compared
with that of the CMIP5 ensemble mean, because both externally
forced changes and internally generated variations exist in the
observational data, whereas the CMIP5 ensemble mean represents
mostly forced changes16. We used the global-mean temperature
series of the CMIP5 ensemble mean to regress against the observed
temperature series at each grid point to derive an estimate of the
forced component for each of the three observational data sets, with
the residual taken as the unforced component14 (Methods). The ratio
of the externally forced component averaged over drylands (humid
lands) to that averaged over the globe is referred to as the externally

forced amplification, which is ∼1.7 for drylands based on MLOST
(∼2.0 and ∼1.6 using CRUTEM4 and GISS, respectively) (Fig. 2c).
Extending this amplification factor of 1.6–2.0 to the future, dryland
warming could be 3.2–4.0 ◦C (2.4–3.0 ◦C) when the GMSW reaches
2 ◦C (1.5 ◦C). Similarly, the externally forced amplification in humid
lands is ∼1.3 for the MLOST (∼1.3 and ∼1.2 for the CRUTEM4
and GISS, respectively), whereas the CMIP5 amplification in humid
lands is ∼1.2 (Fig. 2b,c). Thus, when the GMSW reaches 2 ◦C
(1.5 ◦C), warming in humid lands could be 2.4–2.6 ◦C (1.8–2.0 ◦C).
Similarly, amplification by the unforced component can also be
calculated, and the difference is insignificant across different regions
or data sets (Supplementary Figs 7 and 8). The results are very
similar if additional model runs are included in deriving the forced
signal (Supplementary Fig. 11).

The enhanced surface warming in drylands can be explained
by surface and atmospheric processes (Fig. 3). Over drylands, low
soil moisture content limits evaporation and low vegetation cover
leads to low transpiration rates17, resulting in a low mean latent
heat flux of 16.12Wm−2 over drylands compared with 66.49Wm−2
over humid lands (Fig. 3b) (Methods). Vegetation can lower air
temperature via transpiration18 and by converting absorbed sunlight
into chemical energy via photosynthesis19; thus, alleviating the
extra heating from increased GHGs and resulting in low warming
rates. This appears to be the case shown in Fig. 3c, which shows
that surface warming rates decrease with increasing vegetation
cover (Methods). To release the heating from solar and infrared
radiation through sensible heat fluxes, surface temperatures over
drylands must rise sharply to create a large land–air temperature
gradient. This leads to a large sensible heat flux of 66.44Wm−2
compared with that of 36.02Wm−2 over humid lands (Fig. 3b). The
high upward net longwave radiation over drylands of 79.33Wm−2
(versus 50.82Wm−2 over humid lands) also indicates a large
land–air temperature difference over drylands. Therefore, the high
sensitivity of surface temperatures to extra heating from increased
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Figure 2 | The comparison of warming amplification over di�erent regions based on CMIP5 and three observational data sets. a,b, Anomaly relationship
between the mean global surface air temperature and that of (a) drylands and (b) humid lands based on the GISS, MLOST and CRUTEM4 data sets (after
5-year running averaging). Also shown are the estimated externally forced components in the data sets (dashed lines) and the ensemble mean of the
CMIP5 historical simulations, RCP8.5, RCP6.0, RCP4.5, and RCP2.6 twenty-first-century projections (2006–2100). Shading denotes the 95% confidence
interval for the 18 models. The black dotted line is the linear regression of the CMIP5 over drylands. c,d, The amplification factor of drylands and humid
lands (c) and all land and ocean surfaces (d) from the ensemble mean of CMIP5 and the estimated externally forced components of the GISS, CRUTEM4
and MLOST data sets.

GHGs over drylands results mainly from limited soil moisture and
vegetation, and any extra heating will be used to raise the surface
temperature. In contrast, some of this extra heating can be used for
evapotranspiration over humid land20, thus decreasing the resultant
surface warming. In addition, a dry surface has a lower specific
heat than a wet surface, and the same amount of heating will
cause a larger warming over drylands than over humid lands. The
above physical processes could also be at work under GHG-induced
warming in the future5.

Furthermore, there are different types of clouds over drylands
and humid lands (Methods). Optically thick low clouds often
exist in humid lands; they are efficient reflectors of sunlight, but
their longwave warming effect is limited owing to their low cloud
tops. These low clouds cool humid land surfaces. In contrast, low
humidity leads to few clouds over drylands, which result in less
reflection and scattering of the incoming sunlight. Thin cirrus
clouds are the main cloud type found over drylands, which allow
most sunlight to pass through but absorb infrared radiation from
the surface and lower troposphere and radiate toward space at much
lower temperatures21. Thus, cirrus clouds tend to warm dryland
surfaces. Shortwave cloud radiative forcing is −21.92Wm−2 over
drylands and −52.87Wm−2 over humid lands. The difference
gives a net (longwave plus shortwave) cloud radiative forcing of
−2.63Wm−2 over drylands and of−17.68Wm−2 over humid lands

(Fig. 3d). Thus, clouds tend to cool humid land surfaces much
more than dryland surfaces. However, whether the clouds would
contribute to the different sensitivity to GHG forcing over the
two different regions will depend on how the clouds change in a
warmer climate.

Finally, satellite records of aerosol optical depth (AOD) (Meth-
ods) show that more anthropogenic aerosols exist over humid
lands than over drylands, although more dust aerosols are found
in extremely arid drylands (Supplementary Fig. 13). These an-
thropogenic aerosols absorb and scatter sunlight, thus cooling the
surface. In addition, the aerosols can increase cloud water content
and thus cloud albedo, thereby further decreasing surface tempera-
tures22 over humid lands. This may have contributed to the regional
differences in historical warming rates (Fig. 1). Besides the above
thermodynamic processes, some dynamical factors23–25 may also
contribute to dryland warming.

The above analyses indicate that dryland warming would be
considerably higher under a GMSW limit of 2 ◦C compared
with that under a goal of 1.5 ◦C. The impacts of the warming
difference in drylands between these two goals are significant in
terms of agricultural, hydrological, drought and health outcomes26
(Supplementary Tables 2 and 3) (Methods). Maize yields would
decrease slightly over drylands if GMSW were to reach 1.5 ◦C,
but the yield reduction would be more significant with 2.0 ◦C
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Figure 3 | The thermodynamic mechanisms of dryland-enhanced warming. a, Schematic diagram of local thermodynamic processes in drylands and
humid lands. b, Comparison between the mean surface energy fluxes for drylands and humid lands based on GLDAS data, including net shortwave
radiation (Net SW, downward positive), net longwave radiation (Net LW, downward positive), sensible heat flux (SH), latent heat flux (LH), and ground
heat flux (G). The error bar denotes the±1 standard deviation range of temporal variations from 1948 to 2010. c, Variations in regionally averaged
temperature trends over 1948–2015 (black) and climatological precipitation for 1948–2005 (blue) with respect to climatological (2001–2015) mean
Normalized Di�erence Vegetation Index (NDVI). Shading denotes the±1 standard deviation range of the temporal variations in the NDVI for 2001 to 2015.
d, The mean cloud radiative forcing, cloud fractions and liquid water paths during 2001–2015 averaged over drylands (red), humid lands (blue) and all land
surfaces (black). The error bar denotes the±1 standard deviation range of temporal variations from 2001 to 2015.

global warming (about −0.04 t ha−1 yr−1 or 1.1% compared with
the 1971–1981 level), in contrast to the increases in the yields
over humid lands, most of which exist in the humid lands of
Europe (Fig. 4a). However, this increase is only temporary and the
global maize yields would decrease by the latter part of the twenty-
first century, when the negative effects of increasing evaporative
demand and shortened growing season dominate27. Total runoff
(including surface and subsurface runoff) would decrease across
all land surfaces, but most significantly in drylands with a GMSW
from 1.5 ◦C to 2.0 ◦C (Fig. 4b), indicating that water shortage
in drylands could become more severe. The P/PET ratio would

decrease across all land areas with a GMSW from 1.5 ◦C to
2.0 ◦C (Fig. 4c). This suggests that precipitation changes would
not be sufficient to counterbalance the increased PET under rising
temperatures, thereby resulting in increased risk of long-lasting
drought over drylands and flash drought over humid lands28. The
climatic suitability for malaria transmission (Methods) would rise
across all land surfaces, with the greatest increases occurring in
drylands, from 19% to 27% higher than that of 1971–1981 with a
GMSW of 1.5 ◦C to 2.0 ◦C (Fig. 4d). These impact evaluations show
that dryland environments could bemore vulnerable if GMSWwere
to increase from 1.5 ◦C to 2.0 ◦C.
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We emphasize that the above analyses were based on drylands
defined using historical records. Several studies10,15,29,30 have shown
that drylands could expand and become even drier under GHG-
induced global warming conditions during the twenty-first century.
This suggests that enhanced warming in drylands could affect an
even larger population in the future10. Besides, under the given
global-mean warming target, the global warming will affect most
areas in the world, with some regions being more vulnerable than
others. Contrasting drylands with humid lands is one of the ways to
understand regional differences. For extreme temperature changes
on a local scale, conditions would be more severe3. Thus, it is
important to recognize these regional differences in setting up such
a global-mean warming target.

In summary, we conclude that regional differences should be
fully considered when discussing CO2 emission reduction schemes,
as humid (dry) lands have contributed ∼58% (19%) of historical
global CO2 emissions, but the resultant warming has been 20–40%
larger over drylands than humid lands; agricultural, hydrological
and drought- and health-related risks are expected to increase
substantially over drylands if the GMSW rises from 1.5 ◦C to 2.0 ◦C;
a 1.5 ◦C GMSW target is necessary to limit mean dryland warming
to 3.0 ◦C; and drylands should receive more attention when setting
GMSWtargets since they aremost sensitive and vulnerable toGHG-
induced climate change.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Observed surface air temperature. Three temperature data sets that were
frequently used in the IPCC AR5 and other studies were included in this study. One
is the Merged Land–Ocean Surface Temperature Analysis (MLOST) V3.5.4
developed by NOAA. MLOST is a global data set of monthly anomalies of air (over
land) and sea surface (over ocean) temperatures from 1880 to the present on a 5◦
grid covering 87.5◦ S–87.5◦ N. It was derived from land temperature data from the
Global Historical Climatology Network v3 (GHCN) and sea surface temperature
(SST) data from the International Comprehensive Ocean-Atmosphere Data Set
(ICOADS). The second data set is the Goddard Institute for Space Studies Surface
Temperature (GISS) data set31 developed by NASA on a 2◦ grid and available from
http://data.giss.nasa.gov/gistemp. It was derived from the NOAA GHCN v3 station
data, ERSST v4 (ocean areas) and SCAR (Antarctic stations) data sets, and cover
the period from 1880 to the present. The third set is the CRUTEM4 data set
developed by the Met Office Hadley Centre and the Climatic Research Unit at the
University of East Anglia32. CRUTEM4 is a data set on a 5◦ grid of surface air (over
land) and sea surface (over ocean) temperature anomalies covering the period from
1850 to the present. To fill the missing values in the CRUTEM4, Dai and Zhao33

have supplemented the CRUTEM4 with CRU TS2.3 temperature data, and this
modified version of the CRUTEM4 was used here. All these data sets are for
monthly temperatures, and we averaged them to derive the annual mean values
analysed here.

Simulated surface air temperature.Model-simulated monthly surface air
temperatures were drawn from 18 climate models participating in the Fifth
Coupled Model Intercomparison Project (CMIP5)13 (Supplementary Table 1). The
ensemble mean of these model outputs (one run from each model) was used to
represent the externally forced temperature changes in this study. The all-forcing
historical simulations (for 1861–2005) and projections (for 2006–2100) under the
different Representative Concentration Pathways (RCPs, including RCP8.5,
RCP6.0, RCP4.5, and RCP2.5) were used. When calculating temperature trends for
1920–2015 (Fig. 1), projections for 2006–2015 under the RCP4.5 were combined
with corresponding historical simulations for 1920–2005. When referring to the
2.0 ◦C or 1.5 ◦C warming limitation, the 1861–1900 pre-industrial level was used26

because it is commonly available for all CMIP5 models.

Observed precipitation. Two land precipitation data sets were used. One is the
PRECipitation REConstruction over Land (PREC/L) data set34 developed by the
Climate Prediction Center (CPC), which is interpolated from station data from the
Global Historical Climatology Network (GHCN) version 2 and Climate Anomaly
Monitoring System (CAMS) data set for 1948 to the present on a 0.5◦ grid. For
comparison, we also used the GPCC precipitation data set produced by the
German Global Precipitation Climatology Centre. We used the Full Data Product
(V7) for 1901 to 2010, which was based on quality-controlled raingauge data drawn
from 67,200 stations worldwide that had 10 or more years of data35.

Definition of drylands. Drylands are usually defined based on climatological
precipitation (P) amount (with annual P < 600mm) (ref. 9) or as regions where the
ratio of precipitation to potential evapotranspiration (P/PET) is less than 0.65
(ref. 15). When mean precipitation is used, some cold areas in Siberia covered in
frozen soils are classified as drylands because they receive low annual precipitation;
however, these areas are classified as humid lands under the P/PET classification
because of their low PET. Therefore, drylands are expanded using the precipitation
classification, while humid lands are overestimated by the P/PET classification at
northern high latitudes. Similarly, in some low-latitude areas, humid lands are
overestimated by the precipitation classification because of high levels of
precipitation over some dry areas, whereas drylands are overestimated by the
P/PET classification because of high PET levels over some moist areas. Therefore,
here we combine the precipitation and P/PET classifications to define typical
drylands and humid lands. Latitudes were limited to 60◦ S–65◦ N to exclude effects
of cold and frozen regions. We define areas with annual P < 600mm and annual
P/PET < 0.65 as drylands, and areas with annual P > 600mm and annual P/PET >

0.65 as humid lands. The climatological mean was averaged from 1948 to 2005. The
PET was calculated using the Penman–Monteith method36,37 as described by Feng
and Fu15.

CO2 emissions. The CO2 emissions data used here were time series of annual CO2

emissions from anthropogenic sources, including fossil-fuel burning, cement
manufacturing and gas flaring in oil fields as well as energy production,
consumption, and trade data, on a 1◦×1◦ grid from 1751 to 2013 drawn from the
Carbon Dioxide Information Analysis Center (CDIAC)38. Here, we analysed the
1920 to 2013 period, for which observational temperature data are widely available.

Estimating forced components and the amplification factor. The method used to
separate external forced component from internal variability in observed
temperature time series follows that of Dai and colleagues14. First, the mean of the
whole analysis period (1920–2015) was removed to focus on the anomalies. All the

analyses were for annual mean temperature. The global-mean temperature
anomaly time series of the CMIP5 ensemble mean was used to linearly regress the
observed temperature time series at each grid point:

T (n, i)=bF(i)Tm(n)+T ′(n, i) (1)

where T (n, i) is the surface temperature anomaly at grid point i for year n from
observations and n=1,2, . . . , 96 for 1920, 1921, . . . , 2015, respectively. Tm(n) is the
global-mean surface air temperature anomaly for year n from the CMIP5 ensemble
mean of historical simulations (for 1920–2005) and RCP4.5 projections (for
2006–2015). bF(i) is the regression slope at grid point i, and bF(i)Tm(n) is defined
as the externally forced component in the observations at grid point i for year n,
and the residual T ′(n, i) is defined as the unforced component due to internal
variability. Here, externally forced component averaged over the global
(90◦ S–90◦ N) surfaces (including oceans) and the drylands is denoted by T

global
F (n)

and T
dry
F (n), respectively, and the amplification factor of the externally forced

component over drylands, AF
drylands, is defined as

AF
drylands=

T
dry
F (n)

T
global
F (n)

=

∑Ndry
i=1 bF(i)Tm(n)cosϕi/

∑Ndry
i=1 cosϕi∑Nglobal

i=1 bF(i)Tm(n)cosϕi/
∑Nglobal

i=1 cosϕi

=

∑Ndry
i=1 bF(i)cosϕi ·

∑Nglobal
i=1 cosϕi∑Nglobal

i=1 bF(i)cosϕi ·
∑Ndry

i=1 cosϕi

(2)

where Nglobal and Ndry denote the number of grid points over the globe and the
drylands, respectively, and ϕi is the latitude of grid i. Note that AF

drylands does not
depend on time. Furthermore, regional means of unforced temperature anomalies
over drylands and over the globe are, respectively, denoted as

T
′dry

(n)=
∑Ndry

i=1 T ′(n, i)cosϕi∑Ndry
i=1 cosϕi

(3)

T
′global

(n)=
∑Nglobal

i=1 T ′(n, i)cosϕi∑Nglobal
i=1 cosϕi

(4)

where the amplification of the unforced component over the drylands, AI
drylands, is

defined as the regression slope between time series of T
′dry

(n) and T
′global

(n):

T
′dry

(n)=AI
drylandsT

′global
(n) (5)

Here, the intercept is zero because the mean for the whole period has been
removed. The amplification factors of other regions (humid lands, all land surfaces
and oceans) are similarly derived. The estimated amplification factors for the
unforced internal components of the three observational data sets are shown in
Supplementary Fig. 7. The results shows that the amplification factors of the
unforced internal components differ less over different regions and are close to
unity. For example, the unforced amplification factors using GISS temperature data
for drylands, humid lands, lands and oceans are 1.01, 1.04, 1.08 and 1.01,
respectively. This means that the unforced temperature signal is fairly uniform in
spatial distribution.

The amplification of the raw observational anomalies over drylands, AR
drylands, is

defined by the following regression:

T
dry

(n)=AR
drylandsT

global
(n) (6)

where T
drylands

and T
global

denote regional mean temperature anomalies over the
drylands and the globe, respectively:

T
dry

(n)=
∑Ndry

i=1 T (n, i)cosϕi∑Ndry
i=1 cosϕi

(7)

T
global

(n)=
∑Nglobal

i=1 T (n, i)cosϕi∑Nglobal
i=1 cosϕi

(8)

The amplification factors using the raw data are compared with those based on
the estimated forced components, as shown in Supplementary Fig. 9. There is no
significant difference between the two cases, which suggests that the contribution
of the unforced component is small.

Reliability of deriving forced components from CMIP5 ensemble mean. In this
study, the (nonlinear) time series of the forced global-mean temperature anomalies
is derived from the CMIP5 18-model ensemble mean of all-forcing historical
climate simulations. Nevertheless, the CMIP5 model-simulated forced changes
contain errors due to model deficiencies and errors in historical forcing data. The
reliability is discussed below.
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As shown in Supplementary Fig. 10, the CMIP5 multi-model ensemble
mean reproduces the observed global-mean temperature changes fairly well for
1920–2015. The correlation coefficient between the CMIP5 ensemble mean
and the three observational data sets (GISS, CRUTEMP4 and MLOST) is 0.928,
0.932 and 0.924, respectively. This model-simulated response was re-scaled
through regression with observations to account for the model bias, so that
the overall global warming magnitude from 1920–2015 matches that in
the observations.

Besides, it is found that the forced temperature (T ) time series at each
gridbox is highly correlated (r>0.95) with the forced global-mean T series based
on large ensemble simulations. Thus, the forced T series at each location can be
represented by the forced global-mean T series (from the CMIP5 models)
multiplied by a local scaling factor to reflect the different warming magnitudes at
different locations. The re-scaling removes any mean bias in the model-simulated
response to historical external forcing. The validation of this method has
been presented14.

Different numbers of models in our estimates of this forced signal have also
been tested and the results are very similar14. To apply a large ensemble as
verifications, the results are tested with the ensemble mean of 64 all-forcing runs
from 35 CMIP5 models to repeat the above procedures to derive the forced
changes. The results (Supplementary Fig. 11) are similar to those in Fig. 2. There is
little difference between the cases with 64 and 18 member ensembles.

Therefore, although the CMIP5 models are imperfect, their simulated
temperature response to external forcing still represents our best estimate of forced
T changes. Clearly, the results depend on how credible the model-simulated T
response is.

Extending the historical amplification factor to the future. The CMIP5 models
underestimate the historical warming over drylands; as shown in Fig. 1a, they are
likely to underestimate the future warming over drylands as well. Therefore, we
cannot use the model-projected future warming over drylands to estimate the
amplification factor for the future climate.

The forced signal has the same temporal variations (although with different
amplitudes) in the global-mean and dryland-mean temperature series (it is
determined by the external forcing time series), see equation (2). Thus, the
amplification factor is independent of time. As shown in Fig. 2a,b, a significant
linear relationship between X and Y of the CMIP5 ensemble mean maintains from
the historical period to future projections (with a correlation coefficient of >0.99),
and the forced amplification factor is around 1.35 for drylands and 1.21 for humid
lands. This means that the forced amplification factor from the observations would
also be independent of time and could be expanded from the historical period to
future projections if the forced component in observational data sets could
be derived.

To verify whether the estimated forced amplification would be reliable for
future projections, a sensitivity test is conducted. Supplementary Fig. 12 showed
that the estimated amplification factor over drylands is fairly constant if data from
1920 to 2000 or later years were included. This suggests that the amplification
factor estimated using data over 1920–2015 can be extended to future projections.
This helps us correct the underestimation of the warming over drylands projected
by the CMIP5 models for the future period.

Vegetation index. The Normalized Difference Vegetation Index (NDVI) data set39
was derived from the MODIS Terra Vegetation Indices Monthly product
MOD13C2 version 5 on a 1◦×1◦ grid. Here, we used gridded annual-mean NDVI
data from 2001 to 2015 to represent the mean vegetation density over a region.
Negative values of the NDVI (values approaching -1) correspond to water surfaces.
Values close to zero (−0.1 to 0.1) generally correspond to barren areas of rock, sand
or snow. Finally, low positive values (approximately from 0.2 to 0.4) represent
shrubland and grassland, and high values approaching 1.0 indicate temperate and
tropical forests.

Energy flux on land surfaces. Surface energy flux data for shortwave and
longwave radiation, sensible and latent heat, and ground heat were collected from
the GLDAS land model simulation using the Noah Land Surface Model forced by
observational data on a 1◦×1◦ grid (GLDAS_NOAH10_M.2.0) for 1948 to 201040.

Cloud radiative effect. In this study, monthly averages of all-sky fluxes and
clear-sky fluxes at the top of the atmosphere (TOA) from the CERES Energy
Balanced and Filled (EBAF-TOA) Ed2.8 data set41 were used to assess cloud
radiative effects (CRF). We computed 15-year averaged CRF data for January
2001–December 2015, following the standard methods used in previous studies42.
First, shortwave (SW) and longwave (LW) CRFs were obtained by calculating the
difference in radiation between clear-sky and all-sky conditions using following
equations43. The net CRF, which is the sum of SW and LW CRFs, was
then determined.

CRFSW(TOA)=(SW↓
−SW↑

all)−(SW↓
−SW↑

clear)=SW
↑

clear−SW
↑

all (9)

CRFLW(TOA)=(LW ↓

all−LW
↑

all)−(LW ↓

clear−LW
↑

clear)=LW
↑

clear−LW
↑

all (10)

CRFNet(TOA)=CRFSW(TOA)+CRFLW(TOA) (11)

In addition, cloud area fractions and liquid water paths from the SYN1deg
Ed3A data set44 were used to compare cloud properties over drylands and humid
lands. We combined cloud retrievals from both the MODIS and CERES. Because
the monthly data of cloud parameters from SYN1deg Ed3A end in November 2015,
the averaged cloud fraction and liquid water path were computed for December
2000 to November 2015.

Aerosol optical depth (AOD).Moderate-resolution Imaging Spectroradiometer
(MODIS) Level-3 Deep Blue AOD retrievals were used in this study. MODIS
instruments aboard both the Terra and Aqua platforms have a high horizontal
resolution (10 km), nearly global coverage, a wide spectral range
(0.412–14.240 µm), and a high spectral resolution (36 channels). The data set
(https://ladsweb.nascom.nasa.gov/index.html) is available on a 1◦×1◦ grid at daily,
eight-day and monthly temporal resolutions45.

Climate impact assessment. Climate impacts of the 1.5 ◦C and 2 ◦C warming
targets were assessed in terms of four sectors: agriculture (maize yield), hydrology
(total runoff), drought (P/PET), and health (climatic suitability for malaria
transmission). The impact data sets were based on projections drawn from the
ISI-MIP Fast Track database46 (https://esg.pik-potsdam.de/search/isimip-ft). The
climate simulations were drawn from four bias-corrected CMIP5 models
(GFDL-ESM2M, HadGEM2-ES, MIROC-ESM-CHEM, and NorESM1-M) with a
spatial resolution of 0.5◦×0.5◦ and a temporal range of historical simulations of
1971 to 2005, and the future projections are under RCP8.5 with a temporal
range of 2006 to 2100. Supplementary Figs 14–16 show that the climate
projections of these four models can well represent the ranges of the global mean
temperature and precipitation of the other CMIP5 models, and the
corresponding impact results are expected to be similar to those of the other
CMIP5 models.

The 1.5 ◦C (2.0 ◦C) warming condition was defined on the basis of projections
in which the 11-year-smoothed mean annual temperature reaches the 1.5 ◦C
(2.0 ◦C) warming target relative to that of 1861–1900 for each climate model. Time
slices of the climate model simulations using this definition are shown in
Supplementary Table 2. There are different impact models for each sector, and the
most frequently used impact models were chosen here. The model configuration is
shown in Supplementary Table 3. The projected 1.5 ◦C (2.0 ◦C) warming condition
for the 11-year time slices was compared with the beginning of the simulation
(1861–1900).

Climate suitability for malaria transmission. The model on climatic suitability
for malaria transmission47 was based on MARA/ARMA decision rules. This
biological model defined a set of decision rules based on daily minimum and
mean temperature constraints on the development of Plasmodium falciparum
parasites and the Anopheles vector, and on precipitation constraints on mosquito
survival and breeding capacities. Three variables were used to determine climatic
suitability for a particular geographic location: monthly mean temperature,
monthly mean of daily minimum temperatures, and total cumulative monthly
precipitation. Detailed information on this approach can be found in Hartman
and colleagues47.

Data availability. The authors declare that the data supporting the findings
of this study are available within the article and its Supplementary
Information.
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