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Accelerated dryland expansion under
climate change
Jianping Huang*, Haipeng Yu, Xiaodan Guan, GuoyinWang and Ruixia Guo

Drylands are home to more than 38% of the total global
population and are one of the most sensitive areas to climate
change and human activities1,2. Projecting the areal change
in drylands is essential for taking early action to prevent
the aggravation of global desertification3,4. However, dryland
expansion has been underestimated in the Fifth CoupledModel
Intercomparison Project (CMIP5) simulations5 considering the
past 58 years (1948–2005). Here, using historical data to
bias-correctCMIP5projections,weshowan increase indryland
expansion rate resulting in the drylands covering half of
the global land surface by the end of this century. Dryland
area, projected under representative concentration pathways
(RCPs) RCP8.5 and RCP4.5, will increase by 23% and 11%,
respectively, relative to 1961–1990baseline, equalling56%and
50%, respectively, of total land surface. Such an expansion
of drylands would lead to reduced carbon sequestration and
enhanced regionalwarming6,7, resulting inwarming trendsover
the present drylands that are double those over humid regions.
The increasing aridity, enhanced warming and rapidly growing
human population will exacerbate the risk of land degradation
and desertification in the near future in the drylands of
developing countries, where 78% of dryland expansion and
50% of the population growth will occur under RCP8.5.

Drylands are defined as regions where precipitation is counter-
balanced by evaporation from surfaces and transpiration by plants
(evapotranspiration)3. Because most dryland soil is relatively in-
fertile and the vegetation cover is sparse, dryland ecosystems are
substantially more fragile1. Desertification and degradation are per-
vasive in drylands owing to global warming and the effects of rapid
economic development, population growth and urbanization8.
There are also some studies indicating that the increasing hydro-
climatic intensity will become a predominant signature of twenty-
first-century warming, which leads to shorter, less frequent, and
less widespread precipitation events and an increase in the length
of dry spells9. These trends may induce the expansion of drylands
and further increase the fraction of the population that is affected
by water scarcity and land degradation1,4. Knowledge of how climate
change will affect the extent of drylands in the future is essential
for their protection and for adaptation strategies10. The CMIP5 has
generated projections using several emissions scenarios11 and has
provided a crucial reference for maintaining drylands as renewable
resources. This study verifies CMIP5 simulations and bias-corrects
the projections using historical observational data to provide a clear
understanding of the spatial and temporal evolution of drylands in
the future. The results may motivate decision makers to respond
early and effectively to mitigate the pending global desertification.

The aridity of a region is generally measured by the aridity
index (AI), which is the ratio of total annual precipitation

to potential evapotranspiration (PET). Under this quantitative
indicator, drylands are defined as regions with AI < 0.65 and
are further divided into subtypes of hyper-arid (AI < 0.05), arid
(0.05 ≤ AI < 0.2), semiarid (0.2 ≤ AI < 0.5) and dry subhumid
(0.5 ≤ AI < 0.65) regions3. The observational data used here
are from the Climate Prediction Center (CPC; refs 12,13). The
simulation data are from 20 global climate models of CMIP5
(ref. 11; Methods). As the ensemble mean of these CMIP5 models
(CMIP5-EM) can filter the uncertainty from inter-model variability
and is the best representation of the response to imposed external
forcing, it is better at predictions than any individual member14,15
and is used to reflect the simulated aridity changes in this study.

To ensure the reliability of the future projections (2006–2100), it
is critical to evaluate CMIP5-EMhistorical simulations (1948–2005)
of dryland variability compared with observations over the same
time period5. The historical values of the global observed AI and
CMIP5-EM values over 58 years are compared in Table 1 and Fig. 1.
The observed AI decreased remarkably, with a mean net trend of
−0.050 per 58yr; the areas with drying trend cover up to 66%
of the global land area (Table 1). By contrast, the mean trend of
CMIP5-EM is only −0.012 per 58yr, which is approximately one-
fourth of the observed trend; drying regions cover only 59% of the
global land area. A subset of the AI data over the last 15 years of the
historical period (1991–2005) is compared with the first 15 years
(1948–1962) to highlight the temporal changes (Table 1). The
observed areal increases in hyper-arid, arid, semiarid and subhumid
land types from neighbouring wetter subtypes are 0.62%, 1.16%,
2.32% and 3.32%, respectively, of the global land area, whereas the
increases according to CMIP5-EM are 0.05%, 0.14%, 0.37% and
0.50%, respectively. Similarly, the decreases in the subtype areas
from drier to neighbouring wetter subtypes in CMIP5-EM are
approximately one-third of those of the observations.

Because the observed changes are subject to both natural and
forced variability, the above inconsistency could result from natural
variability16, the uncertainty of model configuration17 and the
uncertainty of external forcing in models5. Therefore, CMIP5-EM
alone is not adequate for projecting future aridity changes, and
corrections are necessary. By establishing a mapping relationship
with historical observations, we conducted bias corrections18–20
on CMIP5-EM (Methods). A posteriori independent validation
indicated that the simulated aridity changes are more consistent
with observations after correction (Supplementary Section 5). This
result suggests that the relationship established from the historical
period can also be applied in the future, and correcting the
CMIP5-EM projections will be useful for evaluating global changes
in aridity and aridity patterns.

Figure 2 presents the time series of the global mean AI and the
areal changes in both the total drylands and the four subtypes of
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Table 1 |Comparison of the AI for the observed data and CMIP5-EM simulation.

Observed data CMIP5-EM simulation

Percentage of global land area with drying trend during 1948–2005∗ 66% 59%

Linear trend of global mean AI during 1948–2005† −0.050 per 58yr −0.012 per 58yr

Neighbouring subtype changes during 1991–2005 relative to 1948–1962‡ Arid to hyper-arid 0.62 0.05

Semiarid to arid 1.16 0.14

Subhumid to semiarid 2.32 0.37

Humid to subhumid 3.32 0.50

Hyper-arid to arid 0.27 0.14

Arid to semiarid 0.78 0.27

Semiarid to subhumid 0.68 0.23

Subhumid to humid 0.95 0.34

∗See details in Fig. 1. †See details in Fig. 2. ‡Unit: percentage of global land area.

CMIP5-EM annual AI (1948−2005) trend (1 per 58yr)

CPC annual AI (1948−2005) trend (1 per 58yr)
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Figure 1 | Global distribution of the linear trend of AI for 1948–2005. a,b, The trend is based on the 58-year slopes from the CPC observations (a) and the

CMIP5-EM historical simulations (b).

drylands for the historical and future periods. Clearly, the expansion
of drylands in the historical period is severely underestimated by
CMIP5-EM. The corrected CMIP5-EM reduced this underestimate
and its spatial variations such that the simulation is comparable

to the observations. For future projections, the corrected mean AI
decreases monotonically and reaches values of 0.67 and 0.72 in 2100
under the Representative Concentration Pathway 8.5 (RCP8.5) and
RCP4.5, respectively, whereas the original CMIP5-EM decreases
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Figure 2 | Temporal variation in the global mean AI and the areal coverage of drylands. a–f, Global mean AI is shown in a, and areal coverage (percentage

of global land area) is shown for total drylands (b), dry subhumid regions (c), semiarid regions (d), arid regions (e) and hyper-arid regions (f). The thin

black lines are the CPC observations. The thin blue solid (dashed) lines are the CMIP5-EM from the historical and RCP8.5 (RCP4.5) projections. The thin

red solid (dashed) lines are the corrected CMIP5-EM from the historical and RCP8.5 (RCP4.5) projections. The shading denotes the 95% confidence

intervals of the 20 models. Seven-year running means (thick coloured lines) are shown to emphasize the aridity trends.

more slowly and reaches values of 0.72 and 0.75, respectively.
According to the definition of drylands, the corrected area coverage
is 56% of the global land area in 2100 under RCP8.5, which is 23%
larger relative to observed climatology (1961–1990). The dryland
subtypes of dry subhumid, semiarid, arid and hyper-arid comprise
8.3%, 20.3%, 14.9% and 12.6% of the global land area, respectively.
Under RCP4.5, the total coverage is 50%, and the corresponding
subtypes comprise 8.9%, 19.0%, 14.4% and 8.4% of the global land
area. The largest expansion of drylands occurs in semiarid regions,
which account for nearly half of the total dryland expansions in

both RCP8.5 and RCP4.5 and cover more than one-third of the
total drylands.

The future period is divided into three 30-year intervals to
study the temporal evolution of the drylands. In the early twenty-
first century (Fig. 3a), dryland expansion is not evident, and the
distribution is scattered; additional semiarid and dry subhumid
areas generally appear along the periphery of the original, historical
drylands and increased arid and hyper-arid areas appear in Alaska,
NW Canada and eastern Siberia. In the mid-twenty-first century
(Fig. 3b), the subtype changes become more significant. The
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RCP8.5 corrected CMIP5-EM global distribution of drylands (2011−2040 relative to 1961−1990)
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RCP8.5 corrected CMIP5-EM global distribution of drylands (2071−2100 relative to 1961−1990)
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Figure 3 | Global distribution of future changes in the dryland subtypes. a–c, Projections of subtype changes from the corrected CMIP5-EM and

RCP8.5 are shown relative to the baseline period (1961–1990) for 2011–2040 (a), 2041–2070 (b) and 2071–2100 (c) with the corresponding area

changes (units: percentage of global land area) in developing and developed countries. The grey shading denotes the baseline drylands in 1961–1990.

Changes include any transition from adjacent and nonadjacent subtypes. For example, the ‘increased’ category means the indicated regions transitioned

from any of the subtypes, for example, semiarid, dry subhumid and humid to a drier subtype; the ‘decreased’ category refers to transitions from drier to

wetter subtypes.

drying areas are mainly distributed in eastern Siberia, northeastern
China, western Asia, central Africa and Canada, whereas the areas
that become wetter mainly appear along the western half of the
continents. Clearly, the subtypes that become drier comprise a
much larger area than the subtypes that become wetter. In the late
twenty-first century (Fig. 3c), the extent of the drier areas increases,
and the drylands cover nearly all of the continental areas of Africa

and Eurasia between 30◦ to 60◦ N and 15◦ to 50◦ S and western
North America; thus, drylands dominate the global land surface.
These results support previous studies21,22 that the aridity changes
over land have not simply followed the ‘dry gets drier, wet gets
wetter’ paradigm. Figure 3 also indicates that 78% of the increased
drylands occur in developing countries, but the area changes to
wetter subtypes are much less, and the percentages in developing
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countries and developed countries are equivalent. These results
imply that the survival environment in developing countries will be
more vulnerable.

Warming and drying trends occur in the historical period, and
both are projected to persist into the future. Thus, these two
factors may be linked through dynamics and climate. The warming
may aggravate the dryland expansion by causing a higher vapour
pressure deficit and evaporative demand, and the decreased soil
moisture may lead to an increase in the sensible heat flux (Hs) and
a decrease in the latent heat flux (LE; refs 23,24), and have an even
stronger impact on temperature extremes25,26. Figure 4a shows that
the average temperature increase is most significant in the drylands,
with awarmpeak of 1.17 ◦Cper 58yr, which is approximately 2.1 and
1.5 times greater than the increase in humid regions and in the global
mean, respectively. Furthermore, soil organic carbon (SOC) storage
decreases with increasing temperature and increases with increasing
soil water content27. Erosion-induced land degradation may also
lead to the emission of carbon28. Therefore, against the background
of global warming, the expansion of drylands will reduce the SOC

storage and emit CO2 into the atmosphere. Furthermore, the soil
degradation and reduced soil moisture severely constrain the gross
primary production (GPP; ref. 29) and affect the photosynthesis
rate of plants that can absorb CO2 and store carbon. As shown
in Fig. 4b, the GPP is positively correlated with the AI, and the
GPP in arid regions is approximately one-fifth of that in humid
regions. By these two processes, dryland soils store less carbon and
emit more CO2 into the atmosphere, aggravating global warming.
These processes result in a positive feedback cycle, with thewarming
and drying reinforcing each other (Fig. 4c). Unfortunately, CMIP5
cannot reproduce this pattern without large uncertainty (Fig. 4a)
because global carbon cycle processes are not included in some
CMIP5 models.

We can draw three main conclusions. First, drylands will expand
by 23% and 11% relative to the observed baseline (1961–1990) by
the end of the twenty-first century and will respectively cover a
total of 56% and 50% of the global land surface under RCP8.5
and RCP4.5. Approximately 78% of the newly expanded dryland
areas will be located in developing countries, where drylands will
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comprise approximately 61% of these countries’ total area by the
end of the twenty-first century under RCP8.5. Compared with
developed countries, the drylands in developing countries are more
sensitive to climatic and environmental changes as well as to
human-induced perturbations. Second, the warming trends over
drylands, particularly in arid regions, are twice as great as those
over humid regions. The same temperature rise will probably have a
greater effect on the poor and vulnerable populations inhabiting the
drylands, leading to increased poverty, degradation of the land and
ecosystems, soil loss and further desertification30. Third, by 2025,
drylands may occupy 48% of the global land surface and sustain
51% of the global population growth from 2000 to 2025, 50% of
which will occur in developing countries, compared with only 1%
in developed countries (Supplementary Fig. 10b). The population
growth rate for any dryland subtype in developing countries is
higher than that in humid regions (Supplementary Fig. 10c).
Population growth will demand more agricultural production, such
as tillage, pasturage and other human activities, which can quickly
induce the degradation of sensitive drylands.

It should also be noted that, although the projection skill was
improved by this correctionmethod, the improvement is still limited
because the correction method is based on the statistical mapping
relationship between the observation and model output. The risk of
dryland expansion proposed in our study still exists when results
are based only on the projection of the original CMIP5; and this
correction method suggests that the drylands will acceleratingly
expand and the situation may be worse, especially in developing
countries, a fact that is usually ignored by the public. Thus,
developing countries will be exposed to three threats: extended
drought, enhanced warming6,7 and rapid population growth. These
dire prospects and their interactions may accumulate in a nonlinear
manner as a result of positive feedback in the climate aridity cycle;
thus, the survival environment may become more vulnerable, and
slight humandisturbances can be disastrous. The risk of degradation
and desertification will be far higher than the present expectations.
As developing countries account for more than 70% of the global
land area and population, degradation and desertification will
become a challenge to the global ecosystem and human survival
in the near future. Strict management and rational utilization of
water resources, along with the restoration of soils and vegetation to
reduce ecosystemvulnerability on a global scale, are urgently needed
to develop a global action plan to prevent future desertification and
eradicate the present global desertification problems.

Methods
Methods and any associated references are available in the online
version of the paper.
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Observed data. (Details in Supplementary Sections 1 and 2).

The PRECipitation REConstruction over Land (PREC/L) data set developed by
the CPC at a spatial resolution of 0.5◦ is involved in this study, which is interpolated
from observations of the Global Historical Climatology Network (GHCN) version
2 and the Climate Anomaly Monitoring System (CAMS) data set for the period
extending from 1948 to present12. The construction of the data set is introduced in
Supplementary Section 1. In addition, the PET data set is provided by Feng and
Fu5, which is calculated using the Penman–Monteith method31,32. The surface air
temperature (SAT) data set used to calculate PET is also from CPC, which is
labelled as the GHCN_CAMS Gridded 2 m temperature13. The solar radiation,
specific humidity and wind speed reanalysis data sets used are from the Global
Land Data Assimilation System (GLDAS; ref. 33). The algorithms used for PET and
the uncertainty and reliability of the Penman–Monteith method are discussed in
Supplementary Section 2.

Simulated data. (Details in Supplementary Section 3).
The precipitation and PET simulation data set used are provided by Feng and

Fu5. It is derived from monthly mean temperature, precipitation, solar radiation,
specific humidity and wind speed products from 20 CMIP5 climate models11
(Supplementary Table 2). Most of these simulations cover the period from 1850 to
2005 (ref. 11). Here, we analyse only the period from 1948 to 2005, for which the
CMIP5, CPC and GLDAS data sets are commonly available. Because the CMIP5
models have different spatial resolutions, the simulated fields are statistically
downscaled to a 0.5◦ ×0.5◦ resolution to match the observational data sets5.
Moreover, to focus on the temporal variation and long-term climate change, the
model simulations are adjusted to have the same climatology of 1961–1990 as
the observations5.

GPP data. The gross primary productivity (GPP) is the total amount of carbon
fixed in the process of photosynthesis by plants in an ecosystem. A complete
11-year period (2000–2010) of yearly GPP data were acquired from NASA
Goddard Space Flight Center (http://ladsweb.nascom.nasa.gov/data/search.html)
to analyse the relationship between the AI and GPP. The yearly GPP data
(MOD17A3) are retrieved at a spatial resolution of 1 km × 1 km as a part of the
Terra satellite’s Moderate Resolution Imaging Spectroradiometer (MODIS) level-4
collection 5.5 (C055), which was recently updated with yearly gridded land
products. The data are processed by the MODIS Reprojection Tool (MRT) with a
spatial grid cell resolution of 0.5◦ ×0.5◦.

Population data. The population counts are from the Gridded Population of the
World, version 3 (GPWv3) (http://sedac.ciesin.columbia.edu/gpw/index.jsp). A
proportional allocation gridding algorithm, utilizing more than 300,000 national
and sub-national administrative units, is used to assign population values for 2000
to grid cells with a spatial resolution of 0.5◦ ×0.5◦. The population counts for 2025
are generated using the Country-level Population and Downscaled Projections
Based on the Special Report on Emissions Scenarios (SRES) B2 Scenario
(1990–2100) data set; CIESIN’s Gridded Population of World, version 2 (GPWv2),
is used as the base map34.

Correction method. (Details in Supplementary Sections 4 and 5).
Because the CMIP5 and observed data over the historical period both have too

many degrees of freedom, establishing a mapping relationship between them in
such a high-dimensional space is impractical. By applying principal component
analysis (PCA), the CMIP5 and observed data sets are both reduced to a lower
dimensional space and decomposed into eigenvectors and corresponding principal
components (PCs) (Supplementary Fig. 1). Each PC of the CPC data set is
regressed by the leading PCs of CMIP5, and a matrix of regression coefficients is
obtained. According to this relationship, the observed PCs can be predicted by the
simulated PCs of CMIP5 in the future. The leading PCs are considered as
correction factors not only because they are responsible for most of the variance in
mathematics, but they also present high correlation with the patterns induced by
external forces and by internal climate variability35. Although the correlation does
not imply causality, it may reveal the possible physical meanings underlying each
PC (see discussion in Supplementary Section 4.1). This method has been used to
correct the seasonal predictions18–20, and we adapted it in this study to correct the
long-term changes of the CMIP5 projections.

The schematic of correction is shown in Supplementary Fig. 2 and the practical
procedures are introduced as follows:

First, the simulated fields are corrected by subtracting the climate drift, which is
estimated as the difference between the forecasts and the observations averaged

over climatic timescales. Then the simulated field Zsim(t) and observed field Zobs(t)
can both be expressed as a matrix of sizem×n, wherem is the number of spatial
grid points and n is the length of the time series. Generally,m is much larger than
n. To reduce the spatial dimensions, we expand Zsim(t) and Zobs(t) by PCA:

Zsim(t)=
n∑

i=1

bi(t)Xi (1)

Zobs(t)=
n∑
j=1

aj(t)Yj (2)

where Xi and Yj are spatial patterns with a dimension ofm; bi and aj are PCs
corresponding to each Xi and Yj with a dimension n. Using multiple linear
regression, each aj(t) can be regressed by the K leading bi(t) (i=1,2, . . . ,K ):

aj(t)=
K∑
i=1

bi(t)ci,j +ej (3)

where ci,j is the regression coefficient and ej is the regression residual. Projecting
Zsim(n+1) (the predicted field at the time of n+1) onto each spatial pattern Xi will
provide the corresponding time coefficient bi(n+1):

bi(n+1)=Xi
T Z sim(n+1) (4)

By inserting bi(n+1) into equation (3), we can obtain a prediction of the
observed time coefficient

ãj(n+1)=
K∑
i=1

bi(n+1)ci,j +ej (5)

Then, the adjusted prediction of Zobs at a time of n+1 can be obtained by
combining the spatial pattern:

Z̃obs(n+1)=
K∑
j=1

ãj(n+1)Xj (6)

Generally, the climate models have a poor ability to simulate high-frequency
variability, and retaining higher-order PCs may introduce additional noise. In this
case, the optimal number of leading PCs should be examined. Here the widely used
leave-one-out cross-validation during the historical period is conducted to choose
the cumulative number of leading PCs (see detailed procedures in Supplementary
Section 4.2 and Supplementary Fig. 3).

Because the corrected AI contains information from both observations and
CMIP5, it is considered to be more accurate than the original projections. The
validity of this method is verified by a posteriori independent validation (see details
discussion in Supplementary Section 5), and the results confirm that the correction
method is robust and reliable. On this basis, the PCA adjusting method is applied
to the future period in the same way. The 58-year record of observations and
simulations during the historical period is decomposed by PCA, and the linear
regression is obtained. The simulation field for each year during the future period
is projected onto the decomposed spatial patterns to obtain a time coefficient.
Applying this time coefficient to the regression relationship will provide a
‘predicted’ time coefficient for the observations and allow a ‘prediction’ of the
observed field. The adjustment is conducted for each year from 2006 to 2100 by
obtaining the adjusted predictions under RCP8.5 and RCP4.5.

Graphics software. All maps and plots were produced using licensed IDL
version 8.2.
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