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ABSTRACT: In urban areas, atmospheric O, actively participates in
the process of anthropogenic emissions and energy consumption.
However, the covariation between atmospheric O, and the emitted
pollutants has yet to be thoroughly explored. This study examines the
covariations between atmospheric O, and pollutants in Lanzhou, a
semi-arid industrial metropolis. A machine learning (ML)-based O,
simulator coupled with a SHapley Additive exPlanation (SHAP)
algorithm is established to explore and interpret their covariations
under diverse conditions. Our findings indicate an increase of 16.3
ppm in the O, concentration associated with the atmospheric transport
of natural dust particles during dusty weather events. This suggests that
natural dust transport can mitigate the depletion of atmospheric O,
caused by primary emissions and secondary formation of anthro-
pogenic particulate matter. Furthermore, we identify a nonlinear
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relationship between the concentrations of O, and pollutant concentrations, which likely arises from their distinct diffusive abilities.
The study highlights the unique pollution characteristics in a semi-arid urban downtown and demonstrates the ability of ML-based
methodology to reproduce and interpret the environmental and anthropogenic impacts on the local carbon—oxygen balance.

KEYWORDS: urban O, observations, explainable machine learning, air pollution, anthropogenic impact, emission inventory

B INTRODUCTION

Cities are highly concentrated areas of human activities,
contributing to >70% of global CO, emissions." The emission
of CO, from the combustion of fossil fuel-related sources in
cities involves the removal of a corresponding amount of O,
from the urban atmosphere, making these areas a significant
contributor to anthropogenic O, consumption, especially in
rapidly urbanizing regions with high levels of industrialization.”
The current rate of decline in the level of atmospheric O, is
approximately 3000 times faster than that documented in ice
cores over the past 1 million years." However, only a few
stations around the world have conducted long-term
atmospheric O, measurements at the parts per million level
in urban regions.”*

O, is the only reactant in fossil fuel combustion processes
[CH, + (x + y/4)0, = xCO, + (y/2)H,0]° that can be
directly measured in the atmosphere. In addition, O, is
essential for vital bodily functions such as nerve and brain
function, muscle movement, digestion, and hormone syn-
thesis.”” Elucidating covariations of O, and pollutants reveals
drivers of pollution episodes and informs mitigation strategies
for air pollution impacts.®™"°

Machine learning (ML) models have been demonstrated to
be a powerful tool for reconstructing, simulating, and
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predicting atmospheric pollution, including PM,s,"' ="

03,9'14 NO,C,IZ'15 etc., outperforming finely designed chemical
transport models.'® The use of ML models provides greater
flexibility and efliciency when utilizing real-world data and is
especially adept at revealing complex and hidden nonlinear
correlations'”'® that might not be easily identified using
traditional physical models, providing new insights into the
underlying mechanisms of the studied phenomena.'” Recently,
ensemble learning models that integrate multiple machine
learning algorithms are widely applied to obtain better
predictive performance,””*" because they can combine the
strengths of multiple models, each of which may be good at
different aspects of the problem. However, the opacity of the
majority of ML models, or the “black box” effect, makes it
challenging to physically interpret the output. As feature
attribution methods progress, tools for analyzing feature
importance are becoming increasingly accessible. The SHapley
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Figure 1. Model structure and performance evaluation. (a) Schematic diagram of the ML-based O, simulator. (b) Scatter plot of hourly observed
vs simulated AO, in testing sets from AdaBoost, GBRTs, XGBoost, MLP, and the ensemble model (the final predictor), with black dashed lines

denoting the 1/1 relationship.

Additive exPlanations (SHAP) framework, for instance, offers
insights into the impact of a feature on model outcomes.”” ML
models combined with explainable tools have been extensively
used in various aspects of air pollution modeling,”'>**** yet
their application in reproducing variations in O, concen-
trations,” particularly in urban settings,” has been rather scant.

This study investigates the covariations between atmos-
pheric O, and pollutants in Lanzhou, China. Lanzhou’s distinct
topography, with a narrow river valley surrounded by
mountains, hinders atmospheric dispersion and prolongs
pollutant retention in the valley.”>*” The city is also affected
by frequent dust storms originating from the nearby Gobi
Desert.”® With air pollutants from natural and anthropogenic
sources, Lanzhou has been classified as one the most polluted
cities in China, according to a World Health Organization
(WHO) database.”” We developed an ensemble ML-based O,
simulator using concurrent observations of critical air
pollutants and meteorological data. Employing the SHAP
approach, we quantify the influence of natural and anthro-
pogenic pollutants on atmospheric O, levels under various
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conditions. This study is one of the first to leverage an ML-
based method to disentangle the complex contributions of
natural and anthropogenic factors to atmospheric O,
variations. It can potentially guide policy makers to effectively
improve local air quality management, minimize potential
health risk, and provide useful insights for the sustainable
development of global urban regions.

B MATERIALS AND METHODS

Data Sources. We trained the ML-based O, simulator
using hourly air quality and meteorological parameters from
January 2021 to December 2021. Hourly observations of air
quality and meteorological parameters were obtained from the
Lanzhou Atmospheric Components Monitoring Superstation
(LACMS; 36.05°N, 103.87°E).”***° The air quality data
include concentrations of particulate matter (TSP, PM,,,
PM,;, and PM,, reported in micrograms per cubic meter),
particulate carbon (TC = EC + OC, reported in micrograms
per cubic meter), and trace gases (NO,, SO, and CO,
reported in micrograms per cubic meter). Instead of directly

https://doi.org/10.1021/acs.estlett.3c00505
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Figure 2. Covariation of atmospheric O, and pollutants under (a, d, and g) clean, (b, e, and h) dusty, and (¢, f, and i) polluted conditions. (a—c)
Radar plots of normalized AO, and pollutant levels under clean, dusty, and polluted conditions, respectively. (d—f) Probability density distributions
of 48 h backward trajectories for Lanzhou under clean, dusty, and polluted conditions, respectively, at 500 m heights based on the HYSPLIT model
simulation from January 1, 2021, to December 31, 2021. The color scale indicates the probability of air masses passing through a 0.5 X 0.5 grid cell.
The orange shade indicates the potential dust source area (barren or sparsely vegetated), derived from the MODIS land cover data (MCD12C1
version 6.1).*” The gray dots denote cities with populations exceeding 3 million. (g—i) Urban AO, budgets revealed by SHAP values, with solid
gold lines denoting the impact from dust pollutants (i.e., PM, 5, PM,_;o, and PM;_, ) and solid black lines denoting the impact from nondust
pollutants (i.e., NO,, CO, SO,, EC, OC, and PM]). See Text SS.1 for details of panels g—i.

including TSP, PM,,, and PM,;, we introduced PM,_,;,
PM,_,o, and PM, |, into our model. These variables capture
the distinctions between PM, s and PM;, PM;, and PM, ;, and
TSP and PM,,, respectively (see Figure S1). Observed
meteorological variables include air temperature (degrees
Celsius), atmospheric pressure (kilopascals), relative humidity
(percent), and wind speed and direction (WS and WD in
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meters per seconds and degrees, respectively). The model
training also utilizes the leaf area index (LAI) in square meters
per square meter, total precipitation in meters, and boundary
layer height (BLH) in meters from ERAS reanalysis data.’’
Atmospheric O, concentrations were measured on the
rooftop of a building on the campus of Lanzhou University
(~300 m from LACMS), using a gas chromograph (7890B,

https://doi.org/10.1021/acs.estlett.3c00505
Environ. Sci. Technol. Lett. 2023, 10, 851—858



Environmental Science & Technology Letters

pubs.acs.org/journal/esticu

(b) Dusty
67.6 %

(a) Clean
78.7 %

5.1%
TSP \PnyW
29%
0
(d) ’ 53
& 0.8

0 g L ‘I'
E ~ [
S S d Wi ] 063
- s o™ ~ ® o
o —50-4 2 iq -~ B o
E ‘e © g
g L Sadh 17 o5 Pt =
a [ ] 0.4 g
£ _100 5
" e
= 0.2

_150 L T T T T T
0 500 1000 1500 2000
A non-dust (ug m~3)

(f)
$ 100
z
5 80+
©
@
> 60
3 == NO,
2 404 = o
=
o
'.g 20 . TC
2 = SO,
5
C
S 0. — PM,

500
A non-dust (ug m~3)

1000 1500

A SHAP value (ppm)

Contribution to AO, variability (%)

(c) Polluted
873 %

T —34%

29%

0.9
0.8
[%2]
072
?
0.6 N
©
05 E
o
=
0.4
_40 -
0.3
_50 E T T T T
0 50 100 150
A dust (ug m~3)
(9)
100
80 -
= PM. g
PM25_10
PMi_>s
0 50 100 150
A dust (ug m3)

Figure 3. Influence of dust and nondust pollutants on AO,. (a—c) Contributions of nondust and dust pollutants to pollutant-related AO,
variability under clean, dusty, and polluted conditions, respectively. (d) SHAP dependence plot of nondust pollutants vs its SHAP value, with
shadings denoting the normalized boundary layer height. (e) Same as panel d, but for dust pollutant, with shadings denoting the normalized wind
speed. (f) Changes in the relative contributions of nondust pollutants to AO, variability with varying levels of pollution. (g) Same as panel f but for

dust pollutants.

Agilent).”” To weaken the dilution effect, it is customary to
report O, fluctuations in terms of the relative deviation in the
0,/N, ratio from a reference value:

(OZ/NZ)sample

T —— x 10°
(02 / Nl)reference

A(O,/N,) = —1

where the subscripts sample and reference denote the sample
air and reference gas, respectively. A(O,/N,) is expressed in
per meg, where 1 per meg = 1 X 107% To compare O, with
pollutant concentrations, the ratio of 4.8 per meg/ppm is used
to convert the observed changes in the O,/N, ratio [A(O,/
N,)] to the AO, anomaly (AO,) relative to a reference
concentration that has been arbitrarily chosen. For more
information about atmospheric O, measurements, see ref 2.
The observation sites are located in the Chengguan District,
which is predominantly composed of commercial and
residential buildings. The sites are located adjacent to Tianshui
Road, one of the busiest thoroughfares in Lanzhou, and are
thus strongly affected by traffic-related O, consumption and
pollutant emission processes (see Figure S2). We also
calculated the AO,/ACO, ratios (1.33 =+ 0.017), which
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identifies coal and oil as the major fossil fuel types in urban
Lanzhou (see Text S1 and Figure S3).

ML-Based O, Simulator. We developed an ensemble ML-
based O, simulator that integrates Adaptive Boosting
(AdaBoost), Gradient Boosting Regression Trees (GBRTs),
eXtreme Gradient Boosting (XGBoost), and Multilayer
Perceptron (MLP) using a ridge regression model®** (see
Text S2 and Figure 1a). A detailed list of the predictors is given
in Table S1. We validated and evaluated the model
performance using a 10-fold cross-validation based on
coefficients of determination (R*) and mean bias, as shown
in Figure 1b. When the four models were combined, the
performance of the ultimate estimator was improved, leading
to an increase in R* to 0.73. Using the SHAP approach (see
Text S2.3 for details), we can evaluate the influence of each
variable on each predicted O, sample.”” This allows us to infer
the exact process responsible for the variation in the O,
concentration for each sample.

B RESULTS AND DISCUSSION
Covariation of O, and Critical Pollutants under
Distinctive Conditions. To extract the typical covariation

https://doi.org/10.1021/acs.estlett.3c00505
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pattern between O, and pollutants, we applied K-means
clustering on the observed AO, and pollutants (see Text S3 for
details). Panels a—c of Figure 2 illustrate the clustering results
in radar charts, with concentrations normalized between 0 and
1. Samples in the Clean cluster (Figure 2a) exhibited the
highest O, content and the lowest concentration for all
pollutants. The Dusty cluster (Figure 2b) is characterized by
an extraordinarily high concentration of particulate pollutants
(PM, 4, PM,5_y, and PM,_, ), indicating dust pollution of a
natural origin. The Polluted clusters (Figure 2c) had the lowest
levels of O, and the highest concentrations of anthropogenic
pollutants. We find PM, 5, PM,;5_1o, and PM;_, 5 have the
highest weights in determining the Dusty cluster (see Text
S$3.3 and Figure SS for details), and AO, responds differently
to the two groups of pollutants [dust group: PM, o, PM, s_j,,
and PM,_,s; nondust group: NO,, CO, PM,, TC, and SO,
(see Figure S7)]. Consequently, we divide the pollutants into
dust and nondust pollutants for subsequent analysis.

Lanzhou is situated near the Gobi Desert and is therefore
vulnerable to dust storms that arise when cold fronts pass
through. This usually facilitates the long-range transport of air
masses and dust of natural origin. We performed 48 h
backward trajectory simulations for Lanzhou to evaluate the
impact of atmospheric transport on O, and dust concen-
trations in Lanzhou (Figure 2d—f; see Text S4 for details). We
found that air masses arriving within the atmospheric boundary
layer in Lanzhou, particularly those in dusty clusters, are more
likely to experience long-range atmospheric transport from
northern and northwestern desert sources (probability of
0.514) than to originate locally (mean trajectory distance of
924.25 km). Panels g—i of Figure 2 demonstrate how dust
pollutants and anthropogenic pollutants can alter the AO,
values under different pollution patterns. The anthropogenic
pollutants can result in decreases in AO, of 20.2, 27.9, and
46.4 ppm under clean, dusty, and polluted conditions,
respectively, while dust pollutants can lead to increases in
AO, of 16.3 and 6.8 ppm under dusty and polluted conditions,
respectively. This stands in sharp contrast to what is commonly
observed and anticipated in other cities almost untouched by
dust storms, where an increase in particulate matter (PM)
concentration typically signals anthropogenic pollution that
leads to increased CO, levels®*>™*” (and decreased O, levels
as expected). Lanzhou experiences PM pollution from both
natural and anthropogenic sources, via long-range transport,
and anthropogenic sources, through primary emissions and
secondary formations.””** The positive contribution from dust
pollutants to the O, levels in Lanzhou indicates that
atmospheric transport may introduce a volume of O, greater
than that consumed by primary emissions and secondary
formations. This finding underscores the potential counter-
balancing effect of atmospheric transport that offsets the
negative effects of primary emissions and secondary
formations, which directly and indirectly decrease the level of
O, in the atmosphere. It is worth mentioning that discussions
concerning the variability of O, resulting from reactions
between O, and pollutants are beyond the scope of this work,
because we focus on the variation of O, on the parts per
million scale (see Text S2.3).

Mechanisms Driving O, Variability in an Urban
Atmosphere. We further quantified the contribution of
nondust and dust pollutants to pollutant-related AO,
variability, as shown in panels a—c of Figure 3 (see Figures
S11-S13 and Texts S5.2 and S5.3 for SHAP dependency plots
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of other variables). We find that the emission of nondust
pollutants is the primary determinant of AO, variability, with
contributions of 78.7%, 67.6%, and 87.3% under clean, dusty,
and polluted conditions, respectively. Among the pollutants,
NO,, TC, and CO are the leading contributors, and their
contributions increase significantly under polluted conditions,
indicating the emission of these pollutants as the primary O,
sinks in urban Lanzhou. The contribution of nondust
pollutants also exhibits a diurnal cycle, particularly under
polluted conditions. O, consumption is significantly higher
during working hours, as illustrated in Figure S14.

Panels d and e of Figure 3 demonstrate the response of AO,
to increases in the concentrations of nondust and dust
pollutants, as well as the interactions between BLH and WS.
Higher concentrations of nondust pollutants are associated
with decreases in AO,, which is typically accompanied by a
decrease in BLH. Moreover, a decrease in BLH can cause a
decrease in AO,, even at the same pollutant levels. In contrast,
increased levels of dust pollutants can result in an increased
AO,. In addition to the monotonic relationships between AO,
and pollutants, we also found that the slope of the response
curve is sensitive to varying pollutant levels (see Figure S16 for
details). For nondusty pollutants, the reduction of AO, tends
to decouple from the accumulation of pollutants, suggesting
that the same amount of O, consumed can generate more
pollutants in a more polluted atmosphere. A previous
observational study® during the COVID-19 lockdown periods
reported a similar decoupling effect; the authors found that the
declines in classic air pollutants (particularly NO,) were
significantly larger than the associated decrease in co-emitted
CO,. They attributed this decoupling effect to the diverging
impact of lockdown policies on urban combustion sources, i.e.,
more significant reductions in traffic-related fossil fuel
combustions than residential, commercial, and public sectors.
In addition to changes in emission patterns, the distinct
atmospheric lifetimes of CO, and pollutants like NO, indicate
differences in their ability to react and travel in the atmosphere,
leading to varying degrees of concentration changes in
response to emission alterations. Therefore, in this study, the
observed decoupling should not be solely attributable to
emissions, as chemical processes and atmospheric transport
also play significant roles®*' (see Texts S6.1 and S6.2).

We further investigated the major emission sources that
drive O, consumption under different pollution levels and
found increased contributions from CO and NO, and
decreased contributions from EC, OC, SO,, and PM, (Figure
3f). Though CO and NO, are co-emitted from broadly similar
sources, the tropospheric lifetime of NO, is shorter.'” The
chemical loss of atmospheric NO, and SO,, which do not
cause AQ, variability at the parts per million level, resulted in
weakening contributions.® This explains why the growth in
contribution from CO to AO, is significantly larger as the
pollutant accumulates. Compared with fossil fuel combustion,
which directly removes O, and releases pollutants, chemical
loss processes could consume pollutants in the atmosphere
without significant O, depletion. This would result in a steeper
response curve under heavily polluted conditions, which is
inconsistent with the results depicted in Figure 3d.

We have discovered that emission and chemical processes
alone are insufficient to fully account for the decoupling
between AO, and nondust pollutants (see Text S6.1 for
details). This decoupling can be sensibly explained only by the
distinct diffusion and transport of O, and pollutants in the

https://doi.org/10.1021/acs.estlett.3c00505
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Figure 4. Schematic diagram. Three typical types of pollution patterns (clean days, dusty days, and polluted days) with different levels of O,. The
black arrows show the air flows that transport the anthropogenic pollutants (NO,, TC, CO, etc.). The green arrows represent the air flow of
atmospheric O,, and the orange arrows denote the transport of dust aerosols from the dust source region (Gobi Desert). During clean days, good
atmospheric ventilation supplies enough O, to the urban region and diffuses urban pollutants. Dusty days feature cold front activities that bring
both fresh air with higher O, content and dust from the natural backgrounds and blow the urban pollutants away. During polluted days, near-
surface temperature inversion and downdrafts trap pollutants within the urban boundary layer, which leads to poor air quality and a decrease in the

level of O,.

atmosphere. In the near surface, pollutant emission is
characterized by upward fluxes, while the emission of O, is
consumed via downward fluxes. High pollutant concentrations
often coincide with stable atmospheric conditions, marked by a
reduced lapse rate or temperature inversion. Such conditions
could suppress the upward dispersion of pollutants while
promoting the downward transport of O,. This divergence in
vertical transport likely causes slower O, declines alongside
enhanced pollutant accumulation in the lower atmosphere.
These processes resemble gravitational fractionation, which has
been documented in the upper troposphere and stratosphere**
but rarely studied in the boundary layer under stagnant
weather (see Text S6.3). Further research using field
measurements and model simulations will be important to
validate the proposed mechanisms driving divergent vertical
transport of O, and pollutants within the near surface.

For dust pollutants, AO, tends to increase faster as
concentrations of dust pollutants increase, particularly under
high-wind speed conditions, as evidenced by the steeper
response curve shown in Figure 3e. We discovered that
particles of larger aerodynamic diameters had an increasingly
greater contribution to AO, as the concentrations of the dust
pollutants increased. Unlike the nondust pollutants discussed
above, atmospheric transportation processes are the primary
drivers of the variability in dust pollutants of natural origin. A
higher concentration of dust pollutants, accompanied by an
increase in wind speed, suggests enhanced atmospheric
transport, leading to a concurrent increase in O, and dust
concentrations (see Figure S11). In this situation, an air mass
can exhibit greater atmospheric diffusivity than dust, thus
resulting in a quicker AQO, increase.

The nonlinear responses of AO, to varying levels of
pollutants illustrate the influence of atmospheric dispersion
on elucidating and interpreting the emission and/or con-
sumption and atmospheric transport processes derived from
observations. Atmospheric components with varying diffusion
characteristics and directions of fluxes can result in
discrepancies between the observation-derived and actual
emission ratios, oxidative (consumption) ratios, etc. Account-
ing for non-uniform diffusion enhances the validation and
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calibration of urban emission inventories, while also constrain-
ing biological processes."’

The mechanisms that drive urban variation of the O, for
Lanzhou during clean, dusty, and polluted episodes are
illustrated in Figure 4. O, levels of urban areas respond
differently to dust and nondust pollutants, and the roles of
atmospheric transport and diffusion may further complicate
the relationship between O, and pollutants. Our study also
indicates that dust pollutants could be an indicator for an
increase in the level of O, in Lanzhou. This study is among the
first to use a machine learning-based approach to unravel the
intricate impacts of both natural and anthropogenic elements
on atmospheric O, levels and emphasizes the pollution
characteristic of urban areas adjacent to dust sources. The
ML-based O, simulator can potentially serve as a useful tool
for exploring the complex emission, chemical, and transport
processes in the urban atmosphere, but it is necessary to
exercise caution when interpreting the results of our research
due to certain limitations (see Text S7 for details).
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