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Abstract: The detection of cloud and aerosols using a modified retrieval algorithm solely for 
a ground-based micropulse lidar (MPL) is presented, based on one-year data at the Semi-Arid 
Climate Observatory and Laboratory (SACOL) site (35.57°N, 104.08°E, 1965.8 m), 
northwest of China, from March 2011 to February 2012. The work not only identifies 
atmosphere particle layers by means of the range-dependent thresholds based on elastic 
scattering ratio and depolarization ratio, but also discriminates the detected layers by 
combining empirical thresholds of the atmosphere’s thermodynamics states and scattering 
properties and continuous wavelet transform (CWT) analyses. Two cases were first presented 
in detail that demonstrated that the modified algorithm can capture atmosphere layers well. 
The cloud macro-physical properties including cloud base height (CBH), cloud geometrical 
thickness (CGT), and cloud fraction (CF) were then analyzed in terms of their monthly and 
seasonal variations. It is shown that the maximum/minimum CBHs were found in summer 
(4.66 ± 1.95km)/autumn (3.34 ± 1.84km). The CGT in winter (1.05 ± 0.43km) is slightly 
greater than in summer (0.99 ± 0.44km). CF varies significantly throughout year, with the 
maximum value in autumn (0.68), and a minimum (0.58) in winter, which is dominated by 
single-layered clouds (81%). The vertical distribution of CF shows a bimodal distribution, 
with a lower peak between 1 and 4km and a higher one between 6and 9km. The seasonal and 
vertical variations in CF are important for the local radiative energy budget. 
© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (010.1615) Clouds; (010.1100) Aerosol detection; (010.1110) Aerosols; (010.3640) Lidar; (280.0280) 
Remote sensing and sensors; (290.0290) Scattering. 
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1. Introduction 

Cloud plays a significant role in the earth’s climate system as it is inextricably connected to 
the atmosphere’s radiative balance and hydrological cycle. Cloud greatly affects the Earth’s 
radiation budget by not only reflecting the incoming solar shortwave radiation, but also 
trapping the outgoing terrestrial longwave radiation [1–12]. Cloud also regulates the 
atmospheric hydrological cycle and redistributes it by means of precipitation [13,14]. 
However, cloud feedback has long been identified as one of major uncertainties in 
understanding and predicting climate system due to its robust spatiotemporal variability and 
poor representativeness in climate models [15,16]. When considering the role of cloud in 
climate system, the exact information about cloud macrophysical properties such as cloud 
height, thickness and fraction is essential [17–25]. Therefore, better understanding cloud 
properties from observational view at various regions is essential [9,10,26-29]. 

Despite the decades of research efforts made to reduce the uncertainties in cloud 
properties over regional and global scales through active and passive sensors from ground-
based, space-based and in situ observation platforms, the accurate assessment of cloud is still 
one of the biggest challenges in predicting any potential future climate change [30-32]. 
Passive sensors can provide only total column amounts of layer-relevant measurements [33, 
34] and their retrieval accuracy suffers from various limitations [35], yet these disadvantages 
can be overcame by ground and space-based active remote sensors, such as lidar and radar 
[27,36,37]. The space-borne CALIOP can provide cloud and aerosol vertical distribution 
information on a global scale [38–42]. However, it is impossible to study the diurnal impact 
of particulate layer properties in the Earth system due to the limited temporal resolution [43]. 
Although lidar cannot penetrate some thick-low and -midlevel clouds because of severe 
attenuation, most mid- and high-level clouds can still be accurately observed e.g. [44]. 
Furthermore, lidar is more sensitive to optically thin targets when it is compared with the 
millimeter wave radar, e.g.  [45]. Hence, ground-based lidar is a powerful equipment, which 
could meet the demands that are highly stable, accurate, precise and long-term continuous 
observations over a specified site, for investigating the main atmospheric constituents, such as 
cloud and aerosol [46]. 

With the development of lidar technologies, the relevant algorithms of atmospheric 
feature layer detection have also been continually proposed and improved. Aforetime, the 
cloud boundary was determined only relying on the difference between scattering from 
atmospheric particle layers and the background molecules [47] or slope of lidar signal [44,48] 

                                                                                            Vol. 25, No. 24 | 27 Nov 2017 | OPTICS EXPRESS 30736 



using static thresholds. These methods need careful tuning to reject small backscatter 
enhancements caused by noise and aerosol returns, but for the technique described by Sassen 
and Cho [47], it avoids some of these problems and works more effectively in the upper 
troposphere. Winker and Vaughan [49] resolved cloud detection issue using the range-
dependent thresholds only based on the attenuated scattering ratio, and the method can filter 
noise efficiently at high altitude level. As pointed out by Campbell et al. [50], the methods 
based on the highly dependent signal profiles may need abundant threshold modification 
when applied to intensive network data from different instruments. To avoid this issue, 
Campbell et al. [50] developed a threshold algorithm based on the statistical uncertainties of 
the signal profile, an independent variable, making it more easily transferable. And it can 
realize detection of cloud and aerosol simultaneously. However, the algorithm is attenuation 
limited for multilayer cloud scenes. Afterwards, Vaughan et al. [51] established an adaptive 
range-dependent threshold algorithm and applied the multi-resolution averaging scheme to 
detect cloud, aerosol and planetary boundary layers (PBL) for CALIOP, which can detect 
more cloud layers even for multilayer cloud situations. Based on different principle, 
continuous wavelet transform (CWT) analysis has been introduced to identify particulate 
layer structure in the lidar profile. This method could be not only used for boundary layer 
height analysis [52, 53], but also designed to retrieve the vertical distribution of cloud and 
aerosol [54]. Zhao et al. [55] firstly detected aerosol/hydrometeor layers based on semi-
discretization processing (SDP) method and value distribution equalization (VDE) to 
minimize the impact of noise in lidar signal, then discriminated clouds and aerosols based on 
empirical threshold values. Liu et al. [56] combined the slope method and empirical threshold 
values to separate cloud from aerosol layer and used linear depolarization to identify cirrus 
cloud. However, there still have no universal particulate layer detection algorithm for lidar 
measurements without limitation. This is because there is no binary solution to analyzing 
signal returns for particulate layer structure across the laser emission spectrum [44, 50].  

Recently, an automated feature detection and extinction retrieval (FEX) algorithm for 
Raman lidar (RL) at ARM sites was developed by Thorsen et al. [57] and Thorsen and Fu 
[58]. The approach of feature detection in FEX was to use multiple quantities (scattering 
ratios derived using elastic and nitrogen channel signals from narrow and wide fields of view, 
scattering ratio derived using only elastic channel, and the total volume depolarization ratio) 
to identify the atmosphere feature using range-dependent thresholds. The extinction retrieval 
of FEX, which is supported by a classification of feature types (aerosol, water cloud, ice 
cloud, rain and HOI), realized the best estimate of particulate backscatter and lidar ratios for 
all detected features. FEX is an iterative algorithm, where the extinction retrieval is not only 
required by both the feature classification and the multiple-scattering model, but also needed 
by feature detection and vice versa. FEX has good performance at detecting all major features 
due to using multiple quantities and classifying features reasonably owing to obtaining lidar 
ratio. However, for elastic lidars, dust aerosol was always mistakenly identified as ice cloud 
based on empirical thresholds relying on the atmospheric thermodynamic state and the 
feature’s scattering properties (backscatter coefficient, and depolarization ratio). It is obvious 
that FEX is suitable for RL and high spectral-resolution lidar (HSRL) systems that can 
intrinsically separate signal returns from molecules and particulates, but not for the general 
elastic lidars.  

The micropulse lidar (MPL) has been operated continuously for 8 years at SACOL since 
March of 2007. In addition, four intensive observation field campaigns have been carried out 
at sites of Minqin, Dunhuang, Zhangye and Jingtai, respectively. Thus, MPL has accumulated 
large and extremely valuable datasets for aerosol and cloud research during these periods. 
However, there have not been a uniform algorithm to retrieve the macrophysical, optical and 
microphysical properties of cloud and aerosol. Consequently, no standard cloud and aerosol 
products haven’t been formed yet to explore more valuable information. MPL is only an 
elastic lidar, without Raman channel, which means the FEX algorithm cannot be used directly 
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to these data, but the variables available such as elastic scattering ratio and depolarization 
ratio could also be used for layer detection, and then layers also can be classified reasonably 
by combining the empirical thresholds determined by both the features’ scattering properties 
and atmosphere’s thermodynamics states with CWT method. In this study, an automated 
cloud and aerosol feature detection algorithm for MPL based on context-sensitive thresholds, 
which is modified from the FEX algorithm [57,58] and further uses the CWT analyses.  

The SACOL MPL instrument and the modified layer detection and classification 
algorithm are described in section 2. Section 3 shows the two case studies, the evaluation of 
the CWT, and the description of samples and cloud macrophysical properties by applying the 
modified retrieval algorithm to MPL observations at SACOL. Summary and conclusions are 
given in section 4. 

2. Instrument and methodology 

2.1 SACOL site 

The SACOL (35.946°N, 104.137°E, 1965.8 m) is located at the top of Tsuiying Mountain in 
Yuzhong campus of Lanzhou university, which is around 48 km from Lanzhou city. Figure 1 
shows the topography of East Asia and the location of SACOL site. The SACOL site is 
located in a path of Asian dust long-range transportation [59,60]. Like the most observational 
sites over the northwest of China, the observation was obviously affected by frequent dust 
events in the spring. The Atmospheric observations at this permanent site began in 2006 with 
the objective to operate a combination of several instruments for measuring atmospheric 
radiation, wind, atmospheric temperature and humidity, clouds and aerosols as well as land-
atmospheric interaction processes [61,62]. Following up these observations, the lidar system 
operated in 2007 and the advanced 8.6mm KAZR cloud radar collected data starting in 2013 
[63]. 

 

Fig. 1. Geographical coverage of East Asia (10–55° N, 70–140° E). The red pentagram shows 
the location of SACOL site in Northwest China. 

2.2 MPL 

The MPL-4B, manufactured by NASA Goddard Space Flight Center, is a safe, compact and 
maintenance-free lidar system for long-term measurements of vertical profiles of aerosol and 
cloud [64]. More detail information about the standard designs, site maintenance and 
calibration techniques of MPL and its characterization are given by Campbell et al. [65]. The 
data uncertainties related to the lidar instrument were depicted elaborately further by Welton 
and Campbell [66]. This lidar system at SACOL which have only one elastic backscatter 
channel of 527nm, has automatically and continuously operated since March of 2007. After 
September 2009, it is an upgrade of a pre-existing one, which could measures the polarization 
property of atmosphere particles. In addition, the vertical resolution was improved from 75m 
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to 30m, and temporal resolution still remained 1 minute. In this study, the observation data 
from March 2011 to February 2012 at SACOL were used. 

2.3 ERA-Interim data 

To calculate expected molecular signal and distinguish the cloud phase and aerosol, the 
variables like temperature, pressure and humility profiles were also needed. Here, these 
variables were obtained from ERA Interim reanalysis produced by the European Centre for 
Medium-Range Weather Forecasts (ECMWF), covering the data-rich period since 1979 and 
continuing to be updated in real time (http://apps.ecmwf.int/datasets/). Its spatial resolution is 
0.125° and temporal resolution is 6 h. It has 37 vertical levels from 1000hPa to 1hPa [67]. To 
verify the reanalysis data, the comparison of temperature and humility profiles between 
radiosonde at Yuzhong station (52983, 35.87°N, 104.15°E, approximately 8.54 km away 
from SACOL site), which is launched at 08:00 and 20:00 each day, and the nearest pixel 
(36.00°N, 104.125°E, about 6.11km away from SACOL site) of ERA-Interim reanalysis were 
performed at the same moments. The results suggest that ERA-interim could provide reliable 
vertical profiles of temperature and humility. Hence, it was adopted to represent the 
atmosphere conditions at SACOL in this work. 

2.4 Data analysis and methodology 

The fundamental of feature layer detection in this work is based on the signal detection theory 
in this work [e.g., 57,68]. Simply, atmosphere particle layers can be detected by setting a 
threshold in the presence of two probability distributions that describe the expected molecular 
signal and measured lidar signal, respectively. Figure 2 displays the flowchart of modified 
layer detection and classification algorithm that is iterative.  The automated cloud and aerosol 
feature detection algorithm is developed for the MPL based on context-sensitive thresholds, 
which is modified from the FEX algorithm [57,58], and further uses the CWT analyses. Here 
we emphasize on the processes of the methodology: calculating ratios and identifying feature 
layers (section 2.4.1), and distinguishing and revising layer types (section 2.4.2). 

2.4.1 Calculating ratios and identifying feature layers 

In this study, two variables available including the elastic scattering ratio and linear 
depolarization ratio were used to identify atmospheric particulate layers. 

The lidar equation owing to elastic backscattering [69] can be written as: 
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where C  is system calibration constant, E  represents the emit energy of the laser pulse, 

( )rO  is the overlap function that exhibits the conflicts between the outgoing laser beam and 

the receiver field-of-view (FOV). ( )m rβ  and ( )p rβ  are the molecular and particulate 

backscatter coefficients, respectively. The two exponential expressions in the equation are the 
transmittance due to molecules and particulates, where ( )m rα  and ( )p rα  are the molecular 

and particulate extinction coefficients, respectively; P(r)  is the total lidar signal with 

correction of deadtime, afterpulsing, background noise [65], which is the main input of this 
algorithm. For MPL with polarization, P(r) was also written as [70]: 

 cr coP(r) 2P (r) P (r)= +  (2) 

where ( )P rcr  and ( )P rco  represent the signals in “cross-polar” and “co-polar” channels, 

respectively. 
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Fig. 2. Diagram showing the processes in the modified layer detection and classification 
algorithm for MPL. 

The molecule backscatter ( )m rβ  can be accurately modeled and expressed as [71]: 
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where (r)N  is the molecular number concentration profile. / ΩRad d πσ  is the differential 

backscatter cross sections for Rayleigh scattering. 
The scattering ratio is defined as the ratio of the total (particulate and molecular) 

backscatter to the expected pure molecule backscatter. It can be acquired by combining the 
Eq. (1)-(3). 
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Correspondingly, the expected clear-sky scattering ratio can be expressed as: 

 ( ) ( ) ( ) ( )( )SR A 2P r P rm m m
E cr cor r= +  (6) 

where A(r)  contains all other terms in scattering ratio that have ignorable random noise when 

compared with the signal noise; the superscript “m” of different quantities denotes the 
relevant different expected molecular values. 

For MPL, to calculate the linear depolarization ratio, the so-called MPL depolarization 
ratio need be calculated [70] firstly: 
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where ( )_P rcr o  and ( )_P rco o  are the lidar signals corrected by overlap functions of ( )rcrO  

and ( )rcoO  in the “cross-polar” and “co-polar” channels, respectively; Then the linear 

depolarization ratio can be acquired: 
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Similarly, the expected clear-sky linear depolarization ratio can be written as: 
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To identifying aerosol and cloud layers, both the expected clear-sky ratio and 
corresponding noise are needed, thus, the molecular signal and random noise in each channel 
are demanded. 

The signal-to-noise (SNR) is a parameter to assess lidar performance. It is generally 
defined as: 
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For MPL, SNR can also be showed as [72]: 

 ( ) ( )
( )

P
SNR r

P Pbkg

N r

N r N
=

+
 (11) 

where N is the number of accumulated shots in a temporal shot average and Pbkg  is the 

received power due to the solar background. 
Naturally the signal noise in each channel can be calculated as: 
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Here, ( )P r  indicates the measured lidar signal. If it is replaced by the molecular lidar 

signal, the random noise of expected clear-sky signal can be required by Eq. (12) 
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By propagation of uncertainty [73], the noises of two ratios in the Eq. (6) and (9) are: 
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The range-dependent threshold profile for two ratios can be obtained: 

 ( ) ( ) ( )τ r * m
m

R
R r C rσ= +  (16) 

where ( )mR r  is ratio, ( )mR
rσ  is uncertainty of ratio, C is constant coefficient and ( )τ r  is 

the context sensitive threshold set to identify cloud and aerosol layers. Portions of the 
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measured ratio profiles that exceed the threshold profile ( )τ r are considered to potentially 

contain atmospheric particle layers. Additionally, spatial filter is still used to reduce false 
detections, that is, the pixels where the overlap probability P between the expected molecular 
signal and measured signal distributions (Ref [57], Fig. 1.) is more than the threshold 
determined empirically are thought as false detection and changed as clear sky. Based on the 
fact that the wavelength of MPL laser operates is in a region of maximum solar energy, so it 
is obvious that MPL observation must contend with a large amount of additional noise during 
daytime [74]. Here, the different thresholds for C in the depolarization ratio and for P in the 
scattering ratio were used during day and night [20] to detection complete particle layers. Of 
course, the additional modification was needed to revise the detected particle layers. It was 
noticeable that scattering ratio can produce pseudo big values due to extinction iteration, 
which can identity some fake particle layers in the processing of methodology. So the 
scattering ratio in the first iteration was used in each circulation to identity reasonable particle 
layers, if the particle layers detected in the second iteration increases by 1% of that in the first 
iteration empirically. In the meanwhile, the big value area (>10) of scattering ratio in the last 
iteration is used to avoid missed particle layers. For the particle layers detected by 
depolarization ratio, once the Nth pixel with the depolarization ratio greater than 0.5 in each 
profile from bottom to top, the pixels between Nth to top were removed. 

2.4.2 Distinguishing and revising layer types 

In this work, particle layer types are essential for extinction retrieval and modeling multiple 
scattering. Thus, classifiers are used to differentiate detected particle layers as aerosol, liquid 
cloud, or ice cloud. 

Previous studies realized particle layer classification by combining different remote 
sensors [44,75]. For lidar, the classification methods are neural networks, probabilistic 
methods and empirical thresholds [76]. The neural networks and probabilistic methods are 
more sophisticated. Here, considering that MPL contains only one elastic channel, particle 
layer classification could not simply rely on a set of rules and empirical thresholds in the FEX 
algorithm for the Raman lidar [57,58], but a further analyses using the CWT method could 
help distinguish cloud from aerosol, especially for dust events. 

In this work, the empirical thresholds were determined based on optical properties such as 
backscatter coefficient, linear depolarization ratio mainly, as well as atmospheric 
thermodynamic state such as temperature, wet temperature. Here the solution of Fernald [77] 
was used to retrieve profiles of the particular extinction and backscatter. And the assumed 
lidar ration values for aersol, water cloud and ice cloud are 50sr, 18sr, and 22sr [58,78,79]. 
Comparing with the threshold (0.09) at ARM sites [58], the higher threshold of depolarization 
ratio (0.21) used in this work may result from more nonspherical particles at SACOL in 
northwest of China. As mentioned above, SACOL is in the path of long-range dust 
transportation, where the dust happens frequently in early spring and late winter. The dust 
aerosol with bigger depolarization ratio can be mistakenly identified as ice cloud if only 
relying on the empirical thresholds without best estimation of lidar ratio. To distinguish dust 
aerosol from ice cloud, the boundary of ice cloud layer must be found, which can be achieved 
by continuous wavelet transform (CWT). This method is based on the high correlation 
between the lidar signal and the “Mexican hat” wavelet shape [54]. The CWT was applied to 
the scattering ratio due to the relatively striking contrast between aerosol and cloud in it. In 
this work, the mean CWT coefficients along the lines were used to avoid the bias caused by 
the selected coefficient particularly. The threshold of CWT coefficients was selected as 11 to 
discriminate cloud layer from the aerosol layer. Under this condition, the peak of cloud layer 
could be found accurately, while the top and base location need to be modified. The revised 
top was defined as the peak height adding the number of bins with the values of scattering 
ratio greater than 6 in the range of peak and top for each profile. The revised base height was 
defined as the peak height subtracting the number of bins with the values of scattering ratio 
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greater than 8 in the range of peak and base for each profile. Ultimately, the particle layers 
was classified reasonably. 

3. Results and discussion 

In this paper, the four seasons are defined as spring from March to May (MAM), summer 
from June to August (JJA), autumn from September to November (SON) and winter from 
December to February (DJF). The following shows the two cases by applying the modified 
feature detection algorithm (3.1), the evaluation of the use of CWT (3.2), the description of 
observational samplings (3.3), and the corresponding statistical results of cloud 
macrophysical properties (3.4). 

3.1 Case studies 

 

Fig. 3. (a) Scattering ratio, (b) linear depolarization ratio, (c) particle layers where each color 
represents a different combination of the two ratios: scattering ratio (SR, purple), 
depolarization ratio (Dep, green) and both ratios (All, blue), (d) particle layer types which 
show liquid cloud (blue), ice cloud (black) and aerosol (gray), (e) particle layer types with 
CWT, the colors indicate the same meaning as (d). The date is for March 7, 2011 at SACOL. 

Figure 3 shows a case result of the algorithm in dust incident on March 7, 2011. In Fig. 3(a) 
and Fig. 3(b), both scattering ratio and depolarization ratio are high around 3-8km during 
03:00-16:00 UTC, which demonstrates this is ice cloud. The value of depolarization ratio 
around 0-2km is about 0.21-0.25 and routine synoptic record from visual observation by 
station personnel on that day was written as floating dust. Thus, it is obviously that it is a dust 
incident. On this day, the aerosol layer exists throughout the whole day. The dust aerosol in 
00:00-09:00 UTC is relatively weak, which originates from the gradually weaken dust in 
March 6. After 09:00 UTC, the height of dust aerosol layer became higher, which buried the 
low part of ice cloud until the ice cloud passed by SACOL about 16:00 UTC. Then, the strong 
dust lasted for two hours and gradually weakened at 18:00 UTC. In Fig. 3(c), the combination 
of scattering ratio and depolarization ratio can capture the particle layers sufficiently. With 
the advantages of respective detection, both can detect cloud reasonably, but depolarization 
ratio is more adept in detecting aerosol in this work. Figure 3(d) visualizes the particle layer 
types relying on empirical thresholds based on depolarization ratio and backscatter 
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coefficient. It is obvious that dust aerosol was mistaken as ice cloud. The similar mistaken 
scenes are frequent over the dust source regions and near dust source regions [80–82]. To 
avoid the problem, CWT that can detect discontinuities (base, top and peak) of individual 
particle layer based on scattering ratio in the last iteration was used to find cloud boundary in 
the dust aerosol, which is showed in Fig. 3(e). By comparing Fig. 3(a), (b) with cyan area in 
Fig. 3(e), it is obvious that ice cloud and dust aerosol can be differentiated well by combining 
empirical thresholds with CWT. It exhibits robust detection capacity in classifying layer types 
in the whole data, especially for distinguishing ice cloud from dust aerosol in dust events 
during spring and late winter. 

 

Fig. 4. The same as Fig. 3., but for June 04, 2011 at SACOL. 

Figure 4 shows the retrieval result of a non-dust situation for MPL on June 04, 2011. By 
observing Fig. 4(a) and Fig. 4(b), there exist low and high clouds on this day. The low mixed 
phase cloud around 3-5 km during 00-12:00 UTC originates from the high ice cloud that 
passed through SACOL at 15:00 UTC on June 03, 2011. The high mixed phase cloud, mainly 
ice crystal, is around 6-9 km during 09-24:00 UTC. And the low and high clouds passed 
through SACOL overhead simultaneously during 09-12:00 UTC. Aerosol layer exists 
throughout the day, which is topped by clouds. The aerosol is weak during 00-06:00 UTC, 
strengthens and interacts with low cloud during 06-18:00 UTC, and is weaker and 
delaminates into two layers during 18-24:00 UTC. In Fig. 4(c), all major layers are detected, 
including some small isolated parts about 8 km during 09-12:00 UTC. It is obvious that the 
combination of both ratios can capture the particle layers very well. Figure 4(d) pictures 
particle layer types only relying on empirical thresholds. The depolarization ratio values of 
supercooled water in mixed phase cloud during 04-05:00 UTC are less than 0.1 and ice cloud 
during 18-19:00 UTC are more than 0.25, while the scattering ratio values of the clouds are 
more than 10. This demonstrates that the algorithm can realize the reasonable classification in 
the detected atmospheric particle layers. 

As described above, CWT can avoid the problem that dust is mistaken as ice cloud in 
classifying layer types only relying on empirical thresholds with elastic lidar. And the result 
of layer types with the combination of CWT and empirical threshold method is consistent 
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with the result of layer types without CWT (only relying on the empirical threshold method) 
in non-dust events. In this case, the difference of cloud pixels between Fig. 4(d) and Fig. 4(e) 
relative to the cloud pixels in Fig. 4(d) is only 2.14% and the difference of cloud base/top 
height is only −0.59%/-0.14%. They are all thought as reasonable bias. 

3.2 Evaluation of the performance empirical threshold method along with CWT 

 

Fig. 5. Diurnal variation in accumulated cloud pixels (absolute amount) observed by the MPL 
for (a) the result without CWT,(b) the result with CWT and (c) the difference between the both 
results at SCOL from March 2011 to February 2012. 

The accumulated cloud pixels for the results without/with CWT and the difference between 
them during 2011 are shown in Fig. 5. Both Figs. 5(a) and 5(b) show that more clouds occur 
during night than during day. Zhao et al. [55] also reported the same diurnal variation for 
cloud. Considering the characteristics of MPL, the difference is at least partly due to the 
effects of solar background noise on lidar signal during daytime [83]. By comparing Fig. 5(a) 
with 5(b), the result without CWT visualizes the more so-called low clouds within 3 km, 
which is shown in Fig. 5(c). This result demonstrates that the obvious difference exists 
between the results without and with CWT part in our modified method. As shown by Fig. 3, 
this difference is very likely caused by dust aerosol in low latitudes. 
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Fig. 6. The seasonal vertical distribution of difference between the results without/with CWT 
relative to the profiles available (solid lines, relative amount) and while the reference “0” line 

(the dashed line). 

To further verify what causes the difference shown in Fig. 5(c) in detail, the seasonal 
vertical distribution of difference percentage that is the absolute difference relative to the 
number of profiles available was illustrated in Fig. 6. As mentioned above, the dust events are 
always measured during late winter and spring at SACOL site, so Fig. 6 is in accord with our 
expectations: the largest difference (about ~30% within 1 to 2 km) below 8 km can be found 
in spring, which is caused by dust aerosol mistaken as ice cloud without CWT. The obvious 
difference (about 7% within 0.36 to 0.6 km) below 1 km also occurs in winter, which 
suggests that the dust aerosol may be weaker in winter than in spring in 2011 at SACOL. Due 
to the fixed scaling coefficient selected for different center heights in CWT, so it may 
sometimes omit few cloud pixels (mainly water cloud, about 3% within 0.36 to 0.54 km) with 
range of 0.36 to 0.6km in autumn. The bias, however, is negligible for the whole data. In 
summer, CWT detected more cloud pixels (about −1% within 3 to 7.5km) within the range of 
2 to 8 km, which exhibits that CWT can supplement cloud detection omitted by the empirical 
threshold method. That is shown in higher accumulated cloud pixels around 6-8 km from 
14:00 to18:00 UTC in Fig. 5(b), when compared with Fig. 5(a).  

3.3 Description of samples 

 

Fig. 7. “Avi prf” (black line) presents the total number of profiles available relative to expected 
total number of profiles in each month; “Cld prf” (blue line) presents the total number of cloud 
profiles relative to the total number of profiles available, namely cloud fraction (CF); “Tans 
prf” (red line) presents the number of fully transparent profiles relative to the total number of 
cloud profiles. 
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Figure 7 shows that the monthly variation of “Profiles Available”, “Cloud Profiles” and 
“Transparent Profiles” during one year. For the profiles available, the MPL data suffered 
from occasional quality issues during our analysis period, which are identified and removed. 
As a result, the total number of profiles available is 224129 in 2011. Differences in sampling 
during analytical time period can cause observations to favor the cloud properties of a 
particular month/season. In the view of monthly variation, it is noted that profiles available 
are little during July-September in the whole year, especially for September (19%, only six 
day observation data). The analysis of cloud base height (CBH) and CF was based on the 
profiles available. 

CF is defined as the percentage of cloud profiles within a specified sampling period (e.g., 
a month or a season) regardless of the number of cloud layers. Although ground-based-lidar-
derived CFs represent only a pencil beam of the sky that depends on the advection of clouds 
overhead, they have been found to be statistically representative in long-term averages (i.e., 
monthly) of the entire sky when compared with long-term satellite and surface observations 
[84,85]. CF exhibits strong seasonal variability with the maximum value observed in autumn 
(68%), the minimum in winter (58%) and a secondary minimum in summer (59%). In the 
view of meteorological variations, the relatively high surface pressure, cold temperatures, and 
low moisture in the winter, especially for December, can induce the low CF during the winter 
[86]. 

But for summer, broken boundary layer clouds may be responsible for the low CF [87]. 
The high frequent occurrence of low-level clouds (as shown in Fig. 9) results in the highest 
CF during autumn months in the year. However, the results of previous studies [55,84,88] in 
mid-latitude sites indicate that the maximum/minimum CF value is in winter/summer. This 
may mainly results from different meteorological conditions for different sites, but may also 
partly result from the sampling differences. 

For the transparent profiles, they only contain the profiles that lidar signal was not 
completely attenuated by cloud layers. Several procedures are carried out based on scattering 
ratio profiles to identify these profiles [89]. First, the cloud free interval is not determined 
above cloud until the scattering ratio in the lowest bin above cloud range is within 10% of a 
numerical fit to the scattering ratio in the next 8 range bins. Otherwise the lowest bin is 
discarded and an additional bin is added at the top. It is noted that the requirement that 
scattering ratio of the lowest bin is not more than 10 and the decrement rate of scattering ratio 
among the lowest four bins is within 10% needs to meet. Second, if at least 4 points (120 m) 
above the cloud layer coincide to the demand that the decrement rate of scattering ratio is 
within 10%. It is then determined that the MPL signal was transparent. The statistics of cloud 
geometrical thickness (CGT) and cloud layers per profile are only derived from the data set of 
transparent profiles. In the view of seasonal variation, the minimum (31%) of the percent of 
transparent profiles are in autumn when the CF is maximum. This may suggest that the large-
scale horizontally stratiform clouds are usually opaque for lidar signal in autumn. 

3.4 Statistical results 

Considering severe attenuation in lidar signals by thick clouds, the analysis of CBH detected 
in this study refers to the analysis of the first cloud layer base detected from the ground 
regardless of the number of cloud layers detected. 

In Fig. 8, the little difference between mean and median values of monthly CBH suggests 
that monthly distribution of CBH may be normal although the same general trends are 
apparent [56,85]. The spread of CBH is largest in May and least in January for all day. By 
comparing the CBH in the day and night, the spread of CBH is more striking in day during 
May, while there is almost no difference in spread between day and night in January. The 
monthly mean CBH values are more than the yearly average during April-August period and 
less than the yearly average during September-March period. This results in strong seasonal 
CBH variability with a maximum value of 4.66 ± 1.95km in summer and a minimum value of 
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3.34 ± 1.84km in autumn. However, the result shows that the different seasonal patterns in 
CBH, i.e., maximum/minimum values in summer/winter, at other mid-latitude sites [56,90]. 
In autumn, there is higher frequent stratus cloud between 0 and 2 km (shown as in Fig. 9(c) 
and Fig. 9(d)), which can induce CBH to be lower directly, in autumn than during winter 
(3.46 ± 1.60km). The annual average CBH values are 3.87 ± 2.18km (4.05 ± 2.19) for day 
(night). The highest annual mean CBH was found during the night. 

 

Fig. 8. Monthly mean CBH for (a) all day, (b) day, and (c) night from March 2011 to February 
2012 at SACOL. Box and whisker plots include the median (red line in the box), 25th and 75th 
percentiles (bottom and top of the box), 5th and 95th percentiles (bottom and top of the 
whisker), the mean (multiplication sign) and annual means (black lines). 

 

Fig. 9. Vertical variation in the frequency of CBH occurrence during (a) spring, (b) summer, 
(c) autumn, (d) winter from March 2011 to February 2012 at SACOL site. Black lines are for 
the cloud during the all day, red lines are for day and blue lines are for night. CBHs were 
averaged over 0.18 km in the vertical direction. 

Figure 9 shows vertical frequency distributions of CBH seasonally during the year. By 
comparing the seasonal variation in day with in night, it is obvious that the whole variation 
trends are very consistent even though there exists some differences in certain heights. It 
suggests that day and night have little influence on the vertical distribution of CBH. In the 
view of seasonal variation, there is a triple-mode pattern in spring and summer. The first 
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narrow peak is boundary layer clouds ( 1km≤ ), the second obvious peaks lie around 2 km and 
3.5 km and the third group of peaks are around 5.5-11km and 7-11 km in spring and summer, 
respectively. This implies that the dominant cloud types may be convective clouds and cirrus 
in summer and spring. In autumn and winter, the distribution of CBH shows the obvious 
bimodal and the higher peak shows difference with narrower height range and wider 
numerical scope in winter. This suggests that the prevalent cloud types are stratus and 
altocumulus cloud in autumn and stratiform clouds including status and altostratus in winter 
[32,44,]. The similar vertical CHB distribution is also observed by Zhao et al. [55], Lewis et 
al. [43] and Zhang et al. [91]. In the mid-latitude, the larger low-level cloud fraction is 
associated with greater estimated inversion strength (EIS) [92]. It is suggested that EIS is 
least in summer and greatest in autumn in the low troposphere in 2011 at SACOL. 

 

Fig. 10. The same as Fig. 8, bur for CGT for transparent profiles only. 

Figure 10 visualizes CGT monthly variation during the all day (A), day (D) and night (N) 
for transparent profiles only. CGT is simply the difference between cloud top and cloud base 
height based on the transparent profiles. The spread of CGT is largest in October and least in 
March and September for all day. By comparing the CGT in the day and night, the spread of 
CGT is more striking in night during October and smaller in night in September, while there 
is almost no difference in spread between day and night in March. The monthly mean values 
of CGT for all day are below the yearly average in July, August, October and December. This 
may result from the high frequency isolated thin cirrus in June and July and prevalent stratus 
cloud in October and December. The cloud is generally slightly thicker during winter 
(1.05 ± 0.43km) than during summer (0.99 ± 0.44km). This suggests that cloud layers are 
thicker than warm ones. The mean annual cloud thickness is 1.03 ± 0.41km (A), 
0.98 ± 0.45km (D) and 1.05 ± 0.48km (N). The cloud is thicker during night than during day. 
These are consistent with the result at SGP site [90]. 
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Fig. 11. The frequency distribution of CGT at 0.2 km intervals in seasonal variation during (a) 
spring (black line), (b) summer (blue line), (c) autumn (red line), (d) winter (purple line) from 
March 2011 to February 2012 at SACOL site for transparent profiles only. 

 

Fig. 12. Monthly variation in frequency of number of cloud layers in the transparent profiles 
such as single-layer (blue), two layers (red), three layers (green), four layers (orange) and more 
than four layers (magenta) for the all day (A), day (D) and night (N) at SACOL. 
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The seasonal frequency distribution of CGT between 0 and 5 km is illustrated in Fig. 11 
based on the transparent profiles only. The distribution of CGT performs bimodal style, with 
low peak at 0.5 km and high peak at 1.5 km in four seasons. Especially for winter, the low 
peak value is distinctly less than other peak values of the other three seasons, and has little 
difference with the high peak values of winter. Due to the limited detectivity of lidar, the 
detected CGT is rarely more than 3 km in the transparent profiles. It is noticeable that there 
are big frequency values at 0.1 km in four seasons, which may be caused by the broken 
clouds detected in algorithm such as the clouds in the case 2 around 9 km during 9:00-10:00 
UTC on June 04, 2011. Of course, noise can be occasionally mistaken as broken clouds and a 
piece of very weak cloud can be classified as several broken clouds in the algorithm. 

Figure 12 shows the monthly variation in frequency of number of layers in the transparent 
profiles for the all day (A), day (D) and night (N). The single-layered clouds (81%) is 
dominated in the MPL-detected clouds, especially for nighttime. This is consistent with the 
result (80%) of Zhao et al. [55] at SGP site for MPL. In the view of monthly variation, more 
than 75% of clouds are single-layered system in each month; the two-layered clouds are more 
than 10% in each month except for August; the three-layered clouds are about 2%-4% in each 
month; the multi-layer (>3 layers) clouds happens more frequently during winter than the 
other seasons. The latter may be related to more broken clouds in winter shown in Fig. 11. 

 

Fig. 13. Vertical variation of the CF (solid lines, down axis of (a)-(d)) and accumulated 
transparent (cloud + clear-sky) pixels N (dashed lines, top axis of (a)-(d)) in the transparent 
area and the CF in transparent profiles ((e)-(h)). 

The seasonal vertical distributions of the CF and accumulated transparent pixels in the 
transparent area (Fig. 13(a)-(d)) and the CF in the transparent profiles (Fig. 13(e)-(h)) for all 
day (A), day (D) and night (N) were shown. The transparent area is defined as the 
combination of pixels if the lidar signal is not completely attenuated in profiles. The 
accumulated transparent pixels decreases with height based on the ground-based MPL 
observation. Overall, there is obvious bimodal distribution with a low peak located near the 
boundary layer and a high peak located in the upper troposphere in both CF definition 
profiles. The similar bimodal vertical distribution was documented by Mace et al. [94], Xi et 
al. [88], Kennedy et al. [93] and Zhang et al. [91] at SGP site. It’s obvious that the upper-
troposphere cloud layers dominate the heating of the troposphere, while lower-level clouds 
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provide a largely counterbalancing cooling influence. Thus, the combination of these two 
cloud types may result in little net atmospheric cloud radiative effect [94]. 

In the view of seasonal variation, the two peaks in the both CF definition profiles show 
differences in different seasons. The low peak is around 3-4 km and high peak is around 7-9 
km in spring and summer, while the low peak is around 1-2 km in autumn and winter and the 
high peak is around 8 km in autumn and 6 km in winter. In Fig. 13(a)-(d), the distribution of 
cloud layer in the summer can extend to higher altitude (at ~13 km) than those in other 
seasons, which is due to a deeper troposphere and the more frequent convective storms [82]. 
Small frequency values located below 2 km occur in summer when comparing with the other 
seasons because stratus clouds are seldom seen then [90]. For the CF in the transparent 
profiles, the higher peak has a greater cloud frequency value, which implies that lidar signal 
can mainly passes through the high clouds such as cirrus, especially in summer and autumn. 

In the Fig. 13(a)-(d), there is little diurnal difference of low-level clouds seasonally, while 
the most and least diurnal difference of high-level clouds occur in winter and spring, 
respectively. On the whole, the more clouds are observed in night than in day except that the 
more clouds happens within 4-6 km in day than in night during summer and autumn. This 
may result from the lidar detection characteristic, that is, lidar signal was effected severely by 
solar background noise during day on the condition that the opaque clouds are alike in day 
and night. Thorsen et al. [83] reported that the ground-based RL observes more ice cloud in 
night that in day at Atmospheric Radiation Measurement (ARM) Darwin site (12.325°S, 
130.891°E). Zhao et al. [55] portrayed that more high-level clouds occur in night than in the 
day at Taihu site. These results confirm that more clouds may actually occur at night. That 
more clouds occur for night than day, especially at high altitudes, means that they would trap 
more longwave radiation within the atmosphere during nighttime and cause weak diurnal 
variations in temperature. In the Fig. 13(e)-(h), the least and most diurnal difference of low-
level clouds happen in winter and summer, respectively, while the most diurnal difference of 
mid-level clouds and high-level clouds occur in autumn and winter, respectively. The more 
clouds are observed in night than in day during spring, autumn and winter except that the 
more clouds occur in day than in night within 3-7km. Especially for summer, the more clouds 
happens in day than in night within 5-10km and it is contrary at other altitudes. 

Although the different defined CFs reflect different diurnal and seasonal variation in 
vertical distribution of CF in some altitudes, they are still very important for the local 
radiative budget at the SACOL site and should be considered when studying cloud radiative 
forcing. 

4. Summary and conclusions 

An automated cloud and aerosol layer detection algorithm has been developed for MPL, 
which is modified from the FEX algorithm with further use of the CWT. It realizes the 
particle layer detection using scattering ratio and depolarization ratio relying on the range-
dependent thresholds, and makes particle layer classification by combining the 2-D empirical 
thresholds guided by depolarization ratio and backscatter coefficient and CWT. The CWT 
makes up the drawback of empirical thresholds with elastic lidar in classifying particle layers. 
The modified algorithm was applied to one year of MPL data at China SACOL site and the 
detection results and corresponding analyses confirmed the robust performance of the 
modified algorithm for MPL. 

The temporal variation and vertical distribution of cloud macrophysical properties such as 
CBH, CGT and CF have been examined based on the results of the modified algorithm. At 
SACOL site, the maximum/minimum CBHs were found in summer (4.66 ± 1.95km)/autumn 
(3.34 ± 1.84km), which are different from the seasonal patterns in CBH at other mid-latitude 
sites (maximum/minimum values in summer/winter). This may be related to different 
meteorological conditions as well as the analytical samplings. The seasonal vertical 
distribution profiles of CBH show bimodal/triple-modal styles. Analysis of the vertical 
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distribution of CBH suggests that the dominant cloud types are connective clouds and cirrus 
in spring and summer, stratus and altocumulus clouds in autumn and stratiform clouds in 
winter. The cloud is slightly thicker in winter (1.05 ± 0.43km) than in summer 
(0.99 ± 0.44km). This is consistent with the previous findings at other mid-latitude sites. The 
locations of CBH and the distribution of CGT have essential effects on the thermodynamic 
structure of the atmosphere and radiation budget of Earth’s climate system. CF varies 
significantly throughout year, with the maximum value in autumn (0.68) and a minimum 
(0.58) in winter. CF is dominated by single-layered system (81%). The vertical distributions 
of CF are bimodal, with a low peak between 1 and 3 km and a high one between 7 and 8 km. 
More clouds are detected at night than during the day, which is important for understanding 
or simulating the diurnal variation of the surface energy balance. 

Though the modified algorithm has good performance, there are still some deficiencies in 
this work. First, the lidar ratio is hypothetical, which can cause some errors in classifying 
atmospheric particle layers. In the future work, the other ground-based observation equipment 
is needed to combine with lidar to retrieve more accurate optical properties of particle layers 
and classify the ice cloud as randomly oriented ice (ROI) and horizontal oriented ice (HOI) 
further. Second, the only one year MPL data is applied in this work, which may not represent 
the cloud climatology sufficiently at arid and semi-arid area. The first combined Lidar-Radar 
cloud mask at SACOL will be established to provide more important information for studying 
and understanding aerosol-cloud-climate interaction and more accurate parameters for 
improving the simulating ability of the numerical model. 
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