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Abstract: The satellite-based estimation of the dust mass concentration (DMC) is essential for
accurately evaluating the global biogeochemical cycle of the dust aerosols. As for the uncertainties
in estimating DMC caused by mixing dust and pollutants and assuming a fixed value for the mass
extinction efficiency (MEE), a classic lidar-photometer method is employed to identify and separate
the dust from pollutants, obtain the dust MEE, and evaluate the effect of the above uncertainties,
during five dust field experiments in Northwest China. Our results show that this method is effective
for continental aerosol mixtures consisting of dust and pollutants. It is also seen that the dust loading
mainly occurred in the free troposphere (<6 km), with the average mass loading of 905 ± 635 µg
m−2 trapped in the planetary boundary layer. The dust MEE ranges from 0.30 to 0.60 m2 g−1 and
has a significantly negative relationship with the size of dust particles. With the assumption of the
dust MEE of 0.37 (0.60) m2 g−1, the DMC is shown to be overestimated (underestimated) by 20–40%
(15–30%). In other words, our results suggest that the change of MEE with the size of dust particles
should be considered in the estimation of DMC.

Keywords: dust mass concentration; mass extinction efficiency; identification and separation of dust
aerosol; lidar-photometer method; Northwest China

1. Introduction

Mineral dust aerosols, as one of the major components of tropospheric atmospheric
aerosols, significantly affect the radiation energy budget and contribute to climate change
through direct, semi-direct, and indirect effects [1–8], the global biogeochemical cycle [9–12],
and human and ecosystem health [13,14]. To understand these impacts, accurate as-
sessments of dust emission, transport, deposition, and the whole cyclic process are re-
quired [15,16].

Model simulation is an effective tool for quantification of the emission, transport,
and deposition of dust aerosols on regional and global scales [17,18]. Global and regional
climate models have been also widely applied to evaluate the effect of dust on the climate
and environment [19,20]. Nevertheless, a rather high level of uncertainty is attributed to
the model simulation [21]. Hence, it is an immediate need to evaluate and constrain a
model simulation using reliable observations and assess the abovementioned climatic and
environmental effects of dust aerosols with a higher level of certainty. Although satellite
remote sensing is often considered a powerful tool to study the aerosol optical properties,
e.g. [22–25], and assess the cyclic process of dust aerosol, e.g. [22,26–29], it has several
important drawbacks.
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Due to their large spatial and temporal coverage, satellite-based passive observa-
tions have been used to characterize specific dust cyclic processes. For instance, Kaufman
et al. [22] estimated the trans-Atlantic dust transport and deposition flux using the Moder-
ate Resolution Imaging Spectroradiometer (MODIS) observation. Furthermore, using the
MODIS Deep Blue aerosol products Ginoux et al. [27] attributed dust sources to natural
and anthropogenic origins and evaluated their contributions and emission rates on a global
scale. Estimating the dust flux based on passive remote sensing is however subject to
considerable uncertainties associated with the accuracy of dust identification, the derived
dust optical depth (DOD), the simplified dust vertical distribution, and the assumed dust
mass extinction efficiency (MEE) that converts DOD to dust mass concentration (DMC).

Active lidar remote sensing is an effective alternative method to identify dust aerosols.
Lidar remote sensing utilizes advanced depolarized technology to obtain the dust extinc-
tion coefficient profile. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)
and other satellite-based radiometers were recently used to assess the transport and depo-
sition flux of dust aerosols from North Africa along with the trans-Atlantic transit [26,29].
Huang et al. [28] also used the CALIOP to detect the global distribution of anthropogenic
and natural dust sources and to further evaluate the respective dust column burden.
Nevertheless, due to the assumptions on dust lidar ratio and the misidentification of the
dust layer base, the DOD obtained from CALIOP is underestimated by ~26% [30]. Fur-
thermore, the assumed dust MEE significantly differs across the existing research works,
e.g., a fixed constant of 0.37 m2 g−1 is considered in [22,26] and 0.6 m2 g−1 in [28]; also a
linearly-varying value model along the transport route is adopted in [29]. The uncertain-
ties introduced by the assuming MEE and the corresponding retrieval of DOD result in
inaccurate quantification of DMC or dust flux.

Dust MEE is a key converting factor that transforms the DOD (or the corresponding
dust extinction coefficient (DEC) profile) into the columnar DMC (or the corresponding
DMC profile). Due to the limitation of the existing satellite remote sensing technology,
it is extremely challenging to directly derive the MEE. To address this issue, it is often
assumed as a fixed constant or a linearly varying function. To obtain accurate dust MEE,
airborne or ground-based observations can be also employed. For example, based on the
in situ airborne observation, Osborne et al. [31] and Johnson and Osborne [32] derived the
dust MEE of 0.30~0.40, and 0.48 ± 0.10 m2 g−1, respectively for West Africa. Based on the
multi-wavelength lidar, Weinzierl et al. [33] and Müller et al. [34] also obtained dust MEE
values of 0.45~0.70, and 0.57 ± 0.04 m2 g−1 respectively for a Saharan dust layer above
2 km over south Morocco. The sun-photometer has been also shown to have the potential
to estimate the dust MEE using the column-integrated particle volume concentration, DOD,
and an assumed dust density [35]. The large range of dust MEE at different studies is
mainly attributed to the changes in the distribution of dust particle size. Maring et al. [36]
further confirmed that the dust transport from the African coast to the Caribbean results in
a 15% increase of dust MEE. These results suggest that the assumption made for dust MEE
is an important source of uncertainty in the satellite-based DMC estimation.

In practice, ground-based polarization lidar and sun-photometer were combined
to improve the accuracy of DMC estimation. The polarization technology of lidar fa-
cilitates the identification and separation of dust and anthropogenic pollution. Several
sun-photometer observations are also used to derive the dust MEE. Ansmann et al. [37]
presented a combined lidar-photometer approach to separate the optical effects caused by
weakly light depolarizing fine-mode particles and strongly light depolarizing ash particles.
Wagner et al. [38] evaluated the performance of lidar-photometer settings for determining
the optical and microphysical properties of irregularly shaped dust particles. Moreover,
Nemuc et al. [39] confirmed the reliability of the lidar-photometer method for estimating
the DMC of Saharan dust by comparing the retrieval from multi-wavelength depolariza-
tion Raman lidar, and the forecasts provided by the Dust Regional Atmospheric Model.
Mamouri and Ansmann [35] further extended the above method to separate the fine- and
coarse-modes dust properties. Mamouri and Ansmann [40] further showed the potential of
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this method to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles,
and further derived their corresponding DMC. The above research works confirm that
the lidar-photometer method can accurately retrieve the vertical profiles of the particles,
their optical and microphysical properties, and their DMC.

East Asia is the second-largest dust source after Africa. Several intensive field ex-
periments, e.g., ACE-Asia [41], ADEC [42], PACDEX [43], and EAST-AIRC [44], as well
as ground-based aerosol monitoring networks, e.g., AERONET [45,46], SKYNET [47,48],
and CARSNET [49,50], probed the Asian mineral dust. Such studies are essential for a
thorough understanding of the climatic impacts of Asian dust. Nevertheless, dust aerosol,
emitted from the desert sources (e.g., Taklamakan Desert, Kumtag Desert, Badain Jaran
Desert, Tenger Desert, and Qaidam Desert, refer to the map in Figure 1) and by agricultural
cultivations (e.g., land planning, plowing, and disking) in Northwest China, commonly mix
with anthropogenic pollutants while traveling eastward [51]. The coexistence of dust and
other types of aerosols is ubiquitous and further increases the complexity and variability
of aerosols’ key parameters [52,53]. Although several studies focused on the optical and
microphysical properties of dust aerosols [51,54–58], only a few studies estimated the MEE
and DMC for the East Asian dust based on the ground or satellite remote sensing. The only
exception is the element tracer method based on chemical analyses presented in [59,60].

Figure 1. The geographical distribution of dust sources and the field observational sites in Northwest China. The sun-
photometer (all sites) and lidar (only red sites) are utilized in this study.

In this research work, we address the following research questions: How different is
the MEE of Asian dust from that of in Africa? How is the uncertainty in the DMC estimation
affected by the MEE assumption? In this study, the lidar-photometer method is applied to
four intensive dust field experiments and one long-term observation in Northwest China.
The objectives are to separate the mineral dust and anthropogenic pollution, deriving
the dust MEE, and vertically resolved DMC in Northwest China. We then assess the
uncertainties of DMC caused by assuming the value of dust MEE and the retrieval error
of DOD. The objectives of this research are to: (1) improve the understanding of the dust
MEE and vertical-resolved DMC in Northwest China, and (2) provide an insight into the
uncertainties of satellite-based DMC upon assuming the value of dust MEE.

In the following, the dust field experiments, and measurements, and the specific
retrieval methods are briefly introduced in Sections 2 and 3, respectively. The primary
results are analyzed in Section 4. The uncertainties in estimating DMC are discussed in
Section 5. Finally, the concluding remarks are presented in Section 6.

2. Field Experiments and Measurements

The measurements data we use in this study are based on four intensive dust field
experiments at sites located in Northwest China (including Dunhuang, Zhangye, Min-
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qin, Dunhuang_LZU), and a permanent site of the Semi-Arid Climate and Environment
Observatory of Lanzhou University (SACOL), see Figure 1.

The comprehensive dust experiments at Dunhuang were conducted by the ACE-Asia
field campaign in the spring of 2001. The SACOL Ancillary Facility also conducted the
dust field experiments at Dunhuang_LZU in the spring of 2012. These two sites are close
to the eastern edge of the Kumtag Desert and about 450 km in the downwind zone of the
Taklamakan Desert. During the time between April to June of 2008, the U.S. Department of
Energy Atmospheric Radiation Measurement (DOE/ARM) Ancillary Facility was estab-
lished at Zhangye. Zhangye is located on the southern edge of the Badain Jaran Desert and
in the semi-arid area of Northwest China.

The SACOL Ancillary Facility also conducted another field campaign at Minqin,
which is adjacent to the southeast margin of Badain Jaran Desert and the western border of
the Taklamakan Desert about 300 km away to the southeast Zhangye. The dust aerosols
over these sites are commonly mixed with anthropogenic pollutants, e.g., coal combustion,
mobile source emissions, and biomass burning [51]. The SACOL is located far from the
desert sources hence represents the transport area of dust in Northwest China. Besides the
extensive examination of aerosols’ chemical and physical properties, these experiments
include radiation and remote sensing measurements to investigate the optical properties
and radiative impacts of Asian dust. The details of the conducted experiments are presented
in Table 1.

These experiments provide us with an opportunity to understand the MEE of the
Asian dust and its impact on the DMC in dust and polluted dust conditions. To address
the requirements of the lidar-photometer method, in this study we utilize the observations
of Micro Pulse Lidar (MPL) and sun-photometer (CE318) from Aerosol Robotic NETwork
(AERONET) deployed on these sites.

Table 1. The detailed information of the utilized dust field experiments.

Sites Lat/Lon Elevation Periods References

Dunhuang 40.04◦ N, 94.79◦ E 1381 m March–May, 2001 Huebert et al. [41]
Zhangye 39.08◦ N, 100.28◦ E 1461 m April–June, 2008 Huang et al. [55]
Minqin 38.61◦ N, 102.96◦ E 1373 m April–June, 2010 Bi et al. [56]
Dunhuang_LZU 40.49◦ N, 94.96◦ E 1061 m April–June, 2012 Bi et al. [51]
SACOL 35.57◦ N, 104.08◦ E 1966 m August 2007–May 2013 Huang et al. [61]

The MPL is a compact and maintenance-free standard lidar system running within
the MPLNET. It is used for acquiring continuous profiles of the attenuated backscatter
coefficient and the depolarization ratio of aerosols and clouds. This system consists of a
low-energy pulse of 7~8 µJ Nd:YLF pulsed laser at 527 nm with a relatively high repeti-
tion frequency of 2500 Hz. The diameter of the telescope-receiver system is also 20 cm.
In September 2009, the lidar system was upgraded with a polarization detector and contin-
ual aerosol and cloud measurements are acquired with 30 m range resolution and 1 min
integrating time. Accurate profiles of the attenuated backscattering coefficient and de-
polarization ratio are acquired using a series of corrections (e.g., dead time, background
signal, afterpulse, overlap, and range-corrected) according to the standard methods as
in Campbell et al. [62]. We use the three MPLs (including Minqin, Dunhuang_LZU, and
SACOL) to characterize the vertical structures of DMC in Northwest China. The inversion
products including the backscatter coefficient, backscatter ratio, cloud height, cloud ther-
modynamic phase, and aerosol layer height are also obtained using an automatic detection
algorithm [63].

The AERONET sun-photometer is an automatic direct solar and sky radiometer.
Its spectral range is 340~1020 nm [45] and it can obtain various spectral atmospheric aerosol
optical properties with high accuracy. From the spectral AOD distribution, the Ångström
Exponent (AE), volume size distribution, and fine- and coarse-modes’ AOD [64,65] are also
obtained. The AOD retrieval error is less than ±0.01%, and the retrieval error of particle
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volume concentrations is about 10–20% [66]. Undefined uncertainties may occur in the
retrieval of the volume size distribution close to the desert-sources, where a considerable
number of dust particles with radii greater than 15 µm may exist that can affect the
measured optical properties [67]. Here we use, the cloud-screened and quality-assured
Version 3 level 2.0 aerosol products from AERONET sun-photometer at all five sites to
derive the dust MEE. The column AODs are then converted at a wavelength of 527 nm
following the Ångström formula to match the MPL-based observations.

3. Retrieval Methods
3.1. Retrieval of Dust MEE from AERONET Sun-Photometer

An important prerequisite of the lidar-photometer method for the DMC is the existence
of converting factor, dust MEE, between the lidar-derived particle extinction coefficient and
particle mass concentration. The similar converting factor, the ratio of extinction to volume
concentration, is also intensively studied based on long-term AERONET sun-photometer
observations in Africa and Europe during field campaigns [37]. Dust aerosols are mainly
composed of a large number of coarse-mode dust particles (>1 µm diameter) and fine-mode
clays with about 10% dust mass [68]. Dust aerosols in Northwest China are mainly emitted
from arid and semi-arid regions and areas with strong agricultural activities. Therefore,
the coarse-mode particles derived from AERONET sun-photometer are mainly controlled
by the dust aerosol and unaffected by sea salt. The fine-mode particles are usually the
mixture of fine-mode dust and anthropogenic pollution. Similar to Ansmann et al. [37], the
dust MEE (kd) in this study can be defined by using the coarse-mode properties to reduce
the effect of fine-mode pollution:

kd =
1
n

n

∑
i=1

kd,i =
1
n

n

∑
i=1

τc,i

ρdvc
(1)

where τc and vc are the coarse-mode AOD (CAOD), and volume concentration (CVC)
obtained from the AERONET sun-photometer, respectively. Furthermore, in (1) ρd denotes
the dust particle density which is assumed to be 2.6 g cm−3 [69,70]. The two different sets of
τc,i, obtained from the Spectral Deconvolution Algorithm (SDA) [64] and the AOD related
to the segments of volume size distribution [65], are used to compute the kd,i, respectively,
and then averaged to represent the best dust MEE. To increase the reliable retrieval of τc
and vc we only select cases with a coarse-mode fraction (CMF, the ratio of CAOD and total
AOD) larger than 20%. This is due to the small impact of the coarse-mode particles on
the measured optical properties. For the detailed discussion, see Section 3.2 in Ansmann
et al. [37]. Note that unlike Ansmann et al. [37], to explore the relationship between the
dust MEE and its properties, the dust MEE is calculated for all individual dust observations
and not averaged over long time series in this study.

3.2. Retrieval of DMC Profiles from MPL

The lidar-photometer method exploits the separation of non-spherical dust and spheri-
cal pollution to obtain the dust optical properties and mass concentration. This method was
extended by Mamouri and Ansmann [35] to further separate coarse-mode and fine-mode
dust particles. Nevertheless, because of the larger number of input parameters, the level of
uncertainties may be larger than that of the original method. In this study, we adopt the
original lidar-photometer method to separate and retrieve the optical properties and mass
concentration of dust particles from the total aerosols.

The MPL-based lidar-photometer method has been firstly used to separate the aerosol
mixtures and derive their optical properties by [71]. The specific algorithm adopted in this
study is described in the following. For brevity, the dependence on height is not indicated.
The normalized relative backscatter (NRB) from MPL measurements is processed by using
the automated detection and classification algorithm of the atmospheric particle layer
developed by Xie et al. [63]. This algorithm avoids the misclassification of the dense
dust aerosol layer as ice clouds for one elastic channel lidar, e.g., MPL, without the best
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estimation of the lidar ratio (LR). The volume linear depolarization ratio (VDR) is then
obtained and calibrated from the MPL depolarization ratio (the ratio of signals from the
“cross-polar” and “co-polar” channels) [72]. In the next step, the overall aerosol particulate
linear depolarization ratio (PDR), δa is converted from the VDR. To do this, we use the
determined molecular depolarization ratio (which is assumed to be 0.00363) and the
calculated aerosol scattering ratio. In this study, the overall aerosol backscatter coefficient
(ABC) is retrieved from the solution of the Fernald inversion with an assumed lidar ratio
of 50 sr. For calibrating the profile of the elastic backscatter signal, we simulate Rayleigh
scattering signals based on actual temperature and pressure profiles from the ERA-Interim
data [73]. More details are available in Xie et al. [63] and Zhou et al. [74].

The backscatter coefficient (BC) of dust particles, βd is then obtained from the overall
ABC, βa, according to the determined PDR of dust, δd, and non-dust, δnd, as the follow-
ing [75]:

βd = βa ×
(δa − δnd)(δd + 1)
(δa + 1)(δd − δnd)

(2)

The accuracy of βd depend on δd and δnd. The value of δd is often in the range of
0.30~0.35 for Saharan dust source [76,77] or Taklamakan dust source and after long-range
transport towards Europe [78] or Japan [79,80]. The values of δd and δnd in this study are
set to 0.31, and 0.05, respectively, to avoid unnecessary exclusion or inclusions of dust
events according to Mamouri and Ansmann [35]. The values of βd or βnd are assigned to βa
when δa > δd for dust bins or δa < δnd for non-dust bins, respectively. Afterward, similar
to Ansmann et al. [37], profiles of DMC, md for total dust particles are derived from the
calculated βd, kd, and a determined dust lidar ratio, Sd, as:

md =
βdSd

kd
(3)

where the Sd is set to 44 referring the observations from ground-based Raman lidar obser-
vations [81,82] and satellite-based lidar [30,83]. Note that here the contributions of small
non-spherical particles to the fine-mode backscatter coefficient are ignored and the large
spherical particles are interpreted as fine-mode backscatter in this approach [84,85].

4. Results
4.1. Identification and Classification of Dust Aerosol

The depolarization ratio observed by polarization lidar is often adopted for the ac-
curate identification and classification of the dust aerosols. The PDR of the mineral dust
particle is observed in the range of 0.3~0.35 over the dust sources and long-range trans-
port. However, it is seen that the PDR is decreased. This is most likely caused by the
mixing and contamination (coating) of desert dust particles with other weak-depolarizing
or hygroscopic particles.

Dust and polluted dust are classified and analyzed in previous studies [81,83,86,87].
Usually, the aerosol particles with the PDR greater than 0.31 are classified as pure min-
eral dust, whereas others are classified as polluted dust. For passive remote sensing,
the aerosol particles are also classified according to their optical parameters, e.g., AE,
which are observed by surface-based sun-photometers [88] or satellite-based spectrome-
ters [27]. Therefore, for the lidar-photometer method, here, we confirm the consistency
of identification and classification of dust and polluted dust based on the lidar and sun-
photometer observations.

Figure 2a presents the relationship between the AE at 440 and 870 nm wavelength
(AE440–870), CAOD at 500 nm, CMF from sun-photometer, and the column-mean PDR
from lidar during the collocated observations at Dunhuang_LZU, Minqin, and SACOL
sites. The AE440–870 and CMF represent the relative size of aerosol particles, and the
proportion of coarse particles, respectively. As it is seen, AE440–870, CMF, and CAOD are
significantly correlated with the column-mean PDR. By increasing PDR, the CMF and
CAOD are increased from 0.4 to 0.9, and from 0.05 to 1.1, respectively, but AE440–870 is
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decreased from 1.2 to 0. The AE440–870 and CMF intersect at 0.2 and 0.8 with the PDR
turning point of 0.31 between the dust and polluted dust, respectively. This suggests that
the pure mineral dust aerosols dominated by coarse-mode large particles can be strictly
classified by AE440–870 ≤ 0.2 and CMF ≥ 0.8, which are consistent with the classification of
pure mineral dust aerosol in Bi et al. [88] and Burgos et al. [86]. For the polluted dust, the
mixing degree of weak-depolarizing fine particles and strong-depolarizing dust particles
in the atmosphere can also be indirectly obtained using the sun-photometer observations
for 0.2 < AE440–870 ≤ 1.2.

Figure 2. (a) The relationship between AE440–870 (blue), coarse-mode AOD500 (red), coarse-mode fraction (CMF; green)
and column-mean PDR in the Northwest China. The diamonds and whiskers represent the average and SD of AE440–870,
coarse-mode AOD500, and CMF in each PDR bin. The vertical dashed lines denote the turning point between the dust and
polluted dust according to the PDR threshold of Asian dust (0.31). The frequency distribution of (b) PDR, (c) AE440–870, and
(d) CMF are also in the right panel, respectively (total samples: 1260).

Figure 2b–d present the frequencies of the column-mean PDR, AE440–870, and CMF at
Dunhuang_LZU, Minqin, and SACOL sites in Northwest China, respectively. The column-
mean PDR is mainly in the range of 0.10 to 0.36 with a peak of 0.24, and over 90% of
PDRs are less than 0.31. Similarly, 87% of AE440–870 exhibit the polluted dust features
(i.e., AE440–870 > 0.2). This suggests that the polluted dust dominates the pure dust. This is
due to the 86% contribution of the observation samples from the SACOL site (see Table 2)
and represents the typical characteristics of transported dust mixed with anthropogenic
pollution. The CMF range is from 0.4 to 0.9 with a peak of 0.7, which suggests that the
majority of aerosols in Northwest China are coarse-mode particles.

Therefore, to deeply understand the difference between the optical properties of dust
and DMC for various mixtures of anthropogenic pollution and dust particles, here, we
classify dust aerosols of Northwest China into three sub-types including AE440–870 ≤ 0.2
(DD), 0.2 < AE440–870 ≤ 0.6 (PD-I), and 0.6 < AE440–870 ≤ 1.2 (PD-II) with CMF > 0.4.
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Table 2. The average and SD of four key parameters at five sites in Northwest China for the DD,
PD-I, and PD-II conditions.

Sites Types CAOD CMF CVC CER (µm) Samples

Dunhuang DD 0.33 ± 0.18 0.82 ± 0.02 0.28 ± 0.15 1.74 ± 0.10 8
PD-I 0.21 ± 0.03 0.78 ± 0.01 0.18 ± 0.03 1.84 ± 0.10 7

Zhangye
DD 0.52 ± 0.15 0.79 ± 0.03 0.54 ± 0.15 2.17 ± 0.23 14
PD-I 0.21 ± 0.06 0.67 ± 0.05 0.18 ± 0.03 1.93 ± 0.25 44
PD-II 0.16 ± 0.04 0.46 ± 0.06 0.13 ± 0.04 1.88 ± 0.12 12

Minqin DD 0.31 ± 0.04 0.80 ± 0.02 0.25 ± 0.03 1.73 ± 0.03 4
PD-I 0.18 ± 0.04 0.70 ± 0.06 0.15 ± 0.04 1.82 ± 0.13 13

Dunhuang_LZU
DD 0.79 ± 0.23 0.80 ± 0.02 0.66 ± 0.21 1.76 ± 0.17 19
PD-I 0.25 ± 0.09 0.72 ± 0.03 0.20 ± 0.09 1.73 ± 0.18 24
PD-II 0.15 ± 0.00 0.54 ± 0.00 0.12 ± 0.00 1.83 ± 0.00 1

SACOL
DD 0.72 ± 0.29 0.81 ± 0.03 0.64 ± 0.26 1.83 ± 0.15 40
PD-I 0.26 ± 0.09 0.66 ± 0.05 0.23 ± 0.09 1.96 ± 0.27 294
PD-II 0.12 ± 0.05 0.38 ± 0.11 0.12 ± 0.06 2.16 ± 0.32 566

4.2. Optical and Microphysical Properties of Dust Aerosols

To investigate the difference between dust and polluted dust at the sites in Northwest
China, here, we statistically compare their optical and microphysical properties associated
with the lidar-photometer method under the three abovementioned classification criteria.
Table 2 lists the average and standard deviation (SD) of four key parameters at the five
sites throughout observations. Note that a small number of statistical samples is used
in this study. This is because: (1) the inversion samples of volume size distribution are
significantly less than that of the SDA algorithm, and (2) there is no retrieval of coarse-
mode aerosol optical properties due to the lack of observations at 500 nm wavelength from
September 2008 to August 2010 and from May 2011 to September 2012. Therefore, no PD-II
dust aerosol event is classified during the intensive field experiment at Dunhuang and
Minqin sites.

The permanent site of SACOL only contributes 900 samples. However, these samples
are sufficient to indicate the differences between DD, PD-I, and PD-II dust aerosols. It is
also seen that the CAOD, CMF, and CVC at all sites are gradually decreased during the
transition from pure dust to polluted dust with the increase of anthropogenic pollution.
The CMF is always greater than 0.79 at all sites under the DD conditions, either near the
desert or in the transport area. This ensures the accuracy of pure dust identification at
the sites without lidar. However, there are significant differences in the CVC, CAOD,
and coarse-mode effective radius (CER) across all sites. This is most likely related to the
strength of the dust weather process during the period of observations. These differences
also result in different dust MEE as discussed in Section 4.3.

Figure 3 shows the average volume size distribution for five sites for the DD, PD-I,
and PD-II conditions. During the transition from dust to polluted dust, it is seen that the
average volume size distribution gradually changes from single-peak to double-peak with
significantly decreasing CVC (from 0.6 to 0.07) and CMF (0.80 to 0.39). However, the aver-
age value of CER is increased from 1.86 ± 0.21, 1.94 ± 0.26, to 2.15 ± 0.32 µm. This might
be closely related to the relatively large sample contribution of the SACOL site with a larger
CER of 1.96 ± 0.27 and 2.16 ± 0.32 in the PD-I and PD-II conditions. The larger the SD
of CER, the more significant the difference in the optical and microphysical properties in
different dust weather processes.
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Figure 3. The average volume size distributions in Northwest China for (a) DD, (b) PD-I, and (c) PD-II conditions.

4.3. Dust MEE in Northwest China

According to the retrieval method of dust MEE described in Section 3.1, we obtain
the dust MEE at five sites in Northwest China for the DD, PD-I, and PD-II conditions.
The frequency distributions of the dust MEE in Northwest China are shown in Figure 4a.
As it is seen, their distribution follows a nearly normal distribution with the average and
SD of 0.44 ± 0.05, 0.44 ± 0.07, and 0.41 ± 0.08 m2 g−1, respectively.

Figure 4. (a) Frequency distribution of the dust mass extinction efficiency (MEE) and (b) relationship between the dust MEE
and CER for the DD (red), PD-I (blue), and PD-II (gray) conditions. The average (µ), SD (σ), and sample size (n) of the dust
MEE for different conditions are labeled in the left panel. The fitting function and correlation coefficients (R) at different
conditions are labeled in the right panel (* represents the significant level of 0.01).

Although the dust MEE shows striking similarities among three types of dust condi-
tions, the variances of the dust MEE is significantly increased by the transition from dust to
polluted dust. The dust MEE derived from the coarse-mode optical properties is mainly
in the range of 0.30~0.60 m2 g−1, which almost covers the in-situ airborne observation of
0.30~0.40 and 0.48 ± 0.10 m2 g−1 in West Africa by Osborne et al. [31] and Johnson and
Osborne [32], and multi-wavelength lidar retrieval of 0.45~0.70 and 0.57 ± 0.04 m2 g−1

for Saharan dust layer above 2 km over south Morocco by Weinzierl et al. [33] and Müller
et al. [34], respectively. The average of dust MEE in Northwest China is also well consistent
with the Asian climatological one of 0.41 ± 0.05 m2 g−1 for coarse dust particles, estimated
from the 9769 individual observations of pure dust (AE440–870 < 0.3 and AOD > 0.1) at
three AERONET sites of Dushanbe in Tajikistan, SACOL in China, and Dalanzadgad in
Mongolia [89].
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The large range of dust MEE might be caused by the following two reasons. The first
reason is the retrieval accuracy of coarse-mode AOD and VC based on the sun-photometer.
The second reason is the changes in dust aerosol microphysical properties. To further
understand the contributions of these two reasons, we analyze the relationship between
the dust MEE and CER in the DD, PD-I, and PD-II conditions, as shown in Figure 4b. As it
is seen, the scatterplots of dust MEE and CER for the three conditions indicate a significant
negative linear correlation. The correlation coefficient (R) for the DD, PD-I, and PD-II
conditions are up to −0.94, −0.95, and −0.86, respectively while all pass the significance
level of 0.01. This suggests that the big range of dust MEE is closely related to the variation
of dust CER for different dust processes.

This further indicates that the dust MEE is not a fixed value and it may significantly
be affected by the size of dust particles in different dust weather processes. The results here
also explain the highly biased dust MEE of 1.1 m2 g−1 of Saharan dust over the eastern
North Atlantic Ocean obtained using airborne observations by Chen et al. [90], which is
due to the low inlet sampling efficiency for particles greater than 4 µm.

Of course, the uncertainty of the dust MEE caused by the inaccuracy of microphysical
properties retrieved from sun-photometer is extended along with the increase of anthro-
pogenic pollution. This is the reason that the largest dispersion degree is for the PD-II as
shown in Figure 4b.

4.4. DMC Profile in Northwest China
4.4.1. Case Studies

Here, we illustrate the MPL-based lidar-photometer method and further evaluate
its performance for separating dust particles from total aerosols and retrieving the pro-
files of DMC in Northwest China. We consider a dust case at Dunhuang_LZU site on
24 April 2012, and a polluted dust case at the Minqin site on 22 May 2010 as shown in
Figures 5 and 6, respectively.

Figure 5. Time series of (a) the total, coarse-mode, and fine-mode AODs at 500 nm observed by the sun-photometer and
(b) the NRB profile observed by the MPL at Dunhuang_LZU site on 24 April 2012. Vertical profiles of (c) VDR and PDR,
(d) total and dust ABC, (e) DEC, and (f) DMC at 01:36, 02:08, and 09:15 which are labeled with the corresponding color
triangles on the horizontal axis in (b). The corresponding dust MEE is also labeled in (f).
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Figure 6. Same as Figure 5, but for a polluted dust case at Minqin on 22 May 2010. The color triangles on the horizontal axis
in (b) correspond to 01:09, 09:04, and 09:35, respectively.

Figure 5a presents the time series of AOD at 500 nm and AE440_870 observed by sun-
photometer on 24 April 2012. It is seen that, except for a slight decrease of fine-mode
AOD, both total (coarse-mode) AODs are significantly decreased from 0.78 (0.63) at 00:30
to 0.24 (0.16) at 10:00 by the settling of dust particles. According to the classification of dust
aerosols, as indicated by the time series of AE, this can be classified as a typical DD case.
Figure 5b also indicates the temporal-height evolution of NRB observed by the MPL. The
aerosol top layer is fluctuated with time, with the greatest height of 3.5 km before 03:00.
The strong aerosol extinction layer is near the ground and is gradually weakened over time.
Two lofted or transported dust layers can be also seen at approximately 1.5 and 2 km from
2:00 to 5:00. The lidar-photometer method is used to identify the aerosol types, separate
the dust particles from total aerosol, and then evaluate the vertical distribution of DMC at
01:36, 02:08, and 09:15 as shown in Figure 5c–f.

The VDR and PDR profiles at the three corresponding times are shown in Figure 5c.
The PDRs from the near surface to the aerosol top layer are all greater than 0.31, except for
the top border of the aerosol layer. The column-mean PDR values are 0.35, 0.34, and 0.31 at
the corresponding times indicating the same identification of pure dust with the AE440_870.
Therefore, the separated BC of dust particles is almost equal to the overall ABC, as also
shown in Figure 5d.

Figure 5e,f show the DEC profiles for the pure dust LR of 44 sr and DMC with real-time
estimated dust MEE of 0.40, 0.41, and 0.37 at the corresponding times. Based on these, the
fluctuation of DEC, and DMC associated with the lofted dust layers can be characterized.
In general, the dust mass loading (the column-integrated DMC) is decreased from 2085,
1888, to 977 µg m−2 with the maximum DMC of 932 µg m−3 at 0.69 km, 783 µg m−3 at
1.65 km, and 530 µg m−3 at 0.6 km at the corresponding time, respectively. This confirms
that the MPL-based lidar-photometer method can effectively identify the DD dust cases
and obtain the profiles of DEC and DMC.

The time series of AOD at 500 nm, AE440_870, and NRB for a polluted dust case at
Minqin on 22 May 2010 are illustrated in Figure 6a,b. The vertical profiles of optical
parameters and DMC at 01:09, 09:04, and 09:35 are also shown in Figure 6c–f. The changes
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in AE440_870 are attributed to the transition of a typical polluted dust case from PD-II to PD-I.
According to the temporal-height evolution of NRB, no lofted dust plumes are observed
in the air, and the strong extinction layer is only near the ground which is gradually
increased and vertically transported over time. This confirms that the polluted dust case is
typically sourced from local emissions. With the increase of local dust emission, both total
(coarse-mode) AODs are significantly increased from 0.14 (0.08) to 0.26 (0.20).

Furthermore, the column-mean PDR is also increased from 0.22 ± 0.04 to 0.25 ± 0.03.
Correspondingly, the dust MEE is decreased from 0.56 to 0.45 m2 g−1 by increasing the
coarse dust particles. The estimated dust mass loading is also significantly increased from
237, 845, to 870 µg m−2 with the maximum DMC of 430, 500, and 522 µg m−3 near the
ground at the corresponding time. The separated dust BC is also smaller than the ABC,
which suggests that the contribution of anthropogenic pollution should not be ignored,
especially for DMC evaluation.

4.4.2. Average DMC Profile during Field Experiments

To investigate the vertical distribution of DMC in Northwest China, we apply the
MPL-based lidar-photometer method to all dust or polluted dust cases at Dunhuang_LZU,
Minqin, and SACOL sites during the field experiments. The dust MEE is estimated by
using the sun-photometer observations as described in Section 3.1. If the dust MEE is
available and no cloud is double-checked by the MPL, the BC profiles of the dust particles
can be effectively separated from the overall ABC, and then the DEC and DMC profiles
are estimated.

Figure 7a shows the average profiles of PDR for the DD, PD-I, and PD-II conditions.
As it is seen, the column-mean PDR of DD is larger than that of the PD-I and PD-II.
The vertical-resolved PDR is also slightly decreased by increasing the height and it becomes
less than 0.31 for the DD condition. This suggests that the mixing between pure dust and
anthropogenic pollution may occur at any height along with vertical transport of air mass.
It also indicates that the dust classification based on AE440_870 and CMF only represents the
average characteristics of the whole air column, and its heterogeneity in different heights
must be carefully checked using active lidar detection.

Figure 7. The average profiles of (a) PDR, (b) DEC, and (c) DMC during the field experiments in Dunhuang_LZU, Minqin,
and SACOL for the DD, PD-I, and PD-II conditions.
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Figure 7b,c shows the vertical distribution of DEC and DMC, respectively. Both DEC
and DMC are decreased by increasing the height for the DD, PD-I, and PD-II conditions.
The significant contribution of DEC and DMC can be observed under the 6 km. The max-
ima of DEC and DMC are trapped in the planetary boundary layer under 2 km. The
integrated DEC (DOD) and DMC (dust mass loading) under 2 km is up to 0.43 ± 0.27 and
905 ± 635 µg m−2 for the DD condition, on average, accounting for 57% of total DOD and
59% of total dust mass loading in the atmosphere, respectively. The bigger SD of DEC
and DMC are mainly attributed as a large number of dust layers with different height and
intensity are popular at three sites during the field experiments. They include not only the
locally lofted or near-surface dust layer, but also long-range transported dust layer in the
free troposphere. On average, the dust loading in Northwest China for the PD-I and PD-II
conditions are significantly smaller than that for the DD condition.

5. Discussion
5.1. Uncertainties of the DMC Retrieval

The basic idea of the lidar-photometer method is to use the depolarization ratio
observed by the lidar for separating non-spherical particles. This is then used to quantify
the contribution of these particles into the lidar-derived profile of the overall ABC. The
dust separation method using the PDR is a classic and well-established technique as
described in [80,91]. The uncertainties in the aerosol optical properties and the retrieval
error in the mass concentration are thoroughly investigated in previous research works,
e.g., see, [35,37,85,91].

The typical uncertainties in the MPL-based lidar-photometer method are caused by
the following sources: (1) uncertainties in the basic lidar-based optical properties, e.g., the
accuracy of the aerosol PDR and BC depend on the signal noise and the atmosphere pa-
rameters; (2) uncertainties in the assumption of non-dust (δnd) and dust (δd) depolarization
ratios and the dust lidar ratio; (3) uncertainties in the estimation of the dust MEE based
on sun-photometer observations. For well-detected desert dust layers, as shown in Zhou
et al. [74], the overall uncertainty in the PDR derived by MPL is about 7–28% by relative
variation of backscatter ratio and VDR. This is higher than that of 5–20% which is the
uncertainty of multi-wavelength lidar as reported in Tesche et al. [91]. About 10–15% of
the uncertainties in the conversion of backscatter into the extinction coefficients are also
introduced by the assumption of lidar ratio, the uncertainties of 10–25% in dust mass
density of 2.6 g m−3, and 20–50% in dust MEE are also introduced in the retrieval of DMC,
as shown in Ansmann et al. [85].

In this study, to reduce the effect of anthropogenic fine-mode pollutions on dust MEE
for the DD, PD-I, and PD-II conditions, only the coarse-mode dust MEE was retrieved and
used to estimate the mass concentration of all dust particles (fine + coarse). As shown in
Ansmann et al. [89], the climatological representative MEE for fine-mode dust particles
in Asia is about 1.42 ± 0.32 m2 g−1, which is significantly greater than that of coarse-
mode dust. If we assumed the fine-mode fraction of 0.2, coarse-mode and fine-mode dust
MEE of 0.44 and 1.42 m2 g−1 respectively for the DD condition, the total DMC would
be overestimated about 15.8% by the assumption of coarse-mode dust MEE. Therefore,
the retrieval accuracy of DMC should be improved by distinguishing the fine-mode and
coarse-mode dust particles and considering the change of dust MEE with the particle size,
regardless of ground-based or satellite-based remote sensing technology.

Unlike the climatological mean MEE used in other studies [71,89], this study con-
sidered the variation of dust MEE with dust particle size in the estimation of the DMC.
This partly offsets the retrieval error of the ABC and PDR from the single-detector MPL.
The overall uncertainty in DMC estimation should be also about 30–60% [85]. Note that
the uncertainties may exceed 100% in cases with very large dust particles as shown in [37].
This is because of large uncertainties in the MEE, which is caused by the cut-off radii larger
than 15 µm in the AERONET data analysis scheme.
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5.2. Uncertainty in DMC Caused by the Assumption of MEE

As mentioned in Section 1, a fixed or linearly varying dust MEE is often used for
estimating the DMC or dust flux on the transport routes based on passive or active satellite
sensors [22,26,28,29]. Nevertheless, it has always been an open question to know the
level of uncertainty introduced in the estimation of DMC by assuming the value of MEE.
Although the MPL-based lidar-photometer method may have a high level of uncertainty
in the estimation of DMC, it also offers the opportunity of indirect evaluation of the
DMC uncertainty.

A simple sensitivity test is designed, where we assume the dust MEE derived from
real-time sun-photometer observations is accurate. This can be then used to obtain the real
profile of DMC (mr) based on MPL-based lidar-photometer method. Similarly, the assumed
dust MEE of 0.37 and 0.60 m2 g−1 is used to retrieve the assumed profile of DMC (ma).
Then the relative error (RE) of DMC is obtained as the ratio of (ma − mr)/mr. This test not
only reflects the uncertainties introduced by the assumption of dust MEE but also offsets
the uncertainties of the lidar-photometer method.

Figure 8 shows the statistical results of RE of DMC in Northwest China with the
assumption of dust MEE of 0.37 and 0.60 m2 g−1 for the DD, PD-I, and PD-II conditions.
As it is seen, assuming the dust MEE of 0.37 m2 g−1, overestimates the DMC by 20–40% on
average, with the maximum overestimation in the DD and PD-I conditions. In contrast,
setting the dust MEE to 0.60 m2 g−1 significantly underestimates the DMC by 15–30% on
average, with the maximum underestimation in the PD-II condition.

Figure 8. The vertical distribution of the relative error (RE) of the DMC introduced for the dust MEE of 0.37 (red) and 0.60
(blue) m2 g−1, respectively.

The uniform RE in the vertical direction is mainly due to the assumption of the same
MEE throughout the dust layer. Therefore, the DMC retrieval uncertainties caused by
the assumption of dust MEE cannot be simply ignored in satellite-based remote sensing.
Hence, the change of MEE with the size of dust particles must be considered in the DMC
estimation based on remote sensing technology.
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6. Conclusions

In this paper, the objective is to investigate the sources of uncertainties in the estima-
tion of DMC based on satellite remote sensing. These sources include the mixing of mineral
dust and anthropogenic pollutants, and assuming a fixed value for the dust MEE. For our
investigations, we considered the classic and widely used ground-based lidar-photometer
method. We further used the cloud-screened and quality-assured observations of MPL and
AERONET sun-photometer in four intensive dust field experiments, and a permanent site
in Northwest China. This data was then utilized for separating dust particles from anthro-
pogenic pollution, deriving the real-time dust MEE, profiling the DMC, and evaluating
the uncertainties in DMC of the estimation of dust MEE. The main achieved results are
the following:

- Dust identification and separation using PDR is more effective than that of AE440–870.
Pure mineral dust and polluted dust in Northwest China can also be well identified
by AE440–870 ≤ 0.2 with CMF ≥ 0.8 and 0.2 < AE440–870 ≤ 1.2 with CMF ≥ 0.4 without
lidar detection.

- The dust MEE derived from the AERONET sun-photometer is within the range of 0.30
to 0.60 m2 g−1, with the average and SD of 0.44 ± 0.05, 0.44 ± 0.07, and 0.41 ± 0.08 m2

g−1 for the DD, PD-I, and PD-II conditions. The obtained results are also consistent
with the in-situ observations by airborne and multi-wavelength lidar in Africa.

- There is a significant negative correlation between the dust MEE and dust CER, with
R of −0.94, −0.95, and −0.86 for the DD, PD-I, and PD-II conditions. This suggests
that the dust MEE is not a fixed value and it significantly varies with the size of the
dust particles in different dust weather processes.

- The MPL-based lidar-photometer method is efficient for the continental aerosol mix-
tures consisting of dust and anthropogenic pollutants in Northwest China. This method
strongly relies on accurate lidar observations of the PDR.

- The measurements of DMC indicated that the dust loading mainly occurred in the
free troposphere (<6 km). The average of dust mass loading trapped in the planetary
boundary layer under 2 km is up to 905 ± 635 µg m−2 for the DD condition in the
studied dust field experiments.

- With the assumption of dust MEE of 0.37 and 0.60 m2 g−1, the DMC in Northwest
China is respectively overestimated by 20–40% and underestimated by 15–30%. This
suggests that the change of MEE with the size of dust particles must be considered in
the estimation of DMC, regardless of ground-based or satellite-based remote sensing.
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