
1. Introduction
Atmospheric particulate matter with an aerodynamic diameter less than 10 μm (PM10) has a great impact on global 
environmental (Jiang et al., 2015; Kassomenos et al., 2014; Millán-Martínez et al., 2021; Rastogi et al., 2020), 
human health (Brook et al., 2010; Ho et al., 2018; Samoli et al., 2011; Tomczak et al., 2016), and climate change 
(Q. Zhang et al., 2017; C. Zhao & Garrett, 2015). Since 2013, China has successively established more than 1,000 
environmental monitoring stations to obtain the particle concentration (Yan et al., 2020; Q. Zhang et al., 2019; 
T. Zhang et al., 2019). However, because of the uneven spatial distribution of these ground stations, atmospheric 
PM10 concentration data with continuous high spatial and temporal resolution are absent. This limits the research 
on the atmospheric PM10 climate environment (Hu et al., 2014; Y. Zhang & Li, 2015).

Many scholars have obtained atmospheric particle matter concentrations with high spatio-temporal resolution by 
using machine learning models and satellite data (G. Chen et al., 2018; You et al., 2015; T. H. Zhang et al., 2016; 
Y. Zhang et al., 2021). Studies showed that there was a strong correlation between aerosol optical depth (AOD) 
and surface particles (Guo et al., 2009; Z. Li et al., 2016; Q. Xu et al., 2021), which is often used to estimate 
the particle concentration (Gui et al., 2020; T. Li et al., 2017; Xiong et al., 2021). Using the 5 km resolution 
AOD of the Medium Resolution Imaging Spectrometer (MERIS) sensor in three Malaysian metropolises and 
an artificial neural network to estimate PM10 concentrations, the correlation coefficient of the model had values 
as large as 0.65 (Kanniah et al., 2014). The daily atmospheric PM10 concentration in Israel was estimated based 
on the mixed effect model and MAIAC AOD, resulting a cross-validation, R 2 value of 0.79 (Kloog et al., 2015). 
Z. Zhang et al. (2018) used land-use regression (LUR) model to estimate the monthly PM10 concentration in 
China, and the R 2 reached 0.71. Based on random forest model and AOD data, G. Chen et al. (2018) successfully 
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estimated the PM10 concentration in China in the past decade. Wei, Li, Xue, et al. (2021) used the space-time 
extremely randomized trees (STET) to generate PM10 data in China from 2015 to 2019, with a spatial resolution 
of 1 km, and pointed out that PM10 showed a significant downward trend. In addition, researchers have shown the 
relationship between AOD and particulate matter of polar orbiting satellites in China, such as MODIS (X. Wang 
et al., 2020), Visible Infrared Imaging Radiometer Suite (VIIRS; Wu et al., 2016), MISR (X. Meng et al., 2018), 
and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP; Chen, Song, Pan, & Huang, 2022).

Polar orbiting satellites cannot obtain high time resolution data; however, the time resolution of second-generation 
geostationary satellites is ∼15 min with a fine spatial resolution. Recently, some studies have begun to use geosta-
tionary satellites to obtain particle concentrations (W. Wang et al., 2017; Wei et al., 2019). Previously, the geosta-
tionary satellite AOD was principally used for PM2.5 remote sensing (J. Liu et al., 2019; Z. Zhang et al., 2019). 
The inversion of PM10 was initiated in the 2 yr prior to this work. The geographically weighted region models 
and AOD of the Indian geostationary satellite (INSAT-3D) were used to estimate PM10. The R 2 values of the pre-, 
post-, and winter models were 0.624, 0.718, and 0.633, respectively (Gupta et al., 2021). The AOD data from the 
Geostationary Ocean Color Imager (GOCI) of the Korean geostationary satellite (GEO-KOMPASAT 2B) was 
used to estimate the PM10 concentration based on two machine learning models [gradient boosted regression trees 
and light gradient boosting machine (LightGBM)]. The models achieved R 2 as high as 0.82 (S. Park et al., 2021). 
The hourly PM10 atmospheric concentrations in China were estimated using a deep learning algorithm and the 
AOD data from the Japanese geostationary satellite (Himawari-8). The hourly cross validation R 2 estimated by 
the AOD-PM10 model ranged from 0.82 to 0.88. The R 2 for daily, monthly, seasonal, and annual averages of 
atmospheric PM10 concentrations were 0.87, 0.91, 0.94, and 0.94, respectively (Chen, Song, Shi, & Li, 2022).

The particle concentration can be effectively estimated using the AOD (Stafoggia et al., 2019). Because AOD 
was only provided under optimal conditions, there were a large number of missing values (Y. Park et al., 2020). 
The coverage of satellite top-of-the-atmosphere reflectance (TOAR) was higher than that of AOD, so TOAR was 
used to directly obtain the particle concentration (L. Yang et al., 2020). Using the TOAR of Himawari-8 and the 
random forest model, the PM2.5, of the Yangtze River Delta (YRD) in 2016 was obtained, and the 10-fold cross 
validation (R 2) was 0.75 (Bai et al., 2021). Using the TOAR of the Himawari-8 and LightGBM models, the R 2 
of the PM2.5 model was 0.86 (Yin et al., 2021). Using TOAR directly increases the effective coverage, and the 
performance of the model is also very positive.

Since the Himawari-8 satellite cannot cover Xinjiang, China (Song et al., 2021; Wei, Li, Pinker, et al., 2021), 
China’s second-generation geostationary meteorological satellite FY-4A successfully launched on 11 December 
2016, can cover the entire territory of China. Its Advanced Geosynchronous Radiation Imager (AGRI) imager 
can provide multi-band full-disk images with a time resolution of 15 min (Y. Chen et al., 2020; Mao et al., 2021; 
Zhang, Zhu, et  al.,  2019). As dust is an important component of PM10, the Taklimakan Desert in Xinjiang, 
China is an important source of dust in East Asia. Using the FY-4A satellite was advantageous in estimating the 
contribution of dust weather to PM10 in East Asia (B. Chen et al., 2010). At the same time, there have been no 
studies on estimating PM10 from the FY-4A satellite. This study used the FY-4A satellite to estimate China's high 
spatial-temporal resolution for atmospheric PM10 concentrations.

Most studies have shown that nonlinear machine-learning models can more effectively obtain the particle concen-
tration (Paschalidou et al., 2011; Qin et al., 2018; Yin et al., 2021). This study used a deep learning model, the 
deep forest (DF) model (Zhou & Feng, 2017), which has the structure of a deep neural network (DNN), and 
replaced DNN neurons with decision tree (DT) models. Combining the advantages of the DNN and DT models, 
the DF model can better fit nonlinear data and provide the importance of model features to result in a more 
interpretable deep learning model. The hourly PM10 concentrations in China from June 2018 to May 2019 were 
obtained using the DF model, FY-4A TOAR, meteorological parameters, and geographic information data. Using 
the results of the FY-4A TOAR-PM10 model, the contribution of long-range transport dust (LRTD) originating in 
the Taklimakan Desert to atmospheric PM10 concentrations in China and northern China was evaluated.

2. Data and Methods
2.1. FY-4A TOAR Data

FY-4A is China’s second-generation geostationary meteorological satellite. It contains four advanced instru-
ments: the AGRI, the Geosynchronous Interferometric Infrared Sounder, Lightning Mapping Imager, and Space 
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Environment Package; X. Zhang et al., 2020; Zhang, Lu, et al., 2019). The satellite provides high-precision data 
products for weather forecasting, environmental monitoring, climate change, and disaster prevention and reduc-
tion (C. Meng & Li, 2019; Min et al., 2017; Xia et al., 2020; J. Yang et al., 2017).

AGRI had 14 channels and a wavelength range of 0.45–13.8 μm. It covers the visible (VIS), near-infrared (NIR), 
medium infrared, and long infrared, with a spatial resolution of 0.5–4 km. As shown in Table 1, according to the 
scientific objectives of each spectral channel (channels related to the properties of aerosols), four channels related 
to particulate matter were selected to estimate PM10, including 0.45–0.49 μm (VIS_B), 0.55–0.75 μm (VIS_G), 
0.75–0.90  µm (VIS_R), and 2.1–2.35  μm (NIR). Cloud detection products (CLM) provided by the National 
Satellite Meteorological Center (NSMC) were used to remove the impact of clouds. For the TOAR data, mask 
processing was performed on the area where clouds or possible clouds were displayed in CLM. In this study, 
FY-4A Level 1 (L1) 4 km full disk dataset and CLM data with the same resolution obtained from NSMC from 1 
June 2018 to 31 May 2019, were utilized.

2.2. PM10 Data and Auxiliary Data

The hourly atmospheric PM10 observation data were obtained from the China Environmental Monitoring Center 
(CEMC; China, 2012). Figure S1 in Supporting Information S1 showed the distribution of the 1,641 CEMC 
ground PM10 stations. The box in the figure shows six typical urban agglomerations in China: the Guanzhong 
Plain (GZP), Pearl River Delta (PRD), Central China (CC), Beijing-Tianjin-Hebei (BTH), Sichuan Basin (SCB), 
and Yangtze River Delta (YRD).

Auxiliary data include meteorological parameters, geographic information, and time variables. Previous studies 
have shown that meteorological parameters and geographic information have an impact on pollutant transmission 
and accumulation of pollutants (Fu et al., 2008; Gao et al., 2016; Sun et al., 2016). Meteorological parameters 
include boundary layer height (BLH, m; Han et al., 2018), 2 m air temperature (TM, K; Ma et al., 2021), relative 
humidity (RH, %; F. Liu et al., 2019), u and v components of 10 m wind (U10, V10, m/s; B. Xu et al., 2020), 
and surface air pressure (SP, Pa; G. Xu et al., 2020). These data were obtained from ERA-5 ECMWF reanalysis 
data (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land). The temporal resolution of per 
hour and a spatial resolution of 0.25° × 0.25° or 0.1° × 0.1° (Table 2 for more details). Geographic information, 
including ECMWF’s high and low vegetation index (LL, LH), NASA’s height (HEIGHT), and population density 
(PD; M. Chen et al., 2020), were obtained from NASA’s socio-economic data and Applications Center (SEDAC). 

Channel Wavelength Spatial resolution (km) Main scientific objectives

1 0.45–0.49 1 Small particle aerosol, true color

2 0.55–0.75 0.5–1 Vegetation

3 0.75–0.90 1 Vegetation, aerosols

4 1.36–1.39 2 Cirrus cloud

5 1.58–1.64 2 Low cloud/snow identification, water cloud/ice cloud identification

6 2.1–2.35 2–4 Cirrus cloud, aerosol, particle size

7 3.5–4.0 (High) 2 Cloud and other high albedo targets, fire point

8 3.5–4.0 (Low) 4 Low albedo target, surface

9 5.8–6.7 4 Upper layer water vapor

10 6.9–7.3 4 Middle layer water vapor

11 8.0–9.0 4 Total water vapor and cloud

12 10.3–11.3 4 Cloud, surface temperature, etc.

13 11.5–12.5 4 Cloud, total water vapor, surface temperature

14 13.2–13.8 4 Cloud and water vapor

Table 1 
Details of 14 Channels Information of the Advanced Geosynchronous Radiation Imager (AGRI) Instrument on FY-4A 
Satellite

https://cds.climate.copernicus.eu/cdsapp
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The time variable (TIME) refers to the hour difference between the current 
time and 0:00 on 1 January 1900. The data used in the model are listed in 
Table S1 in Supporting Information S1.

2.3. Deep Forest Model

Zhou and Feng (2017) proposed the DF model, which uses an extreme tree 
(ET; Geurts et al., 2006) and random forest (RF; Breiman, 2001) as neurons 
of the model, and multiple neurons formed a hidden layer. The DF model 
includes N hidden layers, and the output of the last hidden layer is connected 
to a separate estimator LightGBM (Ke et al., 2017) to output the results of 
the model. Because the DF model neurons were tree models (such as RF and 
ET), the DF model can output the importance of features, which makes the 

DF model interpretable. In this study, a DF model with three hidden layers was designed. Each layer contained 12 
neurons (6 ETs and 6 RFs). Figure 1 is a structural diagram of the PM10 concentration obtained by the DF model.

Area R 2 RMSE (µg/m 3) MAE (µg/m 3) N

Beijing-Tianjin-Hebei 0.86 22.04 13.57 58,857

Guanzhong Plain 0.85 22.29 13.78 36,714

Centra China 0.87 18.05 11.96 128,167

Sichuan Basin 0.81 15.08 10.44 49,801

Pearl River Delta 0.80 13.73 9.44 48,263

Yangtze River Delta 0.86 15.70 10.69 155,458

Table 2 
Model Validation Results for Six Large Urban Agglomerations

Figure 1. The schematic diagram of estimating PM10 using FY-4A TOAR data and deep forest (DF) model. The upper part 
of the right column is the distribution of input features, such as VIS_B, VIS_G, VIS_R, NIR, RH, SP, TM, and BLH on 28 
April 2019, 12:00 (Beijing Time), and the lower part of the right column is the structure of the neuron [extreme tree (ET) and 
random forest (RF)].
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2.4. Data Preprocessing

The spatial resolution of meteorological elements and geographic information was adjusted to 0.04° × 0.04° 
of FY-4A data by bilinear interpolation. The PM10 hourly mean data of CEMC were compared with those of 
the TOAR of FY-4A. After data matching, the total number of samples was 937,974, of which the number of 
samples in spring (MAM), summer (JJA), autumn (SON), and winter (DJF) were 229,769, 259,037, 300,717, and 
148,451, respectively.

2.5. Model Validation

A 10-fold cross-validation method was used to test the model performance (Rodriguez et al., 2010). The param-
eters used to describe the model performance included the determination coefficient (R 2), root mean square error 
(RMSE), and mean absolute error (MAE; Chen, Song, Pan, & Huang, 2022; Chen, Song, Shi, & Li, 2022). The 
expected error (EE, Equation 1) was used to evaluate the accuracy of the TOAR-PM10 model. The better EE 
value (close to 100%) indicated that the estimated value of the model is agree with the observation value (Chu 
et al., 2003; X. Yang et al., 2020).

𝐸𝐸𝐸𝐸 = (1 ± 0.15)𝑦𝑦𝑖𝑖 ± 0.05 (1)

𝐴𝐴 𝐴𝐴𝑖𝑖 represents the observed value of PM10 from CEMC.

3. Model Validation Results
3.1. Time Scale Results (Hourly, Daily, Monthly, Seasonal, and Annual Mean)

The TOAR-PM10 model was established using the DF model, and the estimated atmospheric PM10 concentration 
values were compared with the observed values of the CEMC. The results were shown in Figure 2. Except at 
09:00 a.m. Beijing time, the 10-fold cross validation R 2 was greater than 0.8. At 13:00, the R 2 value of the model 
reached a maximum of 0.85, and 55% of the samples fell within EE. The fitting slope comparing the estimated 
value and the observed value was >0.8, indicating that the TOAR-PM10 model estimated most atmospheric 
PM10 samples well, and the estimated value was consistent with the observed value. The RMSE of the model 
was 18.44–34.72 µg/m 3 with a MAE is 10.91–16.92 µg/m 3. This showed that it was feasible to directly obtain 
PM10 concentration data using FY-4A TOAR data, and the model performance was mainly related to pollutant 

Figure 2. Hourly cross validation results of FY-4A TOAR-PM10 model based on grid points, and (a–h) is 9:00–16:00 Beijing time respectively. (I) represents hourly 
cross validation results based on sites. The dark dotted line represents the error line, the light dotted line represents the 1:1 line, and the solid red line represents the 
linear regression fitting line, EE presents the expected error, when the ratio of the estimated value to the true value is between 1.15 and 0.85. The discrepancy between 
them is called EE.
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emissions and meteorological conditions (J. Chen et al., 2019; Zang et al., 2019; C. Zhao et al., 2020). As shown 
in Figure 2 (I), the R 2 of the out-of-station cross validation results was 0.66, which was worse than the data based 
on grid points. This was because some stations did not participate in the training data of the model, so that the 
model could not obtain the effective information of the region. In general, considering the overall performance of 
the model, the DF model could effectively estimate the PM10 concentration in the area without sites.

As shown in Figures 3a–3d, the TOAR-PM10 estimation model performed best in autumn with a cross valida-
tion R 2 was 0.84 (RMSE was 21.66 µg/m 3). Performance was poor during summer R 2 with a value of only 0.66 
(RMSE was 22.57 µg/m 3). R 2 in spring and winter were 0.75 and 0.83, respectively; however, RMSE in these two 
seasons was relatively high, 27.19 and 29.04 µg/m 3, respectively. This may be related to the frequent occurrence 
of dust weather in spring and the large combustion of fossil fuels for heating in winter (Xiao et al., 2015; Y. Yang 
et al., 2016). In addition, the estimated atmospheric PM10 concentrations was compared with station observa-
tions on daily, monthly, seasonal, and annual average PM10. The results were shown in Figures 3e–3h. The daily, 
monthly, seasonal, and annual validation results R 2 (RMSE) of TOAR-PM10 model were 0.82 (24.16 µg/m 3), 0.97 
(6.53 µg/m 3), 0.98 (4.17 µg/m 3), and 0.99 (2.30 µg/m 3), respectively. The results showed that the PM10 estimated 
using the TOAR-PM10 model was reliable.

3.2. Spatial Scale Results

Figure 4 showed the spatial performance of the TOAR-PM10 model. In most stations in eastern China, model 
R 2 was relatively high (>0.8), while in western China, the model performance was degraded, especially in the 
Qinghai Tibet Plateau, which has very complex terrain. There was a large difference in the number of stations 
in eastern and western China. The model performed relatively well in areas with large samples, and R 2 showed 
a high distribution in eastern China and low distribution in western China. The distribution of RMSE and MAE 
in China was high in the North and low in the South, especially in Northwest China, and RMSE and MAE were 
greater than 18 and 24 µg/m 3, respectively. The validation results of the six typical urban agglomerations in China 
were shown in Table 2. The Yangtze River Delta, Beijing Tianjin Hebei and Central China demonstrated good 
model performance, with R 2 (RMSE) of 0.86 (15.70 µg/m 3), 0.86 (22.04 µg/m 3), and 0.87 (18.05 µg/m 3), respec-
tively. The R 2 values in the Sichuan Basin and Pearl River Delta were less than 0.82. R 2 performed well, mainly 

Figure 3. Similar to Figure 2, except for spring (a), summer (b), autumn (c), winter (d), daily (e), monthly (f), seasonal (g), and annual (h) average cross validation 
results of FY-4A TOAR-PM10 model based on grid points.
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in urban agglomeration areas, and performed poorly, mainly in areas with complex topographic conditions, such 
as the western Sichuan Basin.

3.3. Importance of Model Features

The deep learning DNN model is a “black box,” which cannot provide interpretability to the model. The neuron 
of the deep learning DF model is a tree model, which can obtain the importance of model features and the contri-
bution of model input variables. To evaluate the importance of each input feature in different seasons (or regions), 
we used the same DF architecture (as described in Section 2.3) and retrained the data in seasons (or regions) to 
obtain the feature importance. Except for Figure 5a (spring, summer, autumn, and winter) and Figure 5b, the other 
results of the model in this article were the results of the same TOAR-PM10 model constructed based on the whole 
sample, such as Figure 5a (Annual).

As shown in Figure 5a, the feature importance of TOAR (the sum of the feature importance of the four channels) 
was the highest, followed by the TIME variable. Among the meteorological elements, BLH, RH, and TM made 
significant contributions to the model. In addition, a low vegetation index (LL) also affected the performance of 
the model. Generally speaking, the feature importance of each input was different in seasons, but in the season 
with poor model performance, the contribution of other importance features was low except for TOAR. Figure 6 
showed the variation trend of uncertainty (RMSE) with important features. The results indicate that the uncer-
tainty of derived PM10 varies with TOAR and meteorological elements. In general, various factors (including 
TOA and meteorological factors) influence the uncertainty of derived PM10. RMSE decreased with the increase 
of VIS_B, VIS_G, VIS_R, BLH, and TM. The effect of NIR and RH on RMSE was about 20 µg/m 3. Further-
more, based on the feature importance, the main influencing factors of each region will change. In addition, we 
performed linear fitting for each estimation factor and model bias, and the regression coefficient obtained is 
shown in Figure S2 in Supporting Information S1. The results indicated that the factors such as VIS_G, VIS_R, 
RH, LL, SP, TM, and height contributed more (absolute value of the regression coefficient >1) to the uncertainty 
of the estimation results.

In addition, as shown in Figure 5b, the feature importance of TOAR in each region was ∼0.15, while meteorolog-
ical elements, geographic information, and time variables changed significantly. BLH and RH had a significant 
impact on the BTH region, but their contributions to other regions were relatively low. The contribution of TM to 

Figure 4. Spatial distribution of FY-4A TOAR-PM10 model evaluation indicators, (a: R 2, b: RMSE, c: MAE, and d: PM10 annual mean.)
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Figure 5. The feature importance of DF in (a) annual and seasons and (b) six urban agglomerations. The color and number of each grid point on the panel represent the 
feature importance score in the DF model.

Figure 6. The variation trend of RMSE with important features and color bar indicates the number of points.
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CC, SCB, PRD, and YRD exceeded 0.1. The importance of SP was only >0.1 in the SCB area with poor model 
performance. For the YRD and GZP regions, the TIME variable was a very important variable. The dominant 
features of the model would change in different seasons and regions, which also explained why the out-of-station 
cross validation result of the model was relatively poor, as shown in Figure 2 (I).

4. PM10 Distribution Results
4.1. Spatial Distribution of Hourly and Seasonal Average for Atmospheric PM10 Concentrations

The average PM10 concentration distribution from 09:00 to 16:00 Beijing during the study period was shown in 
Figure 7. The estimation results of TOAR-PM10 showed that the Tarim Basin had the highest concentration of 
atmospheric PM10 concentration in China, with a daily average concentration of 100 µg/m3, which is correlated 
with frequent local dust aerosols. The concentration of PM10 in BTH region showed obvious diurnal variation: 
it was the greatest from 09:00 to 10:00 (73.15 ± 22.81 µg/m 3), then decreased to 56.22 ± 9.87 µg/m 3 at 13:00. 
At 16:00 it increased slightly (63.03  ±  13.71  µg/m 3). The PM10 concentration in GZP had the same diurnal 
variation as that in the BTH area (61.10 ± 19.96 µg/m 3, 55.87 ± 10.98 µg/m 3, and 58.01 ± 12.53 µg/m 3). The 
concentration of PM10 in southern China continued to decline from 09:00 to 16:00, but there were great differ-
ences among regions: the concentration of PM10 in the YRD region was 65 µg/m 3 and greater; The hourly vari-
ation range of PM10 concentration in CC region was 60.38 ± 17.53 µg/m 3; The hourly PM10 of SCB region 
was 53.22 ± 11.25 µg/m 3; The concentration of atmospheric PM10 in the YRD region was less than 50 µg/m 3. 
In addition, the concentration of PM10 in other parts of China was relatively low, especially in Northeast China 
and the Qinghai Tibet Plateau. The results indicated that the estimated results were in good agreement with the 
observed results.

As shown in Figure S3 in Supporting Information S1, the average atmospheric PM10 concentration values during 
the four seasons in China were 67.90 ± 25.78 , 49.8 ± 20.06 , 58.68 ± 22.16,  and 73.46 ± 26.27 µg/m 3, respec-
tively. Because of the frequent dust weather in spring, the atmospheric PM10 concentration in the Tarim Basin, 
one of the dust sources in East Asia, was very high, and the PM10 concentration in North China was generally 
greater than that in South China. In winter, due to low wind speeds, meteorological conditions were not condu-
cive to pollutant diffusion. Winter is the heating season in northern China. The PM10 concentrations in the BTH, 
GZP, YRD, and SCB regions were greater in winter. Compared with those of winter, the anthropogenic emissions 
in summer and autumn were lower. In addition, there was more precipitation during summer and autumn result-
ing in a moisture-based elimination, wet deposition, of atmospheric PM10. This elimination resulted in a lower 
atmospheric PM10 concentration during summer and autumn.

4.2. PM10 Distribution of Six Large Urban Agglomerations in China

The spatial resolution of the TOAR data provided by FY-4A was 4 km, which reflected the atmospheric PM10 
concentration distribution at the city level. Figure 8 showed the annual average atmospheric PM10 concentration 
distribution of six large urban agglomerations in China. The results showed that the concentration of atmospheric 
PM10 was higher in BTH (66.66 ± 16.92 µg/m 3), CC (64.22 ± 1 4.78 µg/m 3), and YRD (79.34 ± 15.86 µg/m 3) 
region. The concentration of atmospheric PM10 in GZP and SCB was relatively low, ∼59.05 ± 14.71 µg/m 3. 
The annual atmospheric concentration of PM10 in the PRD region was only 49.76 ± 6.53 µg/m 3. According to 
the distribution of atmospheric PM10, areas of high atmospheric PM10 concentrations in each region generally 
occurred in large cities and surrounding areas, which were closely related to local human activities.

4.3. Case 1: Contribution of Long-Range Transport Dust to Atmospheric PM10 Concentration

From 14 to 17 May 2019, a large-scale dust storm occurred in northern China (35°N–45°N, 70°E–135°E). 
Combined with the spaceborne lidar CALIOP data, the results of the TOAR-PM10 model were used to analyze 
the dust weather process. Figure 9 (Part 1) showed the three-dimensional transmission diagram of CALIOP’s 
observational data of the dust weather process. The red transmission line was the forward trajectory line of the 
HYSPLIT mode. It can be observed that the dust weather originated in Taklimakan desert of China, traversed 
northern China to the Yellow Sea on May 17.
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Figure S4 in Supporting Information S1 showed the cloud and aerosol profiles obtained by CALIOP during this 
dust weather process. The dust aerosol ascended to an altitude greater than 8 km; consequently, it could be trans-
mitted downstream for long distances. There was a wide range of dust aerosols at an altitude of 0–8 km in north-
ern China, and on the 17th, there was a large area of polluted continental aerosols and polluted dust aerosols in 
the southern Yellow Sea. The red line in Figure 10 was the orbit of CALIOP, and the left column was the FY-4A 
true color map. There were many white clouds in the map, which resulted in the vacancy value of the estimated 
atmospheric PM10 concentration. It can also be seen from the figure that there was a large quantities of dust 

Figure 7. Diurnal variation of PM10 concentration in China using FY-4A TOAR-PM10 model. (a–h) represents the PM10 
concentrations between 09:00 and 16:00 Beijing time. These points represent PM10 concentrations observed at ground 
stations from CEMC.
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aerosols in northern China (earthy yellow). Station observations (Figure 10, middle column) and model estima-
tion (Figure 10, right column) showed that the atmospheric PM10 concentration first increased and then decreased 
from the 14th to 17th. From 14 to 17 May 2019, the estimated values of atmospheric PM10 concentrations in 
China were 98.53, 91.02, 99.95, and 77.22 µg/m 3 (northern China: 123.82, 121.98, 139.77, and 106.90 µg/m 3). 
The observed values of PM10 concentration stations were 102.81, 96.00, 91.88, and 60.90 µg/m 3 (northern China: 
134.49, 169.54, 130.04, and 77.86 µg/m 3). Figure S5 in Supporting Information S1 showed the 10 m wind field 
during dust weather, and PM10 was the estimated value of the TOAR-PM10 model. The wind speed in northern 
China was significantly greater than that in southern China. The surface wind in northern China was generally 
westerly. The area with high surface wind speed corresponded to the high atmospheric PM10 concentration and 
dust transmission path.

As shown in Figure 9 (Part 2), it was the atmospheric PM10 concentration (Figure 9a, Dust period) during the dust 
weather process (14–17 May 2019) and the atmospheric PM10 concentration (Figure 9b, None_Dust period) with-
out dust weather in May 2019. In addition, the difference (Figure 9c, Dust period—None_Dust period) between 
the two periods was presented. The left column was the station observation value, and the right column was the 
estimated value of TOAR-PM10 model, and through the difference (Figure 9c), we can estimate the contribution 
of LRTD to atmospheric PM10 concentration during dust weather. During this dust weather process (Dust Period), 
the estimated and observed atmospheric PM10 concentrations in China were 87.53 and 87.78 μg/m3, respec-
tively (northern China: 116.64 and 127.96 µg/m 3). The estimated and observed atmospheric PM10 concentration 
values in None_Dust period in May 2019 were 57.46 and 55.49 μg/m3, respectively (northern China: 64.64 and 
64.91 µg/m 3). Based on the model results, during the dust weather, the atmospheric PM10 concentration in 64% 
of China’s regions increased by 20%. In 39% of China’s regions, it increased by 50%. In 28% of China’s regions, 
it increased by 70%. Finally, 17% of China’s regions it increased by 100%. Based on the CEMC stations, the 
atmospheric PM10 concentration at 827 stations (accounting for 52% of the total stations) increased by 20%. 
At 592 stations (37%), it increased by 50%. At 484 stations (30%), it increased by 70%. Finally, at 379 stations 
(23%), it increased by 100%. The model estimates were consistent with station observations for atmospheric PM10 
concentrations.

Figure 8. Distribution of atmospheric PM10 concentration in the six large urban agglomerations in China. Black dots represent cities, and some big cities were shown 
in red. Each region name was displayed on the submap title.
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4.4. Case 2: Changes in PM10 Concentration Under the Combined Conditions of Dust and Haze Weather

On 24–30 November 2018, there was a large area of haze in China. In addition, there was an LRTD weather 
process in northern China on November 25–27 (the largest area of dust on November 26). This event was a 

Figure 9. Part (1) showed dust weather event (14–17 May 2019), red lines represented back trajectory analyses and dust 
transport. Vertical images (curtain files) showed the CALIPSO 532-nm total attenuated backscatter. The color scales on the 
left represent topographical elevation, and the color scales on the right represent 532-nm total attenuated backscatter. Part (2) 
showed the distribution of atmospheric PM10 concentration estimated by the model (left column) and observed by the station 
(right column). Figure line (a), (b), and (c) showed the average atmospheric PM10 concentration of Dust period, None_Dust 
period, and the difference between Dust period and None_Dust period, respectively.
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composite pollution weather event of dust and haze weather. The haze period was November 24–30 (haze period), 
the dust weather period was November 25–27 (dust period), and the period of no dust nor haze weather was 
November 1–23 (None_Haze_Dust period). As shown in Figure 11 (Part 1), CALIOP observed the three-di-
mensional transmission of the dust weather process. The source and transmission path of the dust weather were 
similar to the dust weather process in May 2019 (as shown in Figure 9, Part 1), but the dust intensity and trans-
mission height were less.

In Figure S6 in Supporting Information S1, a large area of dust aerosols and pollution dust aerosols were found at 
an altitude of 0–4 km in China from the 24th to 27th, and a small amount of dust aerosol was found at an altitude 
of 8 km on the 26th, which also showed that the dust intensity was less. The FY-4A true color (RGB) map in 
Figure 12 showed clouds (white), which was consistent with the observation of CALIOP (Figure S6 in Support-
ing Information S1). From 24 to 27 November 2018, the estimated atmospheric PM10 concentrations in China 
were 81.98, 95.23, 198.47, and 142.84 μg/m 3 (northern China: 101.32, 107.38, 292.72, and 207.59 μg/m 3), and 
the observed atmospheric PM10 concentrations were 99.32, 130.18, 174.98, and 171.59 μg/m 3 (northern China: 
122.50, 193.56, 302.76, and 276.10 μg/m 3). The difference between the estimated and observed values was due 
to the missing values of the estimated PM10 caused by cloud cover. Figure S7 in Supporting Information S1 
showed the wind field of the dust-weather process. The wind speed was low in the southern region and high in 
the northern region of China. The wind speed was greatest on November 26, which was also consistent with the 

Figure 10. The same as Figure 9 (Part 2), except that the left column was the true color map of FY-4A satellite, the middle column was the daily average PM10 
obtained by the CEMC stations, the right column was the daily average PM10 estimated by the TOAR-PM10 model, and the red solid line was the CALIOP orbit. Line 
(a): 5–14, Line (b): 5–15, Line (c): 5–16, and Line (d): 5–17 for 2019.
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Figure 11. Identical Figure 9, Part I showed mixed pollution event of dust weather and haze weather (24–27 November 
2018). And Figure line (a–e) showed the average atmospheric PM10 concentration during the Haze period (November 24–30), 
None_Haze_Dust period (November 1–23), Dust period (November 25–27), the difference between Haze period and None_
Haze_Dust period, and difference between Dust period and Haze period, respectively.
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larger range of the dust weather observed on November 26 and the dust transmission path. On November 27, the 
wind speed in northern China decreased, and the dust weather ceased.

Figure 11 (Part 2) showed the atmospheric PM10 concentration distribution estimated by the model and observed 
by the station. The atmospheric PM10 concentration on haze days (Figure 11a, haze period) was much greater 
than that on the None_Haze_Dust days (Figure  11b), and the PM10 concentration on dust days (Figure  11c, 
dust period) was the greatest. The estimated and observed PM10 in Haze period were 122.60 and 146.42 μg/m 3 
(northern China: 162.60 and 209.36 μg/m 3), respectively. During the dust period the values were 154.07 and 
158.98 μg/m 3 (northern China: 214.62 and 257.31 μg/m 3), respectively. In November 2018, the estimated and 
observed atmospheric PM10 concentration in the None_Haze_Dust period were 62.28 and 65.37 μg/m 3 (northern 
China: 70.62 and 88.11 μg/m 3). There were two principal reasons why the estimated value of the model was less 
than the observed value of the station. A reason for this was the lack of data in some areas due to the existence of 
clouds. Second, the sample size of the model average was much larger than the number of stations on the station 
average.

Figure 11d showed the difference in atmospheric PM10 concentration between the haze period and the None_
Haze_Dust period. Based on the model PM10, during the haze period, the PM10 in 74% of China increased by 
20%, 53% of China increased by 50%, 43% of China increased by 70%, 17% of China increased by 100%, and 
10% of China increased by 200%. The observed atmospheric PM10 concentration increased by 20% at 1,327 
stations (accounting for 83% of the total number of stations). That of 1,109 stations (69%) increased by 50%, that 
of 948 stations (59%) increased by 70%, that of 713 stations (44%) increased by 100%, and that of 204 stations 

Figure 12. The same as Figure 10, except for 2018 [Line (a): 11–24, Line (b): 11–25, Line (c): 11–26, and Line (d): 11–27].



Journal of Geophysical Research: Atmospheres

BIN ET AL.

10.1029/2021JD036393

16 of 20

(13%) increased by 200%. Figure 11e showed the results of the atmospheric PM10 concentration comparison 
between the dust and haze periods, which one may estimate the contribution of LRTD to haze weather. Based on 
the model results, due to the LRTD transport of dust, atmospheric PM10 concentration increased by 20% in 33% 
and 50% in 11% of China. Based on surface station data, atmospheric PM10 concentration observations at 352 
stations (22% of the total number of stations) increased by 20%, and that at 116 stations (7%) increased by 50%. 
As shown in Figure 11e, the dust weather mainly affected the PM10 concentration in the dust transmission path 
areas, such as China’s Hexi Corridor and Inner Mongolia.

5. Conclusions
The hourly atmospheric PM10 concentrations in China were obtained using an interpretable deep learning model 
(DF model) and FY-4A TOAR data from June 2018 to May 2019. The main conclusions were as follows:

The optimal hourly R 2 of 10-fold cross validation of TOAR-PM10 DF model can reach 0.85 (13:00 Beijing time); 
The R 2 (RMSE) of daily, monthly, seasonal, and annual average were 0.82 (24.16 μg/m3), 0.97 (6.53 μg/m3), 
0.98 (4.17 μg/m3), and 0.99 (2.3 μg/m3), respectively. The model performance (R 2, RMSE) was better in the 
YRD (0.86 and 15.70 µg/m 3), BTH (0.86, 22.04 μg/m3), and CC (0.87, 18.05 μg/m3) region. The average PM10 
concentrations in spring, summer, autumn, and winter in China were 67.90 ± 25.78, 49.8 ± 20.06, 58.68 ± 22.16, 
and 73.46 ± 26.27 µg/m 3, respectively. In spring, the PM10 concentration in northern China was higher than that 
in southern China, which may be related to the LRTD (Tao et al., 2021; L. Zhao et al., 2020). Excluding the dust 
weather periods, the areas with high PM10 values in China were mainly in large cities and suburban areas, which 
were related to local human activities (Tao et al., 2014).

The DF model can obtain the importance of the model features. The results of the FY-4A TOAR-PM10 model 
showed that TOAR, BLH, RH, surface wind speed (U10 and V10), TM, and TIME contributed significantly to 
the model. The performance of the model was related to the contributions of these important features (Chen, 
Song, Shi, & Li, 2022). The performance of the model would be worse in areas with a large contribution to 
surface pressure (SP). As shown in Table 3, the performance of the FY-4A TOAR-PM10 model was better than 
that of other researchers using the AOD-PM10 model. Using the same FY-4A TOAR and other auxiliary data, the 
DF model performed better than other traditional machine learning models (such as DT, RF, and ET).

China’s arid and semi-arid regions account for ∼57% of the country’s land (Y. Yang et al., 2019). The dust trans-
mitted from these regions every year has an important impact on China’s air pollutants (such as PM10). Using 

Model performance

References Model R 2 RMSE MAE Instrument Data Region Study period

L. Chen et al. (2012) Land use regression model 0.84 0.21 / / / Tian-jin, China 2006

T. H. Zhang et al. (2016) Geographically weighted regression 0.67 / / MODIS AOD China 2015

You et al. (2015) Geographically weighted regression 0.77 16.91 / MODIS AOD Xi'an, China 2011–2013

G. Chen et al. (2018) Random forest 0.78 31.54 / MODIS AOD China 2005–2016

Z. Zhang et al. (2018) Land use regression model 0.64 / / MODIS AOD China 2014–2016

Stafoggia et al. (2019) Random forest 0.75 / / MODIS AOD Italy 2013–2015

Hough et al. (2021) Random forest 0.71 / 4.26 MODIS AOD France 2000–2019

Gupta et al. (2021) Geographically weighted regression 0.72 / / INSAT-3D AOD India 2014–2018

S. Park et al. (2021) Gradient boosted regression trees 0.82 34.9 / GOCI AOD Korea 2019

Wei, Li, Xue, et al. (2021) Space-time extremely randomized trees 0.86 24.28 14.52 MODIS AOD China 2015–2019

This study Decision tree 0.38 43.32 23.22 AGRI TOAR China 2018–2019

This study Random forest 0.71 29.59 16.61 AGRI TOAR China 2018–2019

This study Extreme tree 0.74 28.02 15.51 AGRI TOAR China 2018–2019

This study Deep forest 0.82 24.16 11.23 AGRI TOAR China 2018–2019

Table 3 
Comparison of PM10 Model Performance in This Study With Earlier Studies
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the results of the TOAR-PM10 model, the contribution of LRTD to local atmospheric PM10 concentrations was 
quantified. During the weather promoting dust disturbance and transport (14–17 May 2019), the contributions of 
LRTD to PM10 in China and northern China were 30.07 (52.3%) and 52 (80.4%) μg/m 3, respectively. When haze 
weather and dust weather were mixed (24–30 November 2018), the PM10 concentrations in China and northern 
China increased by 60.32 (96.9%) and 91.98 (130.2%) μg/m 3, respectively. Compared with PM10 on haze days, 
PM10 on dust days in China and northern China increased by 31.47 (50.5%) and 52.02 (73.7%) μg/m 3, respectively. 
The results were similar to those of others (Chen, Song, Shi, & Li, 2022; Gobbi et al., 2013; Guan et al., 2019; 
Remoundaki et al., 2013). The source (originating from the Taklimakan Desert in China) and transmission path 
of the two dust weather processes were similar, and the contribution to atmospheric PM10 concentration in China 
and northern China was the same, but the intensity of the second dust weather was weaker than that of the first 
dust weather. In other words, the contribution of LRTD to local PM10 was not only related to the intensity of 
dust weather, but also to meteorological conditions such as ground wind speed (Dimitriou & Kassomenos, 2018; 
Gobbi et al., 2019). In the first dust weather, the ground wind speed was large, which was conducive to the diffu-
sion of ground pollutants and the reduction of atmospheric PM10 concentration; The second, the low wind speed 
was conducive to the dry settlement of dust and the increase of PM10 concentration. The results showed that the 
contribution of LRTD and local pollution to PM10 in haze days was both important.

Data Availability Statement
The PM10 data were obtained from the China Environmental Monitoring Center, http://www.cnemc.cn 
(CEMC,  2022). The FY-4A TOAR data provided by the National Satellite Meteorological Center of China, 
http://satellite.nsmc.org.cn/PortalSite/Data/Satellite.aspx (NSMC,  2022). ERA5 meteorological data can be 
downloaded from the European Centre for Medium-Range Weather Forecasts, https://cds.climate.copernicus.
eu/cdsapp#!/dataset/reanalysis-era5-land (ECMWF,  2022). The height data download from CGIAR Consor-
tium for Spatial Information, https://srtm.csi.cgiar.org/srtmdata/ (CCSI,  2022). Population density data 
provided by NASA’s Socioeconomic Data and Applications Center, http://sedac.ciesin.columbia.edu/data/
collection/gpw-v4/documentation (SEDAC,  2022). The estimated data and data reading codes are available 
from https://doi.org/10.5281/zenodo.6459693. All programs in this study are implemented based on Python3, 
https://www.python.org/ (Python3, 2022).
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